xref: /freebsd/sys/kern/kern_mutex.c (revision dce6e6518b85561495cff38a3074a69d29d58a55)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Machine independent bits of mutex implementation.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_adaptive_mutexes.h"
40 #include "opt_ddb.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bus.h>
45 #include <sys/kernel.h>
46 #include <sys/ktr.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/sched.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysctl.h>
55 #include <sys/vmmeter.h>
56 
57 #include <machine/atomic.h>
58 #include <machine/bus.h>
59 #include <machine/clock.h>
60 #include <machine/cpu.h>
61 
62 #include <ddb/ddb.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_extern.h>
66 
67 /*
68  * Internal utility macros.
69  */
70 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
71 
72 #define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
73 	: (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
74 
75 /*
76  * Lock classes for sleep and spin mutexes.
77  */
78 struct lock_class lock_class_mtx_sleep = {
79 	"sleep mutex",
80 	LC_SLEEPLOCK | LC_RECURSABLE
81 };
82 struct lock_class lock_class_mtx_spin = {
83 	"spin mutex",
84 	LC_SPINLOCK | LC_RECURSABLE
85 };
86 
87 /*
88  * System-wide mutexes
89  */
90 struct mtx sched_lock;
91 struct mtx Giant;
92 
93 /*
94  * Prototypes for non-exported routines.
95  */
96 static void	propagate_priority(struct thread *);
97 
98 static void
99 propagate_priority(struct thread *td)
100 {
101 	int pri = td->td_priority;
102 	struct mtx *m = td->td_blocked;
103 
104 	mtx_assert(&sched_lock, MA_OWNED);
105 	for (;;) {
106 		struct thread *td1;
107 
108 		td = mtx_owner(m);
109 
110 		if (td == NULL) {
111 			/*
112 			 * This really isn't quite right. Really
113 			 * ought to bump priority of thread that
114 			 * next acquires the mutex.
115 			 */
116 			MPASS(m->mtx_lock == MTX_CONTESTED);
117 			return;
118 		}
119 
120 		MPASS(td->td_proc != NULL);
121 		MPASS(td->td_proc->p_magic == P_MAGIC);
122 		KASSERT(!TD_IS_SLEEPING(td), ("sleeping thread owns a mutex"));
123 		if (td->td_priority <= pri) /* lower is higher priority */
124 			return;
125 
126 
127 		/*
128 		 * If lock holder is actually running, just bump priority.
129 		 */
130 		if (TD_IS_RUNNING(td)) {
131 			td->td_priority = pri;
132 			return;
133 		}
134 
135 #ifndef SMP
136 		/*
137 		 * For UP, we check to see if td is curthread (this shouldn't
138 		 * ever happen however as it would mean we are in a deadlock.)
139 		 */
140 		KASSERT(td != curthread, ("Deadlock detected"));
141 #endif
142 
143 		/*
144 		 * If on run queue move to new run queue, and quit.
145 		 * XXXKSE this gets a lot more complicated under threads
146 		 * but try anyhow.
147 		 */
148 		if (TD_ON_RUNQ(td)) {
149 			MPASS(td->td_blocked == NULL);
150 			sched_prio(td, pri);
151 			return;
152 		}
153 		/*
154 		 * Adjust for any other cases.
155 		 */
156 		td->td_priority = pri;
157 
158 		/*
159 		 * If we aren't blocked on a mutex, we should be.
160 		 */
161 		KASSERT(TD_ON_LOCK(td), (
162 		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
163 		    td->td_proc->p_pid, td->td_proc->p_comm, td->td_state,
164 		    m->mtx_object.lo_name));
165 
166 		/*
167 		 * Pick up the mutex that td is blocked on.
168 		 */
169 		m = td->td_blocked;
170 		MPASS(m != NULL);
171 
172 		/*
173 		 * Check if the thread needs to be moved up on
174 		 * the blocked chain
175 		 */
176 		if (td == TAILQ_FIRST(&m->mtx_blocked)) {
177 			continue;
178 		}
179 
180 		td1 = TAILQ_PREV(td, threadqueue, td_lockq);
181 		if (td1->td_priority <= pri) {
182 			continue;
183 		}
184 
185 		/*
186 		 * Remove thread from blocked chain and determine where
187 		 * it should be moved up to.  Since we know that td1 has
188 		 * a lower priority than td, we know that at least one
189 		 * thread in the chain has a lower priority and that
190 		 * td1 will thus not be NULL after the loop.
191 		 */
192 		TAILQ_REMOVE(&m->mtx_blocked, td, td_lockq);
193 		TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq) {
194 			MPASS(td1->td_proc->p_magic == P_MAGIC);
195 			if (td1->td_priority > pri)
196 				break;
197 		}
198 
199 		MPASS(td1 != NULL);
200 		TAILQ_INSERT_BEFORE(td1, td, td_lockq);
201 		CTR4(KTR_LOCK,
202 		    "propagate_priority: p %p moved before %p on [%p] %s",
203 		    td, td1, m, m->mtx_object.lo_name);
204 	}
205 }
206 
207 #ifdef MUTEX_PROFILING
208 SYSCTL_NODE(_debug, OID_AUTO, mutex, CTLFLAG_RD, NULL, "mutex debugging");
209 SYSCTL_NODE(_debug_mutex, OID_AUTO, prof, CTLFLAG_RD, NULL, "mutex profiling");
210 static int mutex_prof_enable = 0;
211 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, enable, CTLFLAG_RW,
212     &mutex_prof_enable, 0, "Enable tracing of mutex holdtime");
213 
214 struct mutex_prof {
215 	const char	*name;
216 	const char	*file;
217 	int		line;
218 	uintmax_t	cnt_max;
219 	uintmax_t	cnt_tot;
220 	uintmax_t	cnt_cur;
221 	struct mutex_prof *next;
222 };
223 
224 /*
225  * mprof_buf is a static pool of profiling records to avoid possible
226  * reentrance of the memory allocation functions.
227  *
228  * Note: NUM_MPROF_BUFFERS must be smaller than MPROF_HASH_SIZE.
229  */
230 #define	NUM_MPROF_BUFFERS	1000
231 static struct mutex_prof mprof_buf[NUM_MPROF_BUFFERS];
232 static int first_free_mprof_buf;
233 #define	MPROF_HASH_SIZE		1009
234 static struct mutex_prof *mprof_hash[MPROF_HASH_SIZE];
235 /* SWAG: sbuf size = avg stat. line size * number of locks */
236 #define MPROF_SBUF_SIZE		256 * 400
237 
238 static int mutex_prof_acquisitions;
239 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, acquisitions, CTLFLAG_RD,
240     &mutex_prof_acquisitions, 0, "Number of mutex acquistions recorded");
241 static int mutex_prof_records;
242 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, records, CTLFLAG_RD,
243     &mutex_prof_records, 0, "Number of profiling records");
244 static int mutex_prof_maxrecords = NUM_MPROF_BUFFERS;
245 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, maxrecords, CTLFLAG_RD,
246     &mutex_prof_maxrecords, 0, "Maximum number of profiling records");
247 static int mutex_prof_rejected;
248 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, rejected, CTLFLAG_RD,
249     &mutex_prof_rejected, 0, "Number of rejected profiling records");
250 static int mutex_prof_hashsize = MPROF_HASH_SIZE;
251 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, hashsize, CTLFLAG_RD,
252     &mutex_prof_hashsize, 0, "Hash size");
253 static int mutex_prof_collisions = 0;
254 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, collisions, CTLFLAG_RD,
255     &mutex_prof_collisions, 0, "Number of hash collisions");
256 
257 /*
258  * mprof_mtx protects the profiling buffers and the hash.
259  */
260 static struct mtx mprof_mtx;
261 MTX_SYSINIT(mprof, &mprof_mtx, "mutex profiling lock", MTX_SPIN | MTX_QUIET);
262 
263 static u_int64_t
264 nanoseconds(void)
265 {
266 	struct timespec tv;
267 
268 	nanotime(&tv);
269 	return (tv.tv_sec * (u_int64_t)1000000000 + tv.tv_nsec);
270 }
271 
272 static int
273 dump_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
274 {
275 	struct sbuf *sb;
276 	int error, i;
277 	static int multiplier = 1;
278 
279 	if (first_free_mprof_buf == 0)
280 		return (SYSCTL_OUT(req, "No locking recorded",
281 		    sizeof("No locking recorded")));
282 
283 retry_sbufops:
284 	sb = sbuf_new(NULL, NULL, MPROF_SBUF_SIZE * multiplier, SBUF_FIXEDLEN);
285 	sbuf_printf(sb, "%6s %12s %11s %5s %s\n",
286 	    "max", "total", "count", "avg", "name");
287 	/*
288 	 * XXX this spinlock seems to be by far the largest perpetrator
289 	 * of spinlock latency (1.6 msec on an Athlon1600 was recorded
290 	 * even before I pessimized it further by moving the average
291 	 * computation here).
292 	 */
293 	mtx_lock_spin(&mprof_mtx);
294 	for (i = 0; i < first_free_mprof_buf; ++i) {
295 		sbuf_printf(sb, "%6ju %12ju %11ju %5ju %s:%d (%s)\n",
296 		    mprof_buf[i].cnt_max / 1000,
297 		    mprof_buf[i].cnt_tot / 1000,
298 		    mprof_buf[i].cnt_cur,
299 		    mprof_buf[i].cnt_cur == 0 ? (uintmax_t)0 :
300 			mprof_buf[i].cnt_tot / (mprof_buf[i].cnt_cur * 1000),
301 		    mprof_buf[i].file, mprof_buf[i].line, mprof_buf[i].name);
302 		if (sbuf_overflowed(sb)) {
303 			mtx_unlock_spin(&mprof_mtx);
304 			sbuf_delete(sb);
305 			multiplier++;
306 			goto retry_sbufops;
307 		}
308 	}
309 	mtx_unlock_spin(&mprof_mtx);
310 	sbuf_finish(sb);
311 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
312 	sbuf_delete(sb);
313 	return (error);
314 }
315 SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
316     NULL, 0, dump_mutex_prof_stats, "A", "Mutex profiling statistics");
317 #endif
318 
319 /*
320  * Function versions of the inlined __mtx_* macros.  These are used by
321  * modules and can also be called from assembly language if needed.
322  */
323 void
324 _mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
325 {
326 
327 	MPASS(curthread != NULL);
328 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
329 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
330 	    file, line));
331 	_get_sleep_lock(m, curthread, opts, file, line);
332 	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
333 	    line);
334 	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
335 #ifdef MUTEX_PROFILING
336 	/* don't reset the timer when/if recursing */
337 	if (m->mtx_acqtime == 0) {
338 		m->mtx_filename = file;
339 		m->mtx_lineno = line;
340 		m->mtx_acqtime = mutex_prof_enable ? nanoseconds() : 0;
341 		++mutex_prof_acquisitions;
342 	}
343 #endif
344 }
345 
346 void
347 _mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
348 {
349 
350 	MPASS(curthread != NULL);
351 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
352 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
353 	    file, line));
354 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
355 	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
356 	    line);
357 	mtx_assert(m, MA_OWNED);
358 #ifdef MUTEX_PROFILING
359 	if (m->mtx_acqtime != 0) {
360 		static const char *unknown = "(unknown)";
361 		struct mutex_prof *mpp;
362 		u_int64_t acqtime, now;
363 		const char *p, *q;
364 		volatile u_int hash;
365 
366 		now = nanoseconds();
367 		acqtime = m->mtx_acqtime;
368 		m->mtx_acqtime = 0;
369 		if (now <= acqtime)
370 			goto out;
371 		for (p = m->mtx_filename;
372 		    p != NULL && strncmp(p, "../", 3) == 0; p += 3)
373 			/* nothing */ ;
374 		if (p == NULL || *p == '\0')
375 			p = unknown;
376 		for (hash = m->mtx_lineno, q = p; *q != '\0'; ++q)
377 			hash = (hash * 2 + *q) % MPROF_HASH_SIZE;
378 		mtx_lock_spin(&mprof_mtx);
379 		for (mpp = mprof_hash[hash]; mpp != NULL; mpp = mpp->next)
380 			if (mpp->line == m->mtx_lineno &&
381 			    strcmp(mpp->file, p) == 0)
382 				break;
383 		if (mpp == NULL) {
384 			/* Just exit if we cannot get a trace buffer */
385 			if (first_free_mprof_buf >= NUM_MPROF_BUFFERS) {
386 				++mutex_prof_rejected;
387 				goto unlock;
388 			}
389 			mpp = &mprof_buf[first_free_mprof_buf++];
390 			mpp->name = mtx_name(m);
391 			mpp->file = p;
392 			mpp->line = m->mtx_lineno;
393 			mpp->next = mprof_hash[hash];
394 			if (mprof_hash[hash] != NULL)
395 				++mutex_prof_collisions;
396 			mprof_hash[hash] = mpp;
397 			++mutex_prof_records;
398 		}
399 		/*
400 		 * Record if the mutex has been held longer now than ever
401 		 * before.
402 		 */
403 		if (now - acqtime > mpp->cnt_max)
404 			mpp->cnt_max = now - acqtime;
405 		mpp->cnt_tot += now - acqtime;
406 		mpp->cnt_cur++;
407 unlock:
408 		mtx_unlock_spin(&mprof_mtx);
409 	}
410 out:
411 #endif
412 	_rel_sleep_lock(m, curthread, opts, file, line);
413 }
414 
415 void
416 _mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
417 {
418 
419 	MPASS(curthread != NULL);
420 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
421 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
422 	    m->mtx_object.lo_name, file, line));
423 #if defined(SMP) || LOCK_DEBUG > 0 || 1
424 	_get_spin_lock(m, curthread, opts, file, line);
425 #else
426 	critical_enter();
427 #endif
428 	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
429 	    line);
430 	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
431 }
432 
433 void
434 _mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
435 {
436 
437 	MPASS(curthread != NULL);
438 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
439 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
440 	    m->mtx_object.lo_name, file, line));
441 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
442 	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
443 	    line);
444 	mtx_assert(m, MA_OWNED);
445 #if defined(SMP) || LOCK_DEBUG > 0 || 1
446 	_rel_spin_lock(m);
447 #else
448 	critical_exit();
449 #endif
450 }
451 
452 /*
453  * The important part of mtx_trylock{,_flags}()
454  * Tries to acquire lock `m.' We do NOT handle recursion here.  If this
455  * function is called on a recursed mutex, it will return failure and
456  * will not recursively acquire the lock.  You are expected to know what
457  * you are doing.
458  */
459 int
460 _mtx_trylock(struct mtx *m, int opts, const char *file, int line)
461 {
462 	int rval;
463 
464 	MPASS(curthread != NULL);
465 
466 	rval = _obtain_lock(m, curthread);
467 
468 	LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
469 	if (rval)
470 		WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
471 		    file, line);
472 
473 	return (rval);
474 }
475 
476 /*
477  * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
478  *
479  * We call this if the lock is either contested (i.e. we need to go to
480  * sleep waiting for it), or if we need to recurse on it.
481  */
482 void
483 _mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
484 {
485 	struct thread *td = curthread;
486 	struct thread *td1;
487 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
488 	struct thread *owner;
489 #endif
490 	uintptr_t v;
491 #ifdef KTR
492 	int cont_logged = 0;
493 #endif
494 
495 	if (mtx_owned(m)) {
496 		m->mtx_recurse++;
497 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
498 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
499 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
500 		return;
501 	}
502 
503 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
504 		CTR4(KTR_LOCK,
505 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
506 		    m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
507 
508 	while (!_obtain_lock(m, td)) {
509 
510 		mtx_lock_spin(&sched_lock);
511 		v = m->mtx_lock;
512 
513 		/*
514 		 * Check if the lock has been released while spinning for
515 		 * the sched_lock.
516 		 */
517 		if (v == MTX_UNOWNED) {
518 			mtx_unlock_spin(&sched_lock);
519 #ifdef __i386__
520 			ia32_pause();
521 #endif
522 			continue;
523 		}
524 
525 		/*
526 		 * The mutex was marked contested on release. This means that
527 		 * there are other threads blocked on it.  Grab ownership of
528 		 * it and propagate its priority to the current thread if
529 		 * necessary.
530 		 */
531 		if (v == MTX_CONTESTED) {
532 			td1 = TAILQ_FIRST(&m->mtx_blocked);
533 			MPASS(td1 != NULL);
534 			m->mtx_lock = (uintptr_t)td | MTX_CONTESTED;
535 			LIST_INSERT_HEAD(&td->td_contested, m, mtx_contested);
536 
537 			if (td1->td_priority < td->td_priority)
538 				td->td_priority = td1->td_priority;
539 			mtx_unlock_spin(&sched_lock);
540 			return;
541 		}
542 
543 		/*
544 		 * If the mutex isn't already contested and a failure occurs
545 		 * setting the contested bit, the mutex was either released
546 		 * or the state of the MTX_RECURSED bit changed.
547 		 */
548 		if ((v & MTX_CONTESTED) == 0 &&
549 		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
550 			(void *)(v | MTX_CONTESTED))) {
551 			mtx_unlock_spin(&sched_lock);
552 #ifdef __i386__
553 			ia32_pause();
554 #endif
555 			continue;
556 		}
557 
558 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
559 		/*
560 		 * If the current owner of the lock is executing on another
561 		 * CPU, spin instead of blocking.
562 		 */
563 		owner = (struct thread *)(v & MTX_FLAGMASK);
564 		if (m != &Giant && TD_IS_RUNNING(owner)) {
565 			mtx_unlock_spin(&sched_lock);
566 			while (mtx_owner(m) == owner && TD_IS_RUNNING(owner)) {
567 #ifdef __i386__
568 				ia32_pause();
569 #endif
570 			}
571 			continue;
572 		}
573 #endif	/* SMP && ADAPTIVE_MUTEXES */
574 
575 		/*
576 		 * We definitely must sleep for this lock.
577 		 */
578 		mtx_assert(m, MA_NOTOWNED);
579 
580 #ifdef notyet
581 		/*
582 		 * If we're borrowing an interrupted thread's VM context, we
583 		 * must clean up before going to sleep.
584 		 */
585 		if (td->td_ithd != NULL) {
586 			struct ithd *it = td->td_ithd;
587 
588 			if (it->it_interrupted) {
589 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
590 					CTR2(KTR_LOCK,
591 				    "_mtx_lock_sleep: %p interrupted %p",
592 					    it, it->it_interrupted);
593 				intr_thd_fixup(it);
594 			}
595 		}
596 #endif
597 
598 		/*
599 		 * Put us on the list of threads blocked on this mutex
600 		 * and add this mutex to the owning thread's list of
601 		 * contested mutexes if needed.
602 		 */
603 		if (TAILQ_EMPTY(&m->mtx_blocked)) {
604 			td1 = mtx_owner(m);
605 			LIST_INSERT_HEAD(&td1->td_contested, m, mtx_contested);
606 			TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
607 		} else {
608 			TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq)
609 				if (td1->td_priority > td->td_priority)
610 					break;
611 			if (td1)
612 				TAILQ_INSERT_BEFORE(td1, td, td_lockq);
613 			else
614 				TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
615 		}
616 #ifdef KTR
617 		if (!cont_logged) {
618 			CTR6(KTR_CONTENTION,
619 			    "contention: %p at %s:%d wants %s, taken by %s:%d",
620 			    td, file, line, m->mtx_object.lo_name,
621 			    WITNESS_FILE(&m->mtx_object),
622 			    WITNESS_LINE(&m->mtx_object));
623 			cont_logged = 1;
624 		}
625 #endif
626 
627 		/*
628 		 * Save who we're blocked on.
629 		 */
630 		td->td_blocked = m;
631 		td->td_lockname = m->mtx_object.lo_name;
632 		TD_SET_LOCK(td);
633 		propagate_priority(td);
634 
635 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
636 			CTR3(KTR_LOCK,
637 			    "_mtx_lock_sleep: p %p blocked on [%p] %s", td, m,
638 			    m->mtx_object.lo_name);
639 
640 		td->td_proc->p_stats->p_ru.ru_nvcsw++;
641 		mi_switch();
642 
643 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
644 			CTR3(KTR_LOCK,
645 			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
646 			  td, m, m->mtx_object.lo_name);
647 
648 		mtx_unlock_spin(&sched_lock);
649 	}
650 
651 #ifdef KTR
652 	if (cont_logged) {
653 		CTR4(KTR_CONTENTION,
654 		    "contention end: %s acquired by %p at %s:%d",
655 		    m->mtx_object.lo_name, td, file, line);
656 	}
657 #endif
658 	return;
659 }
660 
661 /*
662  * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
663  *
664  * This is only called if we need to actually spin for the lock. Recursion
665  * is handled inline.
666  */
667 void
668 _mtx_lock_spin(struct mtx *m, int opts, const char *file, int line)
669 {
670 	int i = 0;
671 
672 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
673 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
674 
675 	for (;;) {
676 		if (_obtain_lock(m, curthread))
677 			break;
678 
679 		/* Give interrupts a chance while we spin. */
680 		critical_exit();
681 		while (m->mtx_lock != MTX_UNOWNED) {
682 			if (i++ < 10000000) {
683 #ifdef __i386__
684 				ia32_pause();
685 #endif
686 				continue;
687 			}
688 			if (i < 60000000)
689 				DELAY(1);
690 #ifdef DDB
691 			else if (!db_active)
692 #else
693 			else
694 #endif
695 				panic("spin lock %s held by %p for > 5 seconds",
696 				    m->mtx_object.lo_name, (void *)m->mtx_lock);
697 #ifdef __i386__
698 			ia32_pause();
699 #endif
700 		}
701 		critical_enter();
702 	}
703 
704 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
705 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
706 
707 	return;
708 }
709 
710 /*
711  * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
712  *
713  * We are only called here if the lock is recursed or contested (i.e. we
714  * need to wake up a blocked thread).
715  */
716 void
717 _mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
718 {
719 	struct thread *td, *td1;
720 	struct mtx *m1;
721 	int pri;
722 
723 	td = curthread;
724 
725 	if (mtx_recursed(m)) {
726 		if (--(m->mtx_recurse) == 0)
727 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
728 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
729 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
730 		return;
731 	}
732 
733 	mtx_lock_spin(&sched_lock);
734 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
735 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
736 
737 	td1 = TAILQ_FIRST(&m->mtx_blocked);
738 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
739 	if (td1 == NULL) {
740 		_release_lock_quick(m);
741 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
742 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p no sleepers", m);
743 		mtx_unlock_spin(&sched_lock);
744 		return;
745 	}
746 #endif
747 	MPASS(td->td_proc->p_magic == P_MAGIC);
748 	MPASS(td1->td_proc->p_magic == P_MAGIC);
749 
750 	TAILQ_REMOVE(&m->mtx_blocked, td1, td_lockq);
751 
752 	LIST_REMOVE(m, mtx_contested);
753 	if (TAILQ_EMPTY(&m->mtx_blocked)) {
754 		_release_lock_quick(m);
755 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
756 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
757 	} else
758 		m->mtx_lock = MTX_CONTESTED;
759 
760 	pri = PRI_MAX;
761 	LIST_FOREACH(m1, &td->td_contested, mtx_contested) {
762 		int cp = TAILQ_FIRST(&m1->mtx_blocked)->td_priority;
763 		if (cp < pri)
764 			pri = cp;
765 	}
766 
767 	if (pri > td->td_base_pri)
768 		pri = td->td_base_pri;
769 	td->td_priority = pri;
770 
771 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
772 		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
773 		    m, td1);
774 
775 	td1->td_blocked = NULL;
776 	TD_CLR_LOCK(td1);
777 	if (!TD_CAN_RUN(td1)) {
778 		mtx_unlock_spin(&sched_lock);
779 		return;
780 	}
781 	setrunqueue(td1);
782 
783 	if (td->td_critnest == 1 && td1->td_priority < pri) {
784 #ifdef notyet
785 		if (td->td_ithd != NULL) {
786 			struct ithd *it = td->td_ithd;
787 
788 			if (it->it_interrupted) {
789 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
790 					CTR2(KTR_LOCK,
791 				    "_mtx_unlock_sleep: %p interrupted %p",
792 					    it, it->it_interrupted);
793 				intr_thd_fixup(it);
794 			}
795 		}
796 #endif
797 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
798 			CTR2(KTR_LOCK,
799 			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
800 			    (void *)m->mtx_lock);
801 
802 		td->td_proc->p_stats->p_ru.ru_nivcsw++;
803 		mi_switch();
804 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
805 			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
806 			    m, (void *)m->mtx_lock);
807 	}
808 
809 	mtx_unlock_spin(&sched_lock);
810 
811 	return;
812 }
813 
814 /*
815  * All the unlocking of MTX_SPIN locks is done inline.
816  * See the _rel_spin_lock() macro for the details.
817  */
818 
819 /*
820  * The backing function for the INVARIANTS-enabled mtx_assert()
821  */
822 #ifdef INVARIANT_SUPPORT
823 void
824 _mtx_assert(struct mtx *m, int what, const char *file, int line)
825 {
826 
827 	if (panicstr != NULL)
828 		return;
829 	switch (what) {
830 	case MA_OWNED:
831 	case MA_OWNED | MA_RECURSED:
832 	case MA_OWNED | MA_NOTRECURSED:
833 		if (!mtx_owned(m))
834 			panic("mutex %s not owned at %s:%d",
835 			    m->mtx_object.lo_name, file, line);
836 		if (mtx_recursed(m)) {
837 			if ((what & MA_NOTRECURSED) != 0)
838 				panic("mutex %s recursed at %s:%d",
839 				    m->mtx_object.lo_name, file, line);
840 		} else if ((what & MA_RECURSED) != 0) {
841 			panic("mutex %s unrecursed at %s:%d",
842 			    m->mtx_object.lo_name, file, line);
843 		}
844 		break;
845 	case MA_NOTOWNED:
846 		if (mtx_owned(m))
847 			panic("mutex %s owned at %s:%d",
848 			    m->mtx_object.lo_name, file, line);
849 		break;
850 	default:
851 		panic("unknown mtx_assert at %s:%d", file, line);
852 	}
853 }
854 #endif
855 
856 /*
857  * The MUTEX_DEBUG-enabled mtx_validate()
858  *
859  * Most of these checks have been moved off into the LO_INITIALIZED flag
860  * maintained by the witness code.
861  */
862 #ifdef MUTEX_DEBUG
863 
864 void	mtx_validate(struct mtx *);
865 
866 void
867 mtx_validate(struct mtx *m)
868 {
869 
870 /*
871  * XXX: When kernacc() does not require Giant we can reenable this check
872  */
873 #ifdef notyet
874 /*
875  * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
876  * we can re-enable the kernacc() checks.
877  */
878 #ifndef __alpha__
879 	/*
880 	 * Can't call kernacc() from early init386(), especially when
881 	 * initializing Giant mutex, because some stuff in kernacc()
882 	 * requires Giant itself.
883 	 */
884 	if (!cold)
885 		if (!kernacc((caddr_t)m, sizeof(m),
886 		    VM_PROT_READ | VM_PROT_WRITE))
887 			panic("Can't read and write to mutex %p", m);
888 #endif
889 #endif
890 }
891 #endif
892 
893 /*
894  * General init routine used by the MTX_SYSINIT() macro.
895  */
896 void
897 mtx_sysinit(void *arg)
898 {
899 	struct mtx_args *margs = arg;
900 
901 	mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts);
902 }
903 
904 /*
905  * Mutex initialization routine; initialize lock `m' of type contained in
906  * `opts' with options contained in `opts' and name `name.'  The optional
907  * lock type `type' is used as a general lock category name for use with
908  * witness.
909  */
910 void
911 mtx_init(struct mtx *m, const char *name, const char *type, int opts)
912 {
913 	struct lock_object *lock;
914 
915 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
916 	    MTX_NOWITNESS | MTX_DUPOK)) == 0);
917 
918 #ifdef MUTEX_DEBUG
919 	/* Diagnostic and error correction */
920 	mtx_validate(m);
921 #endif
922 
923 	lock = &m->mtx_object;
924 	KASSERT((lock->lo_flags & LO_INITIALIZED) == 0,
925 	    ("mutex \"%s\" %p already initialized", name, m));
926 	bzero(m, sizeof(*m));
927 	if (opts & MTX_SPIN)
928 		lock->lo_class = &lock_class_mtx_spin;
929 	else
930 		lock->lo_class = &lock_class_mtx_sleep;
931 	lock->lo_name = name;
932 	lock->lo_type = type != NULL ? type : name;
933 	if (opts & MTX_QUIET)
934 		lock->lo_flags = LO_QUIET;
935 	if (opts & MTX_RECURSE)
936 		lock->lo_flags |= LO_RECURSABLE;
937 	if ((opts & MTX_NOWITNESS) == 0)
938 		lock->lo_flags |= LO_WITNESS;
939 	if (opts & MTX_DUPOK)
940 		lock->lo_flags |= LO_DUPOK;
941 
942 	m->mtx_lock = MTX_UNOWNED;
943 	TAILQ_INIT(&m->mtx_blocked);
944 
945 	LOCK_LOG_INIT(lock, opts);
946 
947 	WITNESS_INIT(lock);
948 }
949 
950 /*
951  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
952  * passed in as a flag here because if the corresponding mtx_init() was
953  * called with MTX_QUIET set, then it will already be set in the mutex's
954  * flags.
955  */
956 void
957 mtx_destroy(struct mtx *m)
958 {
959 
960 	LOCK_LOG_DESTROY(&m->mtx_object, 0);
961 
962 	if (!mtx_owned(m))
963 		MPASS(mtx_unowned(m));
964 	else {
965 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
966 
967 		/* Tell witness this isn't locked to make it happy. */
968 		WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
969 		    __LINE__);
970 	}
971 
972 	WITNESS_DESTROY(&m->mtx_object);
973 }
974 
975 /*
976  * Intialize the mutex code and system mutexes.  This is called from the MD
977  * startup code prior to mi_startup().  The per-CPU data space needs to be
978  * setup before this is called.
979  */
980 void
981 mutex_init(void)
982 {
983 
984 	/* Setup thread0 so that mutexes work. */
985 	LIST_INIT(&thread0.td_contested);
986 
987 	/*
988 	 * Initialize mutexes.
989 	 */
990 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
991 	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
992 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
993 	mtx_lock(&Giant);
994 }
995