xref: /freebsd/sys/kern/kern_mutex.c (revision ddc0daea20280c3a06a910b72b14ffe3f624df71)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Berkeley Software Design Inc's name may not be used to endorse or
15  *    promote products derived from this software without specific prior
16  *    written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32  */
33 
34 /*
35  * Machine independent bits of mutex implementation.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_adaptive_mutexes.h"
42 #include "opt_ddb.h"
43 #include "opt_hwpmc_hooks.h"
44 #include "opt_sched.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bus.h>
49 #include <sys/conf.h>
50 #include <sys/kdb.h>
51 #include <sys/kernel.h>
52 #include <sys/ktr.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mutex.h>
56 #include <sys/proc.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/sbuf.h>
60 #include <sys/smp.h>
61 #include <sys/sysctl.h>
62 #include <sys/turnstile.h>
63 #include <sys/vmmeter.h>
64 #include <sys/lock_profile.h>
65 
66 #include <machine/atomic.h>
67 #include <machine/bus.h>
68 #include <machine/cpu.h>
69 
70 #include <ddb/ddb.h>
71 
72 #include <fs/devfs/devfs_int.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 
77 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
78 #define	ADAPTIVE_MUTEXES
79 #endif
80 
81 #ifdef HWPMC_HOOKS
82 #include <sys/pmckern.h>
83 PMC_SOFT_DEFINE( , , lock, failed);
84 #endif
85 
86 /*
87  * Return the mutex address when the lock cookie address is provided.
88  * This functionality assumes that struct mtx* have a member named mtx_lock.
89  */
90 #define	mtxlock2mtx(c)	(__containerof(c, struct mtx, mtx_lock))
91 
92 /*
93  * Internal utility macros.
94  */
95 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
96 
97 #define	mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
98 
99 static void	assert_mtx(const struct lock_object *lock, int what);
100 #ifdef DDB
101 static void	db_show_mtx(const struct lock_object *lock);
102 #endif
103 static void	lock_mtx(struct lock_object *lock, uintptr_t how);
104 static void	lock_spin(struct lock_object *lock, uintptr_t how);
105 #ifdef KDTRACE_HOOKS
106 static int	owner_mtx(const struct lock_object *lock,
107 		    struct thread **owner);
108 #endif
109 static uintptr_t unlock_mtx(struct lock_object *lock);
110 static uintptr_t unlock_spin(struct lock_object *lock);
111 
112 /*
113  * Lock classes for sleep and spin mutexes.
114  */
115 struct lock_class lock_class_mtx_sleep = {
116 	.lc_name = "sleep mutex",
117 	.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
118 	.lc_assert = assert_mtx,
119 #ifdef DDB
120 	.lc_ddb_show = db_show_mtx,
121 #endif
122 	.lc_lock = lock_mtx,
123 	.lc_unlock = unlock_mtx,
124 #ifdef KDTRACE_HOOKS
125 	.lc_owner = owner_mtx,
126 #endif
127 };
128 struct lock_class lock_class_mtx_spin = {
129 	.lc_name = "spin mutex",
130 	.lc_flags = LC_SPINLOCK | LC_RECURSABLE,
131 	.lc_assert = assert_mtx,
132 #ifdef DDB
133 	.lc_ddb_show = db_show_mtx,
134 #endif
135 	.lc_lock = lock_spin,
136 	.lc_unlock = unlock_spin,
137 #ifdef KDTRACE_HOOKS
138 	.lc_owner = owner_mtx,
139 #endif
140 };
141 
142 #ifdef ADAPTIVE_MUTEXES
143 static SYSCTL_NODE(_debug, OID_AUTO, mtx, CTLFLAG_RD, NULL, "mtx debugging");
144 
145 static struct lock_delay_config __read_frequently mtx_delay;
146 
147 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_delay.base,
148     0, "");
149 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_delay.max,
150     0, "");
151 
152 LOCK_DELAY_SYSINIT_DEFAULT(mtx_delay);
153 #endif
154 
155 static SYSCTL_NODE(_debug, OID_AUTO, mtx_spin, CTLFLAG_RD, NULL,
156     "mtx spin debugging");
157 
158 static struct lock_delay_config __read_frequently mtx_spin_delay;
159 
160 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_base, CTLFLAG_RW,
161     &mtx_spin_delay.base, 0, "");
162 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_max, CTLFLAG_RW,
163     &mtx_spin_delay.max, 0, "");
164 
165 LOCK_DELAY_SYSINIT_DEFAULT(mtx_spin_delay);
166 
167 /*
168  * System-wide mutexes
169  */
170 struct mtx blocked_lock;
171 struct mtx __exclusive_cache_line Giant;
172 
173 static void _mtx_lock_indefinite_check(struct mtx *, struct lock_delay_arg *);
174 
175 void
176 assert_mtx(const struct lock_object *lock, int what)
177 {
178 
179 	/*
180 	 * Treat LA_LOCKED as if LA_XLOCKED was asserted.
181 	 *
182 	 * Some callers of lc_assert uses LA_LOCKED to indicate that either
183 	 * a shared lock or write lock was held, while other callers uses
184 	 * the more strict LA_XLOCKED (used as MA_OWNED).
185 	 *
186 	 * Mutex is the only lock class that can not be shared, as a result,
187 	 * we can reasonably consider the caller really intends to assert
188 	 * LA_XLOCKED when they are asserting LA_LOCKED on a mutex object.
189 	 */
190 	if (what & LA_LOCKED) {
191 		what &= ~LA_LOCKED;
192 		what |= LA_XLOCKED;
193 	}
194 	mtx_assert((const struct mtx *)lock, what);
195 }
196 
197 void
198 lock_mtx(struct lock_object *lock, uintptr_t how)
199 {
200 
201 	mtx_lock((struct mtx *)lock);
202 }
203 
204 void
205 lock_spin(struct lock_object *lock, uintptr_t how)
206 {
207 
208 	panic("spin locks can only use msleep_spin");
209 }
210 
211 uintptr_t
212 unlock_mtx(struct lock_object *lock)
213 {
214 	struct mtx *m;
215 
216 	m = (struct mtx *)lock;
217 	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
218 	mtx_unlock(m);
219 	return (0);
220 }
221 
222 uintptr_t
223 unlock_spin(struct lock_object *lock)
224 {
225 
226 	panic("spin locks can only use msleep_spin");
227 }
228 
229 #ifdef KDTRACE_HOOKS
230 int
231 owner_mtx(const struct lock_object *lock, struct thread **owner)
232 {
233 	const struct mtx *m;
234 	uintptr_t x;
235 
236 	m = (const struct mtx *)lock;
237 	x = m->mtx_lock;
238 	*owner = (struct thread *)(x & ~MTX_FLAGMASK);
239 	return (*owner != NULL);
240 }
241 #endif
242 
243 /*
244  * Function versions of the inlined __mtx_* macros.  These are used by
245  * modules and can also be called from assembly language if needed.
246  */
247 void
248 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
249 {
250 	struct mtx *m;
251 	uintptr_t tid, v;
252 
253 	m = mtxlock2mtx(c);
254 
255 	KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
256 	    !TD_IS_IDLETHREAD(curthread),
257 	    ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
258 	    curthread, m->lock_object.lo_name, file, line));
259 	KASSERT(m->mtx_lock != MTX_DESTROYED,
260 	    ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
261 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
262 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
263 	    file, line));
264 	WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
265 	    LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
266 
267 	tid = (uintptr_t)curthread;
268 	v = MTX_UNOWNED;
269 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
270 		_mtx_lock_sleep(m, v, opts, file, line);
271 	else
272 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
273 		    m, 0, 0, file, line);
274 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
275 	    line);
276 	WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
277 	    file, line);
278 	TD_LOCKS_INC(curthread);
279 }
280 
281 void
282 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
283 {
284 	struct mtx *m;
285 
286 	m = mtxlock2mtx(c);
287 
288 	KASSERT(m->mtx_lock != MTX_DESTROYED,
289 	    ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
290 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
291 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
292 	    file, line));
293 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
294 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
295 	    line);
296 	mtx_assert(m, MA_OWNED);
297 
298 #ifdef LOCK_PROFILING
299 	__mtx_unlock_sleep(c, (uintptr_t)curthread, opts, file, line);
300 #else
301 	__mtx_unlock(m, curthread, opts, file, line);
302 #endif
303 	TD_LOCKS_DEC(curthread);
304 }
305 
306 void
307 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
308     int line)
309 {
310 	struct mtx *m;
311 #ifdef SMP
312 	uintptr_t tid, v;
313 #endif
314 
315 	m = mtxlock2mtx(c);
316 
317 	KASSERT(m->mtx_lock != MTX_DESTROYED,
318 	    ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
319 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
320 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
321 	    m->lock_object.lo_name, file, line));
322 	if (mtx_owned(m))
323 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
324 		    (opts & MTX_RECURSE) != 0,
325 	    ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
326 		    m->lock_object.lo_name, file, line));
327 	opts &= ~MTX_RECURSE;
328 	WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
329 	    file, line, NULL);
330 #ifdef SMP
331 	spinlock_enter();
332 	tid = (uintptr_t)curthread;
333 	v = MTX_UNOWNED;
334 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
335 		_mtx_lock_spin(m, v, opts, file, line);
336 	else
337 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire,
338 		    m, 0, 0, file, line);
339 #else
340 	__mtx_lock_spin(m, curthread, opts, file, line);
341 #endif
342 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
343 	    line);
344 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
345 }
346 
347 int
348 __mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
349     int line)
350 {
351 	struct mtx *m;
352 
353 	if (SCHEDULER_STOPPED())
354 		return (1);
355 
356 	m = mtxlock2mtx(c);
357 
358 	KASSERT(m->mtx_lock != MTX_DESTROYED,
359 	    ("mtx_trylock_spin() of destroyed mutex @ %s:%d", file, line));
360 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
361 	    ("mtx_trylock_spin() of sleep mutex %s @ %s:%d",
362 	    m->lock_object.lo_name, file, line));
363 	KASSERT((opts & MTX_RECURSE) == 0,
364 	    ("mtx_trylock_spin: unsupp. opt MTX_RECURSE on mutex %s @ %s:%d\n",
365 	    m->lock_object.lo_name, file, line));
366 	if (__mtx_trylock_spin(m, curthread, opts, file, line)) {
367 		LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 1, file, line);
368 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
369 		return (1);
370 	}
371 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 0, file, line);
372 	return (0);
373 }
374 
375 void
376 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
377     int line)
378 {
379 	struct mtx *m;
380 
381 	m = mtxlock2mtx(c);
382 
383 	KASSERT(m->mtx_lock != MTX_DESTROYED,
384 	    ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
385 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
386 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
387 	    m->lock_object.lo_name, file, line));
388 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
389 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
390 	    line);
391 	mtx_assert(m, MA_OWNED);
392 
393 	__mtx_unlock_spin(m);
394 }
395 
396 /*
397  * The important part of mtx_trylock{,_flags}()
398  * Tries to acquire lock `m.'  If this function is called on a mutex that
399  * is already owned, it will recursively acquire the lock.
400  */
401 int
402 _mtx_trylock_flags_int(struct mtx *m, int opts LOCK_FILE_LINE_ARG_DEF)
403 {
404 	struct thread *td;
405 	uintptr_t tid, v;
406 #ifdef LOCK_PROFILING
407 	uint64_t waittime = 0;
408 	int contested = 0;
409 #endif
410 	int rval;
411 	bool recursed;
412 
413 	td = curthread;
414 	tid = (uintptr_t)td;
415 	if (SCHEDULER_STOPPED_TD(td))
416 		return (1);
417 
418 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td),
419 	    ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
420 	    curthread, m->lock_object.lo_name, file, line));
421 	KASSERT(m->mtx_lock != MTX_DESTROYED,
422 	    ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
423 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
424 	    ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
425 	    file, line));
426 
427 	rval = 1;
428 	recursed = false;
429 	v = MTX_UNOWNED;
430 	for (;;) {
431 		if (_mtx_obtain_lock_fetch(m, &v, tid))
432 			break;
433 		if (v == MTX_UNOWNED)
434 			continue;
435 		if (v == tid &&
436 		    ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
437 		    (opts & MTX_RECURSE) != 0)) {
438 			m->mtx_recurse++;
439 			atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
440 			recursed = true;
441 			break;
442 		}
443 		rval = 0;
444 		break;
445 	}
446 
447 	opts &= ~MTX_RECURSE;
448 
449 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
450 	if (rval) {
451 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
452 		    file, line);
453 		TD_LOCKS_INC(curthread);
454 		if (!recursed)
455 			LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
456 			    m, contested, waittime, file, line);
457 	}
458 
459 	return (rval);
460 }
461 
462 int
463 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
464 {
465 	struct mtx *m;
466 
467 	m = mtxlock2mtx(c);
468 	return (_mtx_trylock_flags_int(m, opts LOCK_FILE_LINE_ARG));
469 }
470 
471 /*
472  * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
473  *
474  * We call this if the lock is either contested (i.e. we need to go to
475  * sleep waiting for it), or if we need to recurse on it.
476  */
477 #if LOCK_DEBUG > 0
478 void
479 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file,
480     int line)
481 #else
482 void
483 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v)
484 #endif
485 {
486 	struct thread *td;
487 	struct mtx *m;
488 	struct turnstile *ts;
489 	uintptr_t tid;
490 	struct thread *owner;
491 #ifdef LOCK_PROFILING
492 	int contested = 0;
493 	uint64_t waittime = 0;
494 #endif
495 #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS)
496 	struct lock_delay_arg lda;
497 #endif
498 #ifdef KDTRACE_HOOKS
499 	u_int sleep_cnt = 0;
500 	int64_t sleep_time = 0;
501 	int64_t all_time = 0;
502 #endif
503 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
504 	int doing_lockprof = 0;
505 #endif
506 
507 	td = curthread;
508 	tid = (uintptr_t)td;
509 	m = mtxlock2mtx(c);
510 
511 #ifdef KDTRACE_HOOKS
512 	if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
513 		while (v == MTX_UNOWNED) {
514 			if (_mtx_obtain_lock_fetch(m, &v, tid))
515 				goto out_lockstat;
516 		}
517 		doing_lockprof = 1;
518 		all_time -= lockstat_nsecs(&m->lock_object);
519 	}
520 #endif
521 #ifdef LOCK_PROFILING
522 	doing_lockprof = 1;
523 #endif
524 
525 	if (SCHEDULER_STOPPED_TD(td))
526 		return;
527 
528 #if defined(ADAPTIVE_MUTEXES)
529 	lock_delay_arg_init(&lda, &mtx_delay);
530 #elif defined(KDTRACE_HOOKS)
531 	lock_delay_arg_init(&lda, NULL);
532 #endif
533 
534 	if (__predict_false(v == MTX_UNOWNED))
535 		v = MTX_READ_VALUE(m);
536 
537 	if (__predict_false(lv_mtx_owner(v) == td)) {
538 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
539 		    (opts & MTX_RECURSE) != 0,
540 	    ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
541 		    m->lock_object.lo_name, file, line));
542 #if LOCK_DEBUG > 0
543 		opts &= ~MTX_RECURSE;
544 #endif
545 		m->mtx_recurse++;
546 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
547 		if (LOCK_LOG_TEST(&m->lock_object, opts))
548 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
549 		return;
550 	}
551 #if LOCK_DEBUG > 0
552 	opts &= ~MTX_RECURSE;
553 #endif
554 
555 #ifdef HWPMC_HOOKS
556 	PMC_SOFT_CALL( , , lock, failed);
557 #endif
558 	lock_profile_obtain_lock_failed(&m->lock_object,
559 		    &contested, &waittime);
560 	if (LOCK_LOG_TEST(&m->lock_object, opts))
561 		CTR4(KTR_LOCK,
562 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
563 		    m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
564 
565 	for (;;) {
566 		if (v == MTX_UNOWNED) {
567 			if (_mtx_obtain_lock_fetch(m, &v, tid))
568 				break;
569 			continue;
570 		}
571 #ifdef KDTRACE_HOOKS
572 		lda.spin_cnt++;
573 #endif
574 #ifdef ADAPTIVE_MUTEXES
575 		/*
576 		 * If the owner is running on another CPU, spin until the
577 		 * owner stops running or the state of the lock changes.
578 		 */
579 		owner = lv_mtx_owner(v);
580 		if (TD_IS_RUNNING(owner)) {
581 			if (LOCK_LOG_TEST(&m->lock_object, 0))
582 				CTR3(KTR_LOCK,
583 				    "%s: spinning on %p held by %p",
584 				    __func__, m, owner);
585 			KTR_STATE1(KTR_SCHED, "thread",
586 			    sched_tdname((struct thread *)tid),
587 			    "spinning", "lockname:\"%s\"",
588 			    m->lock_object.lo_name);
589 			do {
590 				lock_delay(&lda);
591 				v = MTX_READ_VALUE(m);
592 				owner = lv_mtx_owner(v);
593 			} while (v != MTX_UNOWNED && TD_IS_RUNNING(owner));
594 			KTR_STATE0(KTR_SCHED, "thread",
595 			    sched_tdname((struct thread *)tid),
596 			    "running");
597 			continue;
598 		}
599 #endif
600 
601 		ts = turnstile_trywait(&m->lock_object);
602 		v = MTX_READ_VALUE(m);
603 retry_turnstile:
604 
605 		/*
606 		 * Check if the lock has been released while spinning for
607 		 * the turnstile chain lock.
608 		 */
609 		if (v == MTX_UNOWNED) {
610 			turnstile_cancel(ts);
611 			continue;
612 		}
613 
614 #ifdef ADAPTIVE_MUTEXES
615 		/*
616 		 * The current lock owner might have started executing
617 		 * on another CPU (or the lock could have changed
618 		 * owners) while we were waiting on the turnstile
619 		 * chain lock.  If so, drop the turnstile lock and try
620 		 * again.
621 		 */
622 		owner = lv_mtx_owner(v);
623 		if (TD_IS_RUNNING(owner)) {
624 			turnstile_cancel(ts);
625 			continue;
626 		}
627 #endif
628 
629 		/*
630 		 * If the mutex isn't already contested and a failure occurs
631 		 * setting the contested bit, the mutex was either released
632 		 * or the state of the MTX_RECURSED bit changed.
633 		 */
634 		if ((v & MTX_CONTESTED) == 0 &&
635 		    !atomic_fcmpset_ptr(&m->mtx_lock, &v, v | MTX_CONTESTED)) {
636 			goto retry_turnstile;
637 		}
638 
639 		/*
640 		 * We definitely must sleep for this lock.
641 		 */
642 		mtx_assert(m, MA_NOTOWNED);
643 
644 		/*
645 		 * Block on the turnstile.
646 		 */
647 #ifdef KDTRACE_HOOKS
648 		sleep_time -= lockstat_nsecs(&m->lock_object);
649 #endif
650 #ifndef ADAPTIVE_MUTEXES
651 		owner = mtx_owner(m);
652 #endif
653 		MPASS(owner == mtx_owner(m));
654 		turnstile_wait(ts, owner, TS_EXCLUSIVE_QUEUE);
655 #ifdef KDTRACE_HOOKS
656 		sleep_time += lockstat_nsecs(&m->lock_object);
657 		sleep_cnt++;
658 #endif
659 		v = MTX_READ_VALUE(m);
660 	}
661 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
662 	if (__predict_true(!doing_lockprof))
663 		return;
664 #endif
665 #ifdef KDTRACE_HOOKS
666 	all_time += lockstat_nsecs(&m->lock_object);
667 	if (sleep_time)
668 		LOCKSTAT_RECORD1(adaptive__block, m, sleep_time);
669 
670 	/*
671 	 * Only record the loops spinning and not sleeping.
672 	 */
673 	if (lda.spin_cnt > sleep_cnt)
674 		LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time);
675 out_lockstat:
676 #endif
677 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested,
678 	    waittime, file, line);
679 }
680 
681 #ifdef SMP
682 /*
683  * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
684  *
685  * This is only called if we need to actually spin for the lock. Recursion
686  * is handled inline.
687  */
688 #if LOCK_DEBUG > 0
689 void
690 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v, int opts,
691     const char *file, int line)
692 #else
693 void
694 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v)
695 #endif
696 {
697 	struct mtx *m;
698 	struct lock_delay_arg lda;
699 	uintptr_t tid;
700 #ifdef LOCK_PROFILING
701 	int contested = 0;
702 	uint64_t waittime = 0;
703 #endif
704 #ifdef KDTRACE_HOOKS
705 	int64_t spin_time = 0;
706 #endif
707 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
708 	int doing_lockprof = 0;
709 #endif
710 
711 	tid = (uintptr_t)curthread;
712 	m = mtxlock2mtx(c);
713 
714 #ifdef KDTRACE_HOOKS
715 	if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
716 		while (v == MTX_UNOWNED) {
717 			if (_mtx_obtain_lock_fetch(m, &v, tid))
718 				goto out_lockstat;
719 		}
720 		doing_lockprof = 1;
721 		spin_time -= lockstat_nsecs(&m->lock_object);
722 	}
723 #endif
724 #ifdef LOCK_PROFILING
725 	doing_lockprof = 1;
726 #endif
727 
728 	if (__predict_false(v == MTX_UNOWNED))
729 		v = MTX_READ_VALUE(m);
730 
731 	if (__predict_false(v == tid)) {
732 		m->mtx_recurse++;
733 		return;
734 	}
735 
736 	if (SCHEDULER_STOPPED())
737 		return;
738 
739 	lock_delay_arg_init(&lda, &mtx_spin_delay);
740 
741 	if (LOCK_LOG_TEST(&m->lock_object, opts))
742 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
743 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
744 	    "spinning", "lockname:\"%s\"", m->lock_object.lo_name);
745 
746 #ifdef HWPMC_HOOKS
747 	PMC_SOFT_CALL( , , lock, failed);
748 #endif
749 	lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime);
750 
751 	for (;;) {
752 		if (v == MTX_UNOWNED) {
753 			if (_mtx_obtain_lock_fetch(m, &v, tid))
754 				break;
755 			continue;
756 		}
757 		/* Give interrupts a chance while we spin. */
758 		spinlock_exit();
759 		do {
760 			if (__predict_true(lda.spin_cnt < 10000000)) {
761 				lock_delay(&lda);
762 			} else {
763 				_mtx_lock_indefinite_check(m, &lda);
764 			}
765 			v = MTX_READ_VALUE(m);
766 		} while (v != MTX_UNOWNED);
767 		spinlock_enter();
768 	}
769 
770 	if (LOCK_LOG_TEST(&m->lock_object, opts))
771 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
772 	KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
773 	    "running");
774 
775 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
776 	if (__predict_true(!doing_lockprof))
777 		return;
778 #endif
779 #ifdef KDTRACE_HOOKS
780 	spin_time += lockstat_nsecs(&m->lock_object);
781 	if (lda.spin_cnt != 0)
782 		LOCKSTAT_RECORD1(spin__spin, m, spin_time);
783 out_lockstat:
784 #endif
785 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
786 	    contested, waittime, file, line);
787 }
788 #endif /* SMP */
789 
790 #ifdef INVARIANTS
791 static void
792 thread_lock_validate(struct mtx *m, int opts, const char *file, int line)
793 {
794 
795 	KASSERT(m->mtx_lock != MTX_DESTROYED,
796 	    ("thread_lock() of destroyed mutex @ %s:%d", file, line));
797 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
798 	    ("thread_lock() of sleep mutex %s @ %s:%d",
799 	    m->lock_object.lo_name, file, line));
800 	if (mtx_owned(m))
801 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
802 		    ("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n",
803 		    m->lock_object.lo_name, file, line));
804 	WITNESS_CHECKORDER(&m->lock_object,
805 	    opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
806 }
807 #else
808 #define thread_lock_validate(m, opts, file, line) do { } while (0)
809 #endif
810 
811 #ifndef LOCK_PROFILING
812 #if LOCK_DEBUG > 0
813 void
814 _thread_lock(struct thread *td, int opts, const char *file, int line)
815 #else
816 void
817 _thread_lock(struct thread *td)
818 #endif
819 {
820 	struct mtx *m;
821 	uintptr_t tid, v;
822 
823 	tid = (uintptr_t)curthread;
824 
825 	if (__predict_false(LOCKSTAT_PROFILE_ENABLED(spin__acquire)))
826 		goto slowpath_noirq;
827 	spinlock_enter();
828 	m = td->td_lock;
829 	thread_lock_validate(m, 0, file, line);
830 	v = MTX_READ_VALUE(m);
831 	if (__predict_true(v == MTX_UNOWNED)) {
832 		if (__predict_false(!_mtx_obtain_lock(m, tid)))
833 			goto slowpath_unlocked;
834 	} else if (v == tid) {
835 		m->mtx_recurse++;
836 	} else
837 		goto slowpath_unlocked;
838 	if (__predict_true(m == td->td_lock)) {
839 		WITNESS_LOCK(&m->lock_object, LOP_EXCLUSIVE, file, line);
840 		return;
841 	}
842 	MPASS(m->mtx_recurse == 0);
843 	_mtx_release_lock_quick(m);
844 slowpath_unlocked:
845 	spinlock_exit();
846 slowpath_noirq:
847 #if LOCK_DEBUG > 0
848 	thread_lock_flags_(td, opts, file, line);
849 #else
850 	thread_lock_flags_(td, 0, 0, 0);
851 #endif
852 }
853 #endif
854 
855 void
856 thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
857 {
858 	struct mtx *m;
859 	uintptr_t tid, v;
860 	struct lock_delay_arg lda;
861 #ifdef LOCK_PROFILING
862 	int contested = 0;
863 	uint64_t waittime = 0;
864 #endif
865 #ifdef KDTRACE_HOOKS
866 	int64_t spin_time = 0;
867 #endif
868 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
869 	int doing_lockprof = 1;
870 #endif
871 
872 	tid = (uintptr_t)curthread;
873 
874 	if (SCHEDULER_STOPPED()) {
875 		/*
876 		 * Ensure that spinlock sections are balanced even when the
877 		 * scheduler is stopped, since we may otherwise inadvertently
878 		 * re-enable interrupts while dumping core.
879 		 */
880 		spinlock_enter();
881 		return;
882 	}
883 
884 	lock_delay_arg_init(&lda, &mtx_spin_delay);
885 
886 #ifdef HWPMC_HOOKS
887 	PMC_SOFT_CALL( , , lock, failed);
888 #endif
889 
890 #ifdef LOCK_PROFILING
891 	doing_lockprof = 1;
892 #elif defined(KDTRACE_HOOKS)
893 	doing_lockprof = lockstat_enabled;
894 	if (__predict_false(doing_lockprof))
895 		spin_time -= lockstat_nsecs(&td->td_lock->lock_object);
896 #endif
897 	spinlock_enter();
898 
899 	for (;;) {
900 retry:
901 		m = td->td_lock;
902 		thread_lock_validate(m, opts, file, line);
903 		v = MTX_READ_VALUE(m);
904 		for (;;) {
905 			if (v == MTX_UNOWNED) {
906 				if (_mtx_obtain_lock_fetch(m, &v, tid))
907 					break;
908 				continue;
909 			}
910 			if (v == tid) {
911 				m->mtx_recurse++;
912 				MPASS(m == td->td_lock);
913 				break;
914 			}
915 			lock_profile_obtain_lock_failed(&m->lock_object,
916 			    &contested, &waittime);
917 			/* Give interrupts a chance while we spin. */
918 			spinlock_exit();
919 			do {
920 				if (__predict_true(lda.spin_cnt < 10000000)) {
921 					lock_delay(&lda);
922 				} else {
923 					_mtx_lock_indefinite_check(m, &lda);
924 				}
925 				if (m != td->td_lock) {
926 					spinlock_enter();
927 					goto retry;
928 				}
929 				v = MTX_READ_VALUE(m);
930 			} while (v != MTX_UNOWNED);
931 			spinlock_enter();
932 		}
933 		if (m == td->td_lock)
934 			break;
935 		MPASS(m->mtx_recurse == 0);
936 		_mtx_release_lock_quick(m);
937 	}
938 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
939 	    line);
940 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
941 
942 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
943 	if (__predict_true(!doing_lockprof))
944 		return;
945 #endif
946 #ifdef KDTRACE_HOOKS
947 	spin_time += lockstat_nsecs(&m->lock_object);
948 #endif
949 	if (m->mtx_recurse == 0)
950 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
951 		    contested, waittime, file, line);
952 #ifdef KDTRACE_HOOKS
953 	if (lda.spin_cnt != 0)
954 		LOCKSTAT_RECORD1(thread__spin, m, spin_time);
955 #endif
956 }
957 
958 struct mtx *
959 thread_lock_block(struct thread *td)
960 {
961 	struct mtx *lock;
962 
963 	THREAD_LOCK_ASSERT(td, MA_OWNED);
964 	lock = td->td_lock;
965 	td->td_lock = &blocked_lock;
966 	mtx_unlock_spin(lock);
967 
968 	return (lock);
969 }
970 
971 void
972 thread_lock_unblock(struct thread *td, struct mtx *new)
973 {
974 	mtx_assert(new, MA_OWNED);
975 	MPASS(td->td_lock == &blocked_lock);
976 	atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
977 }
978 
979 void
980 thread_lock_set(struct thread *td, struct mtx *new)
981 {
982 	struct mtx *lock;
983 
984 	mtx_assert(new, MA_OWNED);
985 	THREAD_LOCK_ASSERT(td, MA_OWNED);
986 	lock = td->td_lock;
987 	td->td_lock = new;
988 	mtx_unlock_spin(lock);
989 }
990 
991 /*
992  * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
993  *
994  * We are only called here if the lock is recursed, contested (i.e. we
995  * need to wake up a blocked thread) or lockstat probe is active.
996  */
997 #if LOCK_DEBUG > 0
998 void
999 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v, int opts,
1000     const char *file, int line)
1001 #else
1002 void
1003 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v)
1004 #endif
1005 {
1006 	struct mtx *m;
1007 	struct turnstile *ts;
1008 	uintptr_t tid;
1009 
1010 	if (SCHEDULER_STOPPED())
1011 		return;
1012 
1013 	tid = (uintptr_t)curthread;
1014 	m = mtxlock2mtx(c);
1015 
1016 	if (__predict_false(v == tid))
1017 		v = MTX_READ_VALUE(m);
1018 
1019 	if (__predict_false(v & MTX_RECURSED)) {
1020 		if (--(m->mtx_recurse) == 0)
1021 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
1022 		if (LOCK_LOG_TEST(&m->lock_object, opts))
1023 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
1024 		return;
1025 	}
1026 
1027 	LOCKSTAT_PROFILE_RELEASE_LOCK(adaptive__release, m);
1028 	if (v == tid && _mtx_release_lock(m, tid))
1029 		return;
1030 
1031 	/*
1032 	 * We have to lock the chain before the turnstile so this turnstile
1033 	 * can be removed from the hash list if it is empty.
1034 	 */
1035 	turnstile_chain_lock(&m->lock_object);
1036 	_mtx_release_lock_quick(m);
1037 	ts = turnstile_lookup(&m->lock_object);
1038 	MPASS(ts != NULL);
1039 	if (LOCK_LOG_TEST(&m->lock_object, opts))
1040 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
1041 	turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
1042 
1043 	/*
1044 	 * This turnstile is now no longer associated with the mutex.  We can
1045 	 * unlock the chain lock so a new turnstile may take it's place.
1046 	 */
1047 	turnstile_unpend(ts);
1048 	turnstile_chain_unlock(&m->lock_object);
1049 }
1050 
1051 /*
1052  * All the unlocking of MTX_SPIN locks is done inline.
1053  * See the __mtx_unlock_spin() macro for the details.
1054  */
1055 
1056 /*
1057  * The backing function for the INVARIANTS-enabled mtx_assert()
1058  */
1059 #ifdef INVARIANT_SUPPORT
1060 void
1061 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
1062 {
1063 	const struct mtx *m;
1064 
1065 	if (panicstr != NULL || dumping || SCHEDULER_STOPPED())
1066 		return;
1067 
1068 	m = mtxlock2mtx(c);
1069 
1070 	switch (what) {
1071 	case MA_OWNED:
1072 	case MA_OWNED | MA_RECURSED:
1073 	case MA_OWNED | MA_NOTRECURSED:
1074 		if (!mtx_owned(m))
1075 			panic("mutex %s not owned at %s:%d",
1076 			    m->lock_object.lo_name, file, line);
1077 		if (mtx_recursed(m)) {
1078 			if ((what & MA_NOTRECURSED) != 0)
1079 				panic("mutex %s recursed at %s:%d",
1080 				    m->lock_object.lo_name, file, line);
1081 		} else if ((what & MA_RECURSED) != 0) {
1082 			panic("mutex %s unrecursed at %s:%d",
1083 			    m->lock_object.lo_name, file, line);
1084 		}
1085 		break;
1086 	case MA_NOTOWNED:
1087 		if (mtx_owned(m))
1088 			panic("mutex %s owned at %s:%d",
1089 			    m->lock_object.lo_name, file, line);
1090 		break;
1091 	default:
1092 		panic("unknown mtx_assert at %s:%d", file, line);
1093 	}
1094 }
1095 #endif
1096 
1097 /*
1098  * General init routine used by the MTX_SYSINIT() macro.
1099  */
1100 void
1101 mtx_sysinit(void *arg)
1102 {
1103 	struct mtx_args *margs = arg;
1104 
1105 	mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
1106 	    margs->ma_opts);
1107 }
1108 
1109 /*
1110  * Mutex initialization routine; initialize lock `m' of type contained in
1111  * `opts' with options contained in `opts' and name `name.'  The optional
1112  * lock type `type' is used as a general lock category name for use with
1113  * witness.
1114  */
1115 void
1116 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
1117 {
1118 	struct mtx *m;
1119 	struct lock_class *class;
1120 	int flags;
1121 
1122 	m = mtxlock2mtx(c);
1123 
1124 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
1125 	    MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0);
1126 	ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
1127 	    ("%s: mtx_lock not aligned for %s: %p", __func__, name,
1128 	    &m->mtx_lock));
1129 
1130 	/* Determine lock class and lock flags. */
1131 	if (opts & MTX_SPIN)
1132 		class = &lock_class_mtx_spin;
1133 	else
1134 		class = &lock_class_mtx_sleep;
1135 	flags = 0;
1136 	if (opts & MTX_QUIET)
1137 		flags |= LO_QUIET;
1138 	if (opts & MTX_RECURSE)
1139 		flags |= LO_RECURSABLE;
1140 	if ((opts & MTX_NOWITNESS) == 0)
1141 		flags |= LO_WITNESS;
1142 	if (opts & MTX_DUPOK)
1143 		flags |= LO_DUPOK;
1144 	if (opts & MTX_NOPROFILE)
1145 		flags |= LO_NOPROFILE;
1146 	if (opts & MTX_NEW)
1147 		flags |= LO_NEW;
1148 
1149 	/* Initialize mutex. */
1150 	lock_init(&m->lock_object, class, name, type, flags);
1151 
1152 	m->mtx_lock = MTX_UNOWNED;
1153 	m->mtx_recurse = 0;
1154 }
1155 
1156 /*
1157  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
1158  * passed in as a flag here because if the corresponding mtx_init() was
1159  * called with MTX_QUIET set, then it will already be set in the mutex's
1160  * flags.
1161  */
1162 void
1163 _mtx_destroy(volatile uintptr_t *c)
1164 {
1165 	struct mtx *m;
1166 
1167 	m = mtxlock2mtx(c);
1168 
1169 	if (!mtx_owned(m))
1170 		MPASS(mtx_unowned(m));
1171 	else {
1172 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
1173 
1174 		/* Perform the non-mtx related part of mtx_unlock_spin(). */
1175 		if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin)
1176 			spinlock_exit();
1177 		else
1178 			TD_LOCKS_DEC(curthread);
1179 
1180 		lock_profile_release_lock(&m->lock_object);
1181 		/* Tell witness this isn't locked to make it happy. */
1182 		WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
1183 		    __LINE__);
1184 	}
1185 
1186 	m->mtx_lock = MTX_DESTROYED;
1187 	lock_destroy(&m->lock_object);
1188 }
1189 
1190 /*
1191  * Intialize the mutex code and system mutexes.  This is called from the MD
1192  * startup code prior to mi_startup().  The per-CPU data space needs to be
1193  * setup before this is called.
1194  */
1195 void
1196 mutex_init(void)
1197 {
1198 
1199 	/* Setup turnstiles so that sleep mutexes work. */
1200 	init_turnstiles();
1201 
1202 	/*
1203 	 * Initialize mutexes.
1204 	 */
1205 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
1206 	mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
1207 	blocked_lock.mtx_lock = 0xdeadc0de;	/* Always blocked. */
1208 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
1209 	mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN);
1210 	mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN);
1211 	mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN);
1212 	mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN);
1213 	mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
1214 	mtx_lock(&Giant);
1215 }
1216 
1217 static void __noinline
1218 _mtx_lock_indefinite_check(struct mtx *m, struct lock_delay_arg *ldap)
1219 {
1220 	struct thread *td;
1221 
1222 	ldap->spin_cnt++;
1223 	if (ldap->spin_cnt < 60000000 || kdb_active || panicstr != NULL)
1224 		cpu_lock_delay();
1225 	else {
1226 		td = mtx_owner(m);
1227 
1228 		/* If the mutex is unlocked, try again. */
1229 		if (td == NULL)
1230 			return;
1231 
1232 		printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
1233 		    m, m->lock_object.lo_name, td, td->td_tid);
1234 #ifdef WITNESS
1235 		witness_display_spinlock(&m->lock_object, td, printf);
1236 #endif
1237 		panic("spin lock held too long");
1238 	}
1239 	cpu_spinwait();
1240 }
1241 
1242 void
1243 mtx_spin_wait_unlocked(struct mtx *m)
1244 {
1245 	struct lock_delay_arg lda;
1246 
1247 	KASSERT(m->mtx_lock != MTX_DESTROYED,
1248 	    ("%s() of destroyed mutex %p", __func__, m));
1249 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
1250 	    ("%s() of sleep mutex %p (%s)", __func__, m,
1251 	    m->lock_object.lo_name));
1252 	KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m,
1253 	    m->lock_object.lo_name));
1254 
1255 	lda.spin_cnt = 0;
1256 
1257 	while (atomic_load_acq_ptr(&m->mtx_lock) != MTX_UNOWNED) {
1258 		if (__predict_true(lda.spin_cnt < 10000000)) {
1259 			cpu_spinwait();
1260 			lda.spin_cnt++;
1261 		} else {
1262 			_mtx_lock_indefinite_check(m, &lda);
1263 		}
1264 	}
1265 }
1266 
1267 #ifdef DDB
1268 void
1269 db_show_mtx(const struct lock_object *lock)
1270 {
1271 	struct thread *td;
1272 	const struct mtx *m;
1273 
1274 	m = (const struct mtx *)lock;
1275 
1276 	db_printf(" flags: {");
1277 	if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
1278 		db_printf("SPIN");
1279 	else
1280 		db_printf("DEF");
1281 	if (m->lock_object.lo_flags & LO_RECURSABLE)
1282 		db_printf(", RECURSE");
1283 	if (m->lock_object.lo_flags & LO_DUPOK)
1284 		db_printf(", DUPOK");
1285 	db_printf("}\n");
1286 	db_printf(" state: {");
1287 	if (mtx_unowned(m))
1288 		db_printf("UNOWNED");
1289 	else if (mtx_destroyed(m))
1290 		db_printf("DESTROYED");
1291 	else {
1292 		db_printf("OWNED");
1293 		if (m->mtx_lock & MTX_CONTESTED)
1294 			db_printf(", CONTESTED");
1295 		if (m->mtx_lock & MTX_RECURSED)
1296 			db_printf(", RECURSED");
1297 	}
1298 	db_printf("}\n");
1299 	if (!mtx_unowned(m) && !mtx_destroyed(m)) {
1300 		td = mtx_owner(m);
1301 		db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
1302 		    td->td_tid, td->td_proc->p_pid, td->td_name);
1303 		if (mtx_recursed(m))
1304 			db_printf(" recursed: %d\n", m->mtx_recurse);
1305 	}
1306 }
1307 #endif
1308