xref: /freebsd/sys/kern/kern_mutex.c (revision ce4946daa5ce852d28008dac492029500ab2ee95)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  * $FreeBSD$
31  */
32 
33 /*
34  * Machine independent bits of mutex implementation and implementation of
35  * `witness' structure & related debugging routines.
36  */
37 
38 /*
39  *	Main Entry: witness
40  *	Pronunciation: 'wit-n&s
41  *	Function: noun
42  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
43  *	    testimony, witness, from 2wit
44  *	Date: before 12th century
45  *	1 : attestation of a fact or event : TESTIMONY
46  *	2 : one that gives evidence; specifically : one who testifies in
47  *	    a cause or before a judicial tribunal
48  *	3 : one asked to be present at a transaction so as to be able to
49  *	    testify to its having taken place
50  *	4 : one who has personal knowledge of something
51  *	5 a : something serving as evidence or proof : SIGN
52  *	  b : public affirmation by word or example of usually
53  *	      religious faith or conviction <the heroic witness to divine
54  *	      life -- Pilot>
55  *	6 capitalized : a member of the Jehovah's Witnesses
56  */
57 
58 #include "opt_ddb.h"
59 
60 #include <sys/param.h>
61 #include <sys/bus.h>
62 #include <sys/kernel.h>
63 #include <sys/lock.h>
64 #include <sys/malloc.h>
65 #include <sys/mutex.h>
66 #include <sys/proc.h>
67 #include <sys/sysctl.h>
68 #include <sys/systm.h>
69 #include <sys/vmmeter.h>
70 #include <sys/ktr.h>
71 
72 #include <machine/atomic.h>
73 #include <machine/bus.h>
74 #include <machine/clock.h>
75 #include <machine/cpu.h>
76 
77 #include <ddb/ddb.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_extern.h>
81 
82 /*
83  * Internal utility macros.
84  */
85 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
86 
87 #define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
88 	: (struct proc *)((m)->mtx_lock & MTX_FLAGMASK))
89 
90 #define SET_PRIO(p, pri)	(p)->p_pri.pri_level = (pri)
91 
92 /*
93  * Lock classes for sleep and spin mutexes.
94  */
95 struct lock_class lock_class_mtx_sleep = {
96 	"sleep mutex",
97 	LC_SLEEPLOCK | LC_RECURSABLE
98 };
99 struct lock_class lock_class_mtx_spin = {
100 	"spin mutex",
101 	LC_SPINLOCK | LC_RECURSABLE
102 };
103 
104 /*
105  * Prototypes for non-exported routines.
106  */
107 static void	propagate_priority(struct proc *);
108 
109 static void
110 propagate_priority(struct proc *p)
111 {
112 	int pri = p->p_pri.pri_level;
113 	struct mtx *m = p->p_blocked;
114 
115 	mtx_assert(&sched_lock, MA_OWNED);
116 	for (;;) {
117 		struct proc *p1;
118 
119 		p = mtx_owner(m);
120 
121 		if (p == NULL) {
122 			/*
123 			 * This really isn't quite right. Really
124 			 * ought to bump priority of process that
125 			 * next acquires the mutex.
126 			 */
127 			MPASS(m->mtx_lock == MTX_CONTESTED);
128 			return;
129 		}
130 
131 		MPASS(p->p_magic == P_MAGIC);
132 		KASSERT(p->p_stat != SSLEEP, ("sleeping process owns a mutex"));
133 		if (p->p_pri.pri_level <= pri)
134 			return;
135 
136 		/*
137 		 * Bump this process' priority.
138 		 */
139 		SET_PRIO(p, pri);
140 
141 		/*
142 		 * If lock holder is actually running, just bump priority.
143 		 */
144 		if (p->p_oncpu != NOCPU) {
145 			MPASS(p->p_stat == SRUN || p->p_stat == SZOMB || p->p_stat == SSTOP);
146 			return;
147 		}
148 
149 #ifndef SMP
150 		/*
151 		 * For UP, we check to see if p is curproc (this shouldn't
152 		 * ever happen however as it would mean we are in a deadlock.)
153 		 */
154 		KASSERT(p != curproc, ("Deadlock detected"));
155 #endif
156 
157 		/*
158 		 * If on run queue move to new run queue, and
159 		 * quit.
160 		 */
161 		if (p->p_stat == SRUN) {
162 			MPASS(p->p_blocked == NULL);
163 			remrunqueue(p);
164 			setrunqueue(p);
165 			return;
166 		}
167 
168 		/*
169 		 * If we aren't blocked on a mutex, we should be.
170 		 */
171 		KASSERT(p->p_stat == SMTX, (
172 		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
173 		    p->p_pid, p->p_comm, p->p_stat,
174 		    m->mtx_object.lo_name));
175 
176 		/*
177 		 * Pick up the mutex that p is blocked on.
178 		 */
179 		m = p->p_blocked;
180 		MPASS(m != NULL);
181 
182 		/*
183 		 * Check if the proc needs to be moved up on
184 		 * the blocked chain
185 		 */
186 		if (p == TAILQ_FIRST(&m->mtx_blocked)) {
187 			continue;
188 		}
189 
190 		p1 = TAILQ_PREV(p, procqueue, p_procq);
191 		if (p1->p_pri.pri_level <= pri) {
192 			continue;
193 		}
194 
195 		/*
196 		 * Remove proc from blocked chain and determine where
197 		 * it should be moved up to.  Since we know that p1 has
198 		 * a lower priority than p, we know that at least one
199 		 * process in the chain has a lower priority and that
200 		 * p1 will thus not be NULL after the loop.
201 		 */
202 		TAILQ_REMOVE(&m->mtx_blocked, p, p_procq);
203 		TAILQ_FOREACH(p1, &m->mtx_blocked, p_procq) {
204 			MPASS(p1->p_magic == P_MAGIC);
205 			if (p1->p_pri.pri_level > pri)
206 				break;
207 		}
208 
209 		MPASS(p1 != NULL);
210 		TAILQ_INSERT_BEFORE(p1, p, p_procq);
211 		CTR4(KTR_LOCK,
212 		    "propagate_priority: p %p moved before %p on [%p] %s",
213 		    p, p1, m, m->mtx_object.lo_name);
214 	}
215 }
216 
217 /*
218  * Function versions of the inlined __mtx_* macros.  These are used by
219  * modules and can also be called from assembly language if needed.
220  */
221 void
222 _mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
223 {
224 
225 	__mtx_lock_flags(m, opts, file, line);
226 }
227 
228 void
229 _mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
230 {
231 
232 	__mtx_unlock_flags(m, opts, file, line);
233 }
234 
235 void
236 _mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
237 {
238 
239 	__mtx_lock_spin_flags(m, opts, file, line);
240 }
241 
242 void
243 _mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
244 {
245 
246 	__mtx_unlock_spin_flags(m, opts, file, line);
247 }
248 
249 /*
250  * The important part of mtx_trylock{,_flags}()
251  * Tries to acquire lock `m.' We do NOT handle recursion here; we assume that
252  * if we're called, it's because we know we don't already own this lock.
253  */
254 int
255 _mtx_trylock(struct mtx *m, int opts, const char *file, int line)
256 {
257 	int rval;
258 
259 	MPASS(curproc != NULL);
260 
261 	/*
262 	 * _mtx_trylock does not accept MTX_NOSWITCH option.
263 	 */
264 	KASSERT((opts & MTX_NOSWITCH) == 0,
265 	    ("mtx_trylock() called with invalid option flag(s) %d", opts));
266 
267 	rval = _obtain_lock(m, curproc);
268 
269 	LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
270 	if (rval) {
271 		/*
272 		 * We do not handle recursion in _mtx_trylock; see the
273 		 * note at the top of the routine.
274 		 */
275 		KASSERT(!mtx_recursed(m),
276 		    ("mtx_trylock() called on a recursed mutex"));
277 		WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
278 		    file, line);
279 	}
280 
281 	return (rval);
282 }
283 
284 /*
285  * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
286  *
287  * We call this if the lock is either contested (i.e. we need to go to
288  * sleep waiting for it), or if we need to recurse on it.
289  */
290 void
291 _mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
292 {
293 	struct proc *p = curproc;
294 
295 	if ((m->mtx_lock & MTX_FLAGMASK) == (uintptr_t)p) {
296 		m->mtx_recurse++;
297 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
298 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
299 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
300 		return;
301 	}
302 
303 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
304 		CTR4(KTR_LOCK,
305 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
306 		    m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
307 
308 	while (!_obtain_lock(m, p)) {
309 		uintptr_t v;
310 		struct proc *p1;
311 
312 		mtx_lock_spin(&sched_lock);
313 		/*
314 		 * Check if the lock has been released while spinning for
315 		 * the sched_lock.
316 		 */
317 		if ((v = m->mtx_lock) == MTX_UNOWNED) {
318 			mtx_unlock_spin(&sched_lock);
319 			continue;
320 		}
321 
322 		/*
323 		 * The mutex was marked contested on release. This means that
324 		 * there are processes blocked on it.
325 		 */
326 		if (v == MTX_CONTESTED) {
327 			p1 = TAILQ_FIRST(&m->mtx_blocked);
328 			MPASS(p1 != NULL);
329 			m->mtx_lock = (uintptr_t)p | MTX_CONTESTED;
330 
331 			if (p1->p_pri.pri_level < p->p_pri.pri_level)
332 				SET_PRIO(p, p1->p_pri.pri_level);
333 			mtx_unlock_spin(&sched_lock);
334 			return;
335 		}
336 
337 		/*
338 		 * If the mutex isn't already contested and a failure occurs
339 		 * setting the contested bit, the mutex was either released
340 		 * or the state of the MTX_RECURSED bit changed.
341 		 */
342 		if ((v & MTX_CONTESTED) == 0 &&
343 		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
344 			(void *)(v | MTX_CONTESTED))) {
345 			mtx_unlock_spin(&sched_lock);
346 			continue;
347 		}
348 
349 		/*
350 		 * We deffinately must sleep for this lock.
351 		 */
352 		mtx_assert(m, MA_NOTOWNED);
353 
354 #ifdef notyet
355 		/*
356 		 * If we're borrowing an interrupted thread's VM context, we
357 		 * must clean up before going to sleep.
358 		 */
359 		if (p->p_ithd != NULL) {
360 			struct ithd *it = p->p_ithd;
361 
362 			if (it->it_interrupted) {
363 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
364 					CTR2(KTR_LOCK,
365 				    "_mtx_lock_sleep: %p interrupted %p",
366 					    it, it->it_interrupted);
367 				intr_thd_fixup(it);
368 			}
369 		}
370 #endif
371 
372 		/*
373 		 * Put us on the list of threads blocked on this mutex.
374 		 */
375 		if (TAILQ_EMPTY(&m->mtx_blocked)) {
376 			p1 = (struct proc *)(m->mtx_lock & MTX_FLAGMASK);
377 			LIST_INSERT_HEAD(&p1->p_contested, m, mtx_contested);
378 			TAILQ_INSERT_TAIL(&m->mtx_blocked, p, p_procq);
379 		} else {
380 			TAILQ_FOREACH(p1, &m->mtx_blocked, p_procq)
381 				if (p1->p_pri.pri_level > p->p_pri.pri_level)
382 					break;
383 			if (p1)
384 				TAILQ_INSERT_BEFORE(p1, p, p_procq);
385 			else
386 				TAILQ_INSERT_TAIL(&m->mtx_blocked, p, p_procq);
387 		}
388 
389 		/*
390 		 * Save who we're blocked on.
391 		 */
392 		p->p_blocked = m;
393 		p->p_mtxname = m->mtx_object.lo_name;
394 		p->p_stat = SMTX;
395 		propagate_priority(p);
396 
397 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
398 			CTR3(KTR_LOCK,
399 			    "_mtx_lock_sleep: p %p blocked on [%p] %s", p, m,
400 			    m->mtx_object.lo_name);
401 
402 		mi_switch();
403 
404 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
405 			CTR3(KTR_LOCK,
406 			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
407 			  p, m, m->mtx_object.lo_name);
408 
409 		mtx_unlock_spin(&sched_lock);
410 	}
411 
412 	return;
413 }
414 
415 /*
416  * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
417  *
418  * This is only called if we need to actually spin for the lock. Recursion
419  * is handled inline.
420  */
421 void
422 _mtx_lock_spin(struct mtx *m, int opts, critical_t mtx_crit, const char *file,
423 	       int line)
424 {
425 	int i = 0;
426 
427 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
428 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
429 
430 	for (;;) {
431 		if (_obtain_lock(m, curproc))
432 			break;
433 
434 		/* Give interrupts a chance while we spin. */
435 		critical_exit(mtx_crit);
436 		while (m->mtx_lock != MTX_UNOWNED) {
437 			if (i++ < 1000000)
438 				continue;
439 			if (i++ < 6000000)
440 				DELAY(1);
441 #ifdef DDB
442 			else if (!db_active)
443 #else
444 			else
445 #endif
446 			panic("spin lock %s held by %p for > 5 seconds",
447 			    m->mtx_object.lo_name, (void *)m->mtx_lock);
448 		}
449 		mtx_crit = critical_enter();
450 	}
451 
452 	m->mtx_savecrit = mtx_crit;
453 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
454 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
455 
456 	return;
457 }
458 
459 /*
460  * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
461  *
462  * We are only called here if the lock is recursed or contested (i.e. we
463  * need to wake up a blocked thread).
464  */
465 void
466 _mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
467 {
468 	struct proc *p, *p1;
469 	struct mtx *m1;
470 	int pri;
471 
472 	p = curproc;
473 
474 	if (mtx_recursed(m)) {
475 		if (--(m->mtx_recurse) == 0)
476 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
477 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
478 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
479 		return;
480 	}
481 
482 	mtx_lock_spin(&sched_lock);
483 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
484 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
485 
486 	p1 = TAILQ_FIRST(&m->mtx_blocked);
487 	MPASS(p->p_magic == P_MAGIC);
488 	MPASS(p1->p_magic == P_MAGIC);
489 
490 	TAILQ_REMOVE(&m->mtx_blocked, p1, p_procq);
491 
492 	if (TAILQ_EMPTY(&m->mtx_blocked)) {
493 		LIST_REMOVE(m, mtx_contested);
494 		_release_lock_quick(m);
495 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
496 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
497 	} else
498 		atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED);
499 
500 	pri = PRI_MAX;
501 	LIST_FOREACH(m1, &p->p_contested, mtx_contested) {
502 		int cp = TAILQ_FIRST(&m1->mtx_blocked)->p_pri.pri_level;
503 		if (cp < pri)
504 			pri = cp;
505 	}
506 
507 	if (pri > p->p_pri.pri_native)
508 		pri = p->p_pri.pri_native;
509 	SET_PRIO(p, pri);
510 
511 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
512 		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
513 		    m, p1);
514 
515 	p1->p_blocked = NULL;
516 	p1->p_stat = SRUN;
517 	setrunqueue(p1);
518 
519 	if ((opts & MTX_NOSWITCH) == 0 && p1->p_pri.pri_level < pri) {
520 #ifdef notyet
521 		if (p->p_ithd != NULL) {
522 			struct ithd *it = p->p_ithd;
523 
524 			if (it->it_interrupted) {
525 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
526 					CTR2(KTR_LOCK,
527 				    "_mtx_unlock_sleep: %p interrupted %p",
528 					    it, it->it_interrupted);
529 				intr_thd_fixup(it);
530 			}
531 		}
532 #endif
533 		setrunqueue(p);
534 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
535 			CTR2(KTR_LOCK,
536 			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
537 			    (void *)m->mtx_lock);
538 
539 		mi_switch();
540 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
541 			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
542 			    m, (void *)m->mtx_lock);
543 	}
544 
545 	mtx_unlock_spin(&sched_lock);
546 
547 	return;
548 }
549 
550 /*
551  * All the unlocking of MTX_SPIN locks is done inline.
552  * See the _rel_spin_lock() macro for the details.
553  */
554 
555 /*
556  * The backing function for the INVARIANTS-enabled mtx_assert()
557  */
558 #ifdef INVARIANT_SUPPORT
559 void
560 _mtx_assert(struct mtx *m, int what, const char *file, int line)
561 {
562 	switch (what) {
563 	case MA_OWNED:
564 	case MA_OWNED | MA_RECURSED:
565 	case MA_OWNED | MA_NOTRECURSED:
566 		if (!mtx_owned(m))
567 			panic("mutex %s not owned at %s:%d",
568 			    m->mtx_object.lo_name, file, line);
569 		if (mtx_recursed(m)) {
570 			if ((what & MA_NOTRECURSED) != 0)
571 				panic("mutex %s recursed at %s:%d",
572 				    m->mtx_object.lo_name, file, line);
573 		} else if ((what & MA_RECURSED) != 0) {
574 			panic("mutex %s unrecursed at %s:%d",
575 			    m->mtx_object.lo_name, file, line);
576 		}
577 		break;
578 	case MA_NOTOWNED:
579 		if (mtx_owned(m))
580 			panic("mutex %s owned at %s:%d",
581 			    m->mtx_object.lo_name, file, line);
582 		break;
583 	default:
584 		panic("unknown mtx_assert at %s:%d", file, line);
585 	}
586 }
587 #endif
588 
589 /*
590  * The MUTEX_DEBUG-enabled mtx_validate()
591  *
592  * Most of these checks have been moved off into the LO_INITIALIZED flag
593  * maintained by the witness code.
594  */
595 #ifdef MUTEX_DEBUG
596 
597 void	mtx_validate __P((struct mtx *));
598 
599 void
600 mtx_validate(struct mtx *m)
601 {
602 
603 /*
604  * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
605  * we can re-enable the kernacc() checks.
606  */
607 #ifndef __alpha__
608 	if (!kernacc((caddr_t)m, sizeof(m), VM_PROT_READ | VM_PROT_WRITE))
609 		panic("Can't read and write to mutex %p", m);
610 #endif
611 }
612 #endif
613 
614 /*
615  * Mutex initialization routine; initialize lock `m' of type contained in
616  * `opts' with options contained in `opts' and description `description.'
617  */
618 void
619 mtx_init(struct mtx *m, const char *description, int opts)
620 {
621 	struct lock_object *lock;
622 
623 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
624 	    MTX_SLEEPABLE | MTX_NOWITNESS)) == 0);
625 
626 #ifdef MUTEX_DEBUG
627 	/* Diagnostic and error correction */
628 	mtx_validate(m);
629 #endif
630 
631 	bzero(m, sizeof(*m));
632 	lock = &m->mtx_object;
633 	if (opts & MTX_SPIN)
634 		lock->lo_class = &lock_class_mtx_spin;
635 	else
636 		lock->lo_class = &lock_class_mtx_sleep;
637 	lock->lo_name = description;
638 	if (opts & MTX_QUIET)
639 		lock->lo_flags = LO_QUIET;
640 	if (opts & MTX_RECURSE)
641 		lock->lo_flags |= LO_RECURSABLE;
642 	if (opts & MTX_SLEEPABLE)
643 		lock->lo_flags |= LO_SLEEPABLE;
644 	if ((opts & MTX_NOWITNESS) == 0)
645 		lock->lo_flags |= LO_WITNESS;
646 
647 	m->mtx_lock = MTX_UNOWNED;
648 	TAILQ_INIT(&m->mtx_blocked);
649 
650 	LOCK_LOG_INIT(lock, opts);
651 
652 	WITNESS_INIT(lock);
653 }
654 
655 /*
656  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
657  * passed in as a flag here because if the corresponding mtx_init() was
658  * called with MTX_QUIET set, then it will already be set in the mutex's
659  * flags.
660  */
661 void
662 mtx_destroy(struct mtx *m)
663 {
664 
665 	LOCK_LOG_DESTROY(&m->mtx_object, 0);
666 
667 	if (!mtx_owned(m))
668 		MPASS(mtx_unowned(m));
669 	else {
670 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
671 
672 		/* Tell witness this isn't locked to make it happy. */
673 		WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE | LOP_NOSWITCH,
674 		    __FILE__, __LINE__);
675 	}
676 
677 	WITNESS_DESTROY(&m->mtx_object);
678 }
679