xref: /freebsd/sys/kern/kern_mutex.c (revision ddd5b8e9b4d8957fce018c520657cdfa4ecffad3)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Machine independent bits of mutex implementation.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_adaptive_mutexes.h"
40 #include "opt_ddb.h"
41 #include "opt_global.h"
42 #include "opt_hwpmc_hooks.h"
43 #include "opt_kdtrace.h"
44 #include "opt_sched.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bus.h>
49 #include <sys/conf.h>
50 #include <sys/kdb.h>
51 #include <sys/kernel.h>
52 #include <sys/ktr.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mutex.h>
56 #include <sys/proc.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/sbuf.h>
60 #include <sys/sysctl.h>
61 #include <sys/turnstile.h>
62 #include <sys/vmmeter.h>
63 #include <sys/lock_profile.h>
64 
65 #include <machine/atomic.h>
66 #include <machine/bus.h>
67 #include <machine/cpu.h>
68 
69 #include <ddb/ddb.h>
70 
71 #include <fs/devfs/devfs_int.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_extern.h>
75 
76 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
77 #define	ADAPTIVE_MUTEXES
78 #endif
79 
80 #ifdef HWPMC_HOOKS
81 #include <sys/pmckern.h>
82 PMC_SOFT_DEFINE( , , lock, failed);
83 #endif
84 
85 /*
86  * Return the mutex address when the lock cookie address is provided.
87  * This functionality assumes that struct mtx* have a member named mtx_lock.
88  */
89 #define	mtxlock2mtx(c)	(__containerof(c, struct mtx, mtx_lock))
90 
91 /*
92  * Internal utility macros.
93  */
94 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
95 
96 #define	mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
97 
98 #define	mtx_owner(m)	((struct thread *)((m)->mtx_lock & ~MTX_FLAGMASK))
99 
100 static void	assert_mtx(const struct lock_object *lock, int what);
101 #ifdef DDB
102 static void	db_show_mtx(const struct lock_object *lock);
103 #endif
104 static void	lock_mtx(struct lock_object *lock, int how);
105 static void	lock_spin(struct lock_object *lock, int how);
106 #ifdef KDTRACE_HOOKS
107 static int	owner_mtx(const struct lock_object *lock,
108 		    struct thread **owner);
109 #endif
110 static int	unlock_mtx(struct lock_object *lock);
111 static int	unlock_spin(struct lock_object *lock);
112 
113 /*
114  * Lock classes for sleep and spin mutexes.
115  */
116 struct lock_class lock_class_mtx_sleep = {
117 	.lc_name = "sleep mutex",
118 	.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
119 	.lc_assert = assert_mtx,
120 #ifdef DDB
121 	.lc_ddb_show = db_show_mtx,
122 #endif
123 	.lc_lock = lock_mtx,
124 	.lc_unlock = unlock_mtx,
125 #ifdef KDTRACE_HOOKS
126 	.lc_owner = owner_mtx,
127 #endif
128 };
129 struct lock_class lock_class_mtx_spin = {
130 	.lc_name = "spin mutex",
131 	.lc_flags = LC_SPINLOCK | LC_RECURSABLE,
132 	.lc_assert = assert_mtx,
133 #ifdef DDB
134 	.lc_ddb_show = db_show_mtx,
135 #endif
136 	.lc_lock = lock_spin,
137 	.lc_unlock = unlock_spin,
138 #ifdef KDTRACE_HOOKS
139 	.lc_owner = owner_mtx,
140 #endif
141 };
142 
143 /*
144  * System-wide mutexes
145  */
146 struct mtx blocked_lock;
147 struct mtx Giant;
148 
149 void
150 assert_mtx(const struct lock_object *lock, int what)
151 {
152 
153 	mtx_assert((const struct mtx *)lock, what);
154 }
155 
156 void
157 lock_mtx(struct lock_object *lock, int how)
158 {
159 
160 	mtx_lock((struct mtx *)lock);
161 }
162 
163 void
164 lock_spin(struct lock_object *lock, int how)
165 {
166 
167 	panic("spin locks can only use msleep_spin");
168 }
169 
170 int
171 unlock_mtx(struct lock_object *lock)
172 {
173 	struct mtx *m;
174 
175 	m = (struct mtx *)lock;
176 	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
177 	mtx_unlock(m);
178 	return (0);
179 }
180 
181 int
182 unlock_spin(struct lock_object *lock)
183 {
184 
185 	panic("spin locks can only use msleep_spin");
186 }
187 
188 #ifdef KDTRACE_HOOKS
189 int
190 owner_mtx(const struct lock_object *lock, struct thread **owner)
191 {
192 	const struct mtx *m = (const struct mtx *)lock;
193 
194 	*owner = mtx_owner(m);
195 	return (mtx_unowned(m) == 0);
196 }
197 #endif
198 
199 /*
200  * Function versions of the inlined __mtx_* macros.  These are used by
201  * modules and can also be called from assembly language if needed.
202  */
203 void
204 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
205 {
206 	struct mtx *m;
207 
208 	if (SCHEDULER_STOPPED())
209 		return;
210 
211 	m = mtxlock2mtx(c);
212 
213 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
214 	    ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
215 	    curthread, m->lock_object.lo_name, file, line));
216 	KASSERT(m->mtx_lock != MTX_DESTROYED,
217 	    ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
218 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
219 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
220 	    file, line));
221 	WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
222 	    file, line, NULL);
223 
224 	__mtx_lock(m, curthread, opts, file, line);
225 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
226 	    line);
227 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
228 	curthread->td_locks++;
229 }
230 
231 void
232 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
233 {
234 	struct mtx *m;
235 
236 	if (SCHEDULER_STOPPED())
237 		return;
238 
239 	m = mtxlock2mtx(c);
240 
241 	KASSERT(m->mtx_lock != MTX_DESTROYED,
242 	    ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
243 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
244 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
245 	    file, line));
246 	curthread->td_locks--;
247 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
248 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
249 	    line);
250 	mtx_assert(m, MA_OWNED);
251 
252 	if (m->mtx_recurse == 0)
253 		LOCKSTAT_PROFILE_RELEASE_LOCK(LS_MTX_UNLOCK_RELEASE, m);
254 	__mtx_unlock(m, curthread, opts, file, line);
255 }
256 
257 void
258 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
259     int line)
260 {
261 	struct mtx *m;
262 
263 	if (SCHEDULER_STOPPED())
264 		return;
265 
266 	m = mtxlock2mtx(c);
267 
268 	KASSERT(m->mtx_lock != MTX_DESTROYED,
269 	    ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
270 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
271 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
272 	    m->lock_object.lo_name, file, line));
273 	if (mtx_owned(m))
274 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
275 	    ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
276 		    m->lock_object.lo_name, file, line));
277 	WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
278 	    file, line, NULL);
279 	__mtx_lock_spin(m, curthread, opts, file, line);
280 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
281 	    line);
282 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
283 }
284 
285 void
286 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
287     int line)
288 {
289 	struct mtx *m;
290 
291 	if (SCHEDULER_STOPPED())
292 		return;
293 
294 	m = mtxlock2mtx(c);
295 
296 	KASSERT(m->mtx_lock != MTX_DESTROYED,
297 	    ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
298 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
299 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
300 	    m->lock_object.lo_name, file, line));
301 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
302 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
303 	    line);
304 	mtx_assert(m, MA_OWNED);
305 
306 	__mtx_unlock_spin(m);
307 }
308 
309 /*
310  * The important part of mtx_trylock{,_flags}()
311  * Tries to acquire lock `m.'  If this function is called on a mutex that
312  * is already owned, it will recursively acquire the lock.
313  */
314 int
315 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
316 {
317 	struct mtx *m;
318 #ifdef LOCK_PROFILING
319 	uint64_t waittime = 0;
320 	int contested = 0;
321 #endif
322 	int rval;
323 
324 	if (SCHEDULER_STOPPED())
325 		return (1);
326 
327 	m = mtxlock2mtx(c);
328 
329 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
330 	    ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
331 	    curthread, m->lock_object.lo_name, file, line));
332 	KASSERT(m->mtx_lock != MTX_DESTROYED,
333 	    ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
334 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
335 	    ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
336 	    file, line));
337 
338 	if (mtx_owned(m) && (m->lock_object.lo_flags & LO_RECURSABLE) != 0) {
339 		m->mtx_recurse++;
340 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
341 		rval = 1;
342 	} else
343 		rval = _mtx_obtain_lock(m, (uintptr_t)curthread);
344 
345 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
346 	if (rval) {
347 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
348 		    file, line);
349 		curthread->td_locks++;
350 		if (m->mtx_recurse == 0)
351 			LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_LOCK_ACQUIRE,
352 			    m, contested, waittime, file, line);
353 
354 	}
355 
356 	return (rval);
357 }
358 
359 /*
360  * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
361  *
362  * We call this if the lock is either contested (i.e. we need to go to
363  * sleep waiting for it), or if we need to recurse on it.
364  */
365 void
366 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t tid, int opts,
367     const char *file, int line)
368 {
369 	struct mtx *m;
370 	struct turnstile *ts;
371 	uintptr_t v;
372 #ifdef ADAPTIVE_MUTEXES
373 	volatile struct thread *owner;
374 #endif
375 #ifdef KTR
376 	int cont_logged = 0;
377 #endif
378 #ifdef LOCK_PROFILING
379 	int contested = 0;
380 	uint64_t waittime = 0;
381 #endif
382 #ifdef KDTRACE_HOOKS
383 	uint64_t spin_cnt = 0;
384 	uint64_t sleep_cnt = 0;
385 	int64_t sleep_time = 0;
386 #endif
387 
388 	if (SCHEDULER_STOPPED())
389 		return;
390 
391 	m = mtxlock2mtx(c);
392 
393 	if (mtx_owned(m)) {
394 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
395 	    ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
396 		    m->lock_object.lo_name, file, line));
397 		m->mtx_recurse++;
398 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
399 		if (LOCK_LOG_TEST(&m->lock_object, opts))
400 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
401 		return;
402 	}
403 
404 #ifdef HWPMC_HOOKS
405 	PMC_SOFT_CALL( , , lock, failed);
406 #endif
407 	lock_profile_obtain_lock_failed(&m->lock_object,
408 		    &contested, &waittime);
409 	if (LOCK_LOG_TEST(&m->lock_object, opts))
410 		CTR4(KTR_LOCK,
411 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
412 		    m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
413 
414 	while (!_mtx_obtain_lock(m, tid)) {
415 #ifdef KDTRACE_HOOKS
416 		spin_cnt++;
417 #endif
418 #ifdef ADAPTIVE_MUTEXES
419 		/*
420 		 * If the owner is running on another CPU, spin until the
421 		 * owner stops running or the state of the lock changes.
422 		 */
423 		v = m->mtx_lock;
424 		if (v != MTX_UNOWNED) {
425 			owner = (struct thread *)(v & ~MTX_FLAGMASK);
426 			if (TD_IS_RUNNING(owner)) {
427 				if (LOCK_LOG_TEST(&m->lock_object, 0))
428 					CTR3(KTR_LOCK,
429 					    "%s: spinning on %p held by %p",
430 					    __func__, m, owner);
431 				while (mtx_owner(m) == owner &&
432 				    TD_IS_RUNNING(owner)) {
433 					cpu_spinwait();
434 #ifdef KDTRACE_HOOKS
435 					spin_cnt++;
436 #endif
437 				}
438 				continue;
439 			}
440 		}
441 #endif
442 
443 		ts = turnstile_trywait(&m->lock_object);
444 		v = m->mtx_lock;
445 
446 		/*
447 		 * Check if the lock has been released while spinning for
448 		 * the turnstile chain lock.
449 		 */
450 		if (v == MTX_UNOWNED) {
451 			turnstile_cancel(ts);
452 			continue;
453 		}
454 
455 #ifdef ADAPTIVE_MUTEXES
456 		/*
457 		 * The current lock owner might have started executing
458 		 * on another CPU (or the lock could have changed
459 		 * owners) while we were waiting on the turnstile
460 		 * chain lock.  If so, drop the turnstile lock and try
461 		 * again.
462 		 */
463 		owner = (struct thread *)(v & ~MTX_FLAGMASK);
464 		if (TD_IS_RUNNING(owner)) {
465 			turnstile_cancel(ts);
466 			continue;
467 		}
468 #endif
469 
470 		/*
471 		 * If the mutex isn't already contested and a failure occurs
472 		 * setting the contested bit, the mutex was either released
473 		 * or the state of the MTX_RECURSED bit changed.
474 		 */
475 		if ((v & MTX_CONTESTED) == 0 &&
476 		    !atomic_cmpset_ptr(&m->mtx_lock, v, v | MTX_CONTESTED)) {
477 			turnstile_cancel(ts);
478 			continue;
479 		}
480 
481 		/*
482 		 * We definitely must sleep for this lock.
483 		 */
484 		mtx_assert(m, MA_NOTOWNED);
485 
486 #ifdef KTR
487 		if (!cont_logged) {
488 			CTR6(KTR_CONTENTION,
489 			    "contention: %p at %s:%d wants %s, taken by %s:%d",
490 			    (void *)tid, file, line, m->lock_object.lo_name,
491 			    WITNESS_FILE(&m->lock_object),
492 			    WITNESS_LINE(&m->lock_object));
493 			cont_logged = 1;
494 		}
495 #endif
496 
497 		/*
498 		 * Block on the turnstile.
499 		 */
500 #ifdef KDTRACE_HOOKS
501 		sleep_time -= lockstat_nsecs();
502 #endif
503 		turnstile_wait(ts, mtx_owner(m), TS_EXCLUSIVE_QUEUE);
504 #ifdef KDTRACE_HOOKS
505 		sleep_time += lockstat_nsecs();
506 		sleep_cnt++;
507 #endif
508 	}
509 #ifdef KTR
510 	if (cont_logged) {
511 		CTR4(KTR_CONTENTION,
512 		    "contention end: %s acquired by %p at %s:%d",
513 		    m->lock_object.lo_name, (void *)tid, file, line);
514 	}
515 #endif
516 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_LOCK_ACQUIRE, m, contested,
517 	    waittime, file, line);
518 #ifdef KDTRACE_HOOKS
519 	if (sleep_time)
520 		LOCKSTAT_RECORD1(LS_MTX_LOCK_BLOCK, m, sleep_time);
521 
522 	/*
523 	 * Only record the loops spinning and not sleeping.
524 	 */
525 	if (spin_cnt > sleep_cnt)
526 		LOCKSTAT_RECORD1(LS_MTX_LOCK_SPIN, m, (spin_cnt - sleep_cnt));
527 #endif
528 }
529 
530 static void
531 _mtx_lock_spin_failed(struct mtx *m)
532 {
533 	struct thread *td;
534 
535 	td = mtx_owner(m);
536 
537 	/* If the mutex is unlocked, try again. */
538 	if (td == NULL)
539 		return;
540 
541 	printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
542 	    m, m->lock_object.lo_name, td, td->td_tid);
543 #ifdef WITNESS
544 	witness_display_spinlock(&m->lock_object, td, printf);
545 #endif
546 	panic("spin lock held too long");
547 }
548 
549 #ifdef SMP
550 /*
551  * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
552  *
553  * This is only called if we need to actually spin for the lock. Recursion
554  * is handled inline.
555  */
556 void
557 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t tid, int opts,
558     const char *file, int line)
559 {
560 	struct mtx *m;
561 	int i = 0;
562 #ifdef LOCK_PROFILING
563 	int contested = 0;
564 	uint64_t waittime = 0;
565 #endif
566 
567 	if (SCHEDULER_STOPPED())
568 		return;
569 
570 	m = mtxlock2mtx(c);
571 
572 	if (LOCK_LOG_TEST(&m->lock_object, opts))
573 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
574 
575 #ifdef HWPMC_HOOKS
576 	PMC_SOFT_CALL( , , lock, failed);
577 #endif
578 	lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime);
579 	while (!_mtx_obtain_lock(m, tid)) {
580 
581 		/* Give interrupts a chance while we spin. */
582 		spinlock_exit();
583 		while (m->mtx_lock != MTX_UNOWNED) {
584 			if (i++ < 10000000) {
585 				cpu_spinwait();
586 				continue;
587 			}
588 			if (i < 60000000 || kdb_active || panicstr != NULL)
589 				DELAY(1);
590 			else
591 				_mtx_lock_spin_failed(m);
592 			cpu_spinwait();
593 		}
594 		spinlock_enter();
595 	}
596 
597 	if (LOCK_LOG_TEST(&m->lock_object, opts))
598 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
599 
600 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_SPIN_LOCK_ACQUIRE, m,
601 	    contested, waittime, (file), (line));
602 	LOCKSTAT_RECORD1(LS_MTX_SPIN_LOCK_SPIN, m, i);
603 }
604 #endif /* SMP */
605 
606 void
607 thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
608 {
609 	struct mtx *m;
610 	uintptr_t tid;
611 	int i;
612 #ifdef LOCK_PROFILING
613 	int contested = 0;
614 	uint64_t waittime = 0;
615 #endif
616 #ifdef KDTRACE_HOOKS
617 	uint64_t spin_cnt = 0;
618 #endif
619 
620 	i = 0;
621 	tid = (uintptr_t)curthread;
622 
623 	if (SCHEDULER_STOPPED())
624 		return;
625 
626 	for (;;) {
627 retry:
628 		spinlock_enter();
629 		m = td->td_lock;
630 		KASSERT(m->mtx_lock != MTX_DESTROYED,
631 		    ("thread_lock() of destroyed mutex @ %s:%d", file, line));
632 		KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
633 		    ("thread_lock() of sleep mutex %s @ %s:%d",
634 		    m->lock_object.lo_name, file, line));
635 		if (mtx_owned(m))
636 			KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
637 	    ("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n",
638 			    m->lock_object.lo_name, file, line));
639 		WITNESS_CHECKORDER(&m->lock_object,
640 		    opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
641 		while (!_mtx_obtain_lock(m, tid)) {
642 #ifdef KDTRACE_HOOKS
643 			spin_cnt++;
644 #endif
645 			if (m->mtx_lock == tid) {
646 				m->mtx_recurse++;
647 				break;
648 			}
649 #ifdef HWPMC_HOOKS
650 			PMC_SOFT_CALL( , , lock, failed);
651 #endif
652 			lock_profile_obtain_lock_failed(&m->lock_object,
653 			    &contested, &waittime);
654 			/* Give interrupts a chance while we spin. */
655 			spinlock_exit();
656 			while (m->mtx_lock != MTX_UNOWNED) {
657 				if (i++ < 10000000)
658 					cpu_spinwait();
659 				else if (i < 60000000 ||
660 				    kdb_active || panicstr != NULL)
661 					DELAY(1);
662 				else
663 					_mtx_lock_spin_failed(m);
664 				cpu_spinwait();
665 				if (m != td->td_lock)
666 					goto retry;
667 			}
668 			spinlock_enter();
669 		}
670 		if (m == td->td_lock)
671 			break;
672 		__mtx_unlock_spin(m);	/* does spinlock_exit() */
673 #ifdef KDTRACE_HOOKS
674 		spin_cnt++;
675 #endif
676 	}
677 	if (m->mtx_recurse == 0)
678 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_SPIN_LOCK_ACQUIRE,
679 		    m, contested, waittime, (file), (line));
680 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
681 	    line);
682 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
683 	LOCKSTAT_RECORD1(LS_THREAD_LOCK_SPIN, m, spin_cnt);
684 }
685 
686 struct mtx *
687 thread_lock_block(struct thread *td)
688 {
689 	struct mtx *lock;
690 
691 	THREAD_LOCK_ASSERT(td, MA_OWNED);
692 	lock = td->td_lock;
693 	td->td_lock = &blocked_lock;
694 	mtx_unlock_spin(lock);
695 
696 	return (lock);
697 }
698 
699 void
700 thread_lock_unblock(struct thread *td, struct mtx *new)
701 {
702 	mtx_assert(new, MA_OWNED);
703 	MPASS(td->td_lock == &blocked_lock);
704 	atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
705 }
706 
707 void
708 thread_lock_set(struct thread *td, struct mtx *new)
709 {
710 	struct mtx *lock;
711 
712 	mtx_assert(new, MA_OWNED);
713 	THREAD_LOCK_ASSERT(td, MA_OWNED);
714 	lock = td->td_lock;
715 	td->td_lock = new;
716 	mtx_unlock_spin(lock);
717 }
718 
719 /*
720  * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
721  *
722  * We are only called here if the lock is recursed or contested (i.e. we
723  * need to wake up a blocked thread).
724  */
725 void
726 __mtx_unlock_sleep(volatile uintptr_t *c, int opts, const char *file, int line)
727 {
728 	struct mtx *m;
729 	struct turnstile *ts;
730 
731 	if (SCHEDULER_STOPPED())
732 		return;
733 
734 	m = mtxlock2mtx(c);
735 
736 	if (mtx_recursed(m)) {
737 		if (--(m->mtx_recurse) == 0)
738 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
739 		if (LOCK_LOG_TEST(&m->lock_object, opts))
740 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
741 		return;
742 	}
743 
744 	/*
745 	 * We have to lock the chain before the turnstile so this turnstile
746 	 * can be removed from the hash list if it is empty.
747 	 */
748 	turnstile_chain_lock(&m->lock_object);
749 	ts = turnstile_lookup(&m->lock_object);
750 	if (LOCK_LOG_TEST(&m->lock_object, opts))
751 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
752 	MPASS(ts != NULL);
753 	turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
754 	_mtx_release_lock_quick(m);
755 
756 	/*
757 	 * This turnstile is now no longer associated with the mutex.  We can
758 	 * unlock the chain lock so a new turnstile may take it's place.
759 	 */
760 	turnstile_unpend(ts, TS_EXCLUSIVE_LOCK);
761 	turnstile_chain_unlock(&m->lock_object);
762 }
763 
764 /*
765  * All the unlocking of MTX_SPIN locks is done inline.
766  * See the __mtx_unlock_spin() macro for the details.
767  */
768 
769 /*
770  * The backing function for the INVARIANTS-enabled mtx_assert()
771  */
772 #ifdef INVARIANT_SUPPORT
773 void
774 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
775 {
776 	const struct mtx *m;
777 
778 	if (panicstr != NULL || dumping)
779 		return;
780 
781 	m = mtxlock2mtx(c);
782 
783 	switch (what) {
784 	case MA_OWNED:
785 	case MA_OWNED | MA_RECURSED:
786 	case MA_OWNED | MA_NOTRECURSED:
787 		if (!mtx_owned(m))
788 			panic("mutex %s not owned at %s:%d",
789 			    m->lock_object.lo_name, file, line);
790 		if (mtx_recursed(m)) {
791 			if ((what & MA_NOTRECURSED) != 0)
792 				panic("mutex %s recursed at %s:%d",
793 				    m->lock_object.lo_name, file, line);
794 		} else if ((what & MA_RECURSED) != 0) {
795 			panic("mutex %s unrecursed at %s:%d",
796 			    m->lock_object.lo_name, file, line);
797 		}
798 		break;
799 	case MA_NOTOWNED:
800 		if (mtx_owned(m))
801 			panic("mutex %s owned at %s:%d",
802 			    m->lock_object.lo_name, file, line);
803 		break;
804 	default:
805 		panic("unknown mtx_assert at %s:%d", file, line);
806 	}
807 }
808 #endif
809 
810 /*
811  * The MUTEX_DEBUG-enabled mtx_validate()
812  *
813  * Most of these checks have been moved off into the LO_INITIALIZED flag
814  * maintained by the witness code.
815  */
816 #ifdef MUTEX_DEBUG
817 
818 void	mtx_validate(struct mtx *);
819 
820 void
821 mtx_validate(struct mtx *m)
822 {
823 
824 /*
825  * XXX: When kernacc() does not require Giant we can reenable this check
826  */
827 #ifdef notyet
828 	/*
829 	 * Can't call kernacc() from early init386(), especially when
830 	 * initializing Giant mutex, because some stuff in kernacc()
831 	 * requires Giant itself.
832 	 */
833 	if (!cold)
834 		if (!kernacc((caddr_t)m, sizeof(m),
835 		    VM_PROT_READ | VM_PROT_WRITE))
836 			panic("Can't read and write to mutex %p", m);
837 #endif
838 }
839 #endif
840 
841 /*
842  * General init routine used by the MTX_SYSINIT() macro.
843  */
844 void
845 mtx_sysinit(void *arg)
846 {
847 	struct mtx_args *margs = arg;
848 
849 	mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
850 	    margs->ma_opts);
851 }
852 
853 /*
854  * Mutex initialization routine; initialize lock `m' of type contained in
855  * `opts' with options contained in `opts' and name `name.'  The optional
856  * lock type `type' is used as a general lock category name for use with
857  * witness.
858  */
859 void
860 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
861 {
862 	struct mtx *m;
863 	struct lock_class *class;
864 	int flags;
865 
866 	m = mtxlock2mtx(c);
867 
868 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
869 		MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE)) == 0);
870 	ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
871 	    ("%s: mtx_lock not aligned for %s: %p", __func__, name,
872 	    &m->mtx_lock));
873 
874 #ifdef MUTEX_DEBUG
875 	/* Diagnostic and error correction */
876 	mtx_validate(m);
877 #endif
878 
879 	/* Determine lock class and lock flags. */
880 	if (opts & MTX_SPIN)
881 		class = &lock_class_mtx_spin;
882 	else
883 		class = &lock_class_mtx_sleep;
884 	flags = 0;
885 	if (opts & MTX_QUIET)
886 		flags |= LO_QUIET;
887 	if (opts & MTX_RECURSE)
888 		flags |= LO_RECURSABLE;
889 	if ((opts & MTX_NOWITNESS) == 0)
890 		flags |= LO_WITNESS;
891 	if (opts & MTX_DUPOK)
892 		flags |= LO_DUPOK;
893 	if (opts & MTX_NOPROFILE)
894 		flags |= LO_NOPROFILE;
895 
896 	/* Initialize mutex. */
897 	m->mtx_lock = MTX_UNOWNED;
898 	m->mtx_recurse = 0;
899 
900 	lock_init(&m->lock_object, class, name, type, flags);
901 }
902 
903 /*
904  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
905  * passed in as a flag here because if the corresponding mtx_init() was
906  * called with MTX_QUIET set, then it will already be set in the mutex's
907  * flags.
908  */
909 void
910 _mtx_destroy(volatile uintptr_t *c)
911 {
912 	struct mtx *m;
913 
914 	m = mtxlock2mtx(c);
915 
916 	if (!mtx_owned(m))
917 		MPASS(mtx_unowned(m));
918 	else {
919 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
920 
921 		/* Perform the non-mtx related part of mtx_unlock_spin(). */
922 		if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin)
923 			spinlock_exit();
924 		else
925 			curthread->td_locks--;
926 
927 		lock_profile_release_lock(&m->lock_object);
928 		/* Tell witness this isn't locked to make it happy. */
929 		WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
930 		    __LINE__);
931 	}
932 
933 	m->mtx_lock = MTX_DESTROYED;
934 	lock_destroy(&m->lock_object);
935 }
936 
937 /*
938  * Intialize the mutex code and system mutexes.  This is called from the MD
939  * startup code prior to mi_startup().  The per-CPU data space needs to be
940  * setup before this is called.
941  */
942 void
943 mutex_init(void)
944 {
945 
946 	/* Setup turnstiles so that sleep mutexes work. */
947 	init_turnstiles();
948 
949 	/*
950 	 * Initialize mutexes.
951 	 */
952 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
953 	mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
954 	blocked_lock.mtx_lock = 0xdeadc0de;	/* Always blocked. */
955 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
956 	mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
957 	mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
958 	mtx_lock(&Giant);
959 }
960 
961 #ifdef DDB
962 void
963 db_show_mtx(const struct lock_object *lock)
964 {
965 	struct thread *td;
966 	const struct mtx *m;
967 
968 	m = (const struct mtx *)lock;
969 
970 	db_printf(" flags: {");
971 	if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
972 		db_printf("SPIN");
973 	else
974 		db_printf("DEF");
975 	if (m->lock_object.lo_flags & LO_RECURSABLE)
976 		db_printf(", RECURSE");
977 	if (m->lock_object.lo_flags & LO_DUPOK)
978 		db_printf(", DUPOK");
979 	db_printf("}\n");
980 	db_printf(" state: {");
981 	if (mtx_unowned(m))
982 		db_printf("UNOWNED");
983 	else if (mtx_destroyed(m))
984 		db_printf("DESTROYED");
985 	else {
986 		db_printf("OWNED");
987 		if (m->mtx_lock & MTX_CONTESTED)
988 			db_printf(", CONTESTED");
989 		if (m->mtx_lock & MTX_RECURSED)
990 			db_printf(", RECURSED");
991 	}
992 	db_printf("}\n");
993 	if (!mtx_unowned(m) && !mtx_destroyed(m)) {
994 		td = mtx_owner(m);
995 		db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
996 		    td->td_tid, td->td_proc->p_pid, td->td_name);
997 		if (mtx_recursed(m))
998 			db_printf(" recursed: %d\n", m->mtx_recurse);
999 	}
1000 }
1001 #endif
1002