1 /*- 2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. Berkeley Software Design Inc's name may not be used to endorse or 13 * promote products derived from this software without specific prior 14 * written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 29 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 30 */ 31 32 /* 33 * Machine independent bits of mutex implementation. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_adaptive_mutexes.h" 40 #include "opt_ddb.h" 41 #include "opt_hwpmc_hooks.h" 42 #include "opt_sched.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/bus.h> 47 #include <sys/conf.h> 48 #include <sys/kdb.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/resourcevar.h> 56 #include <sys/sched.h> 57 #include <sys/sbuf.h> 58 #include <sys/smp.h> 59 #include <sys/sysctl.h> 60 #include <sys/turnstile.h> 61 #include <sys/vmmeter.h> 62 #include <sys/lock_profile.h> 63 64 #include <machine/atomic.h> 65 #include <machine/bus.h> 66 #include <machine/cpu.h> 67 68 #include <ddb/ddb.h> 69 70 #include <fs/devfs/devfs_int.h> 71 72 #include <vm/vm.h> 73 #include <vm/vm_extern.h> 74 75 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES) 76 #define ADAPTIVE_MUTEXES 77 #endif 78 79 #ifdef HWPMC_HOOKS 80 #include <sys/pmckern.h> 81 PMC_SOFT_DEFINE( , , lock, failed); 82 #endif 83 84 /* 85 * Return the mutex address when the lock cookie address is provided. 86 * This functionality assumes that struct mtx* have a member named mtx_lock. 87 */ 88 #define mtxlock2mtx(c) (__containerof(c, struct mtx, mtx_lock)) 89 90 /* 91 * Internal utility macros. 92 */ 93 #define mtx_unowned(m) ((m)->mtx_lock == MTX_UNOWNED) 94 95 #define mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED) 96 97 static void assert_mtx(const struct lock_object *lock, int what); 98 #ifdef DDB 99 static void db_show_mtx(const struct lock_object *lock); 100 #endif 101 static void lock_mtx(struct lock_object *lock, uintptr_t how); 102 static void lock_spin(struct lock_object *lock, uintptr_t how); 103 #ifdef KDTRACE_HOOKS 104 static int owner_mtx(const struct lock_object *lock, 105 struct thread **owner); 106 #endif 107 static uintptr_t unlock_mtx(struct lock_object *lock); 108 static uintptr_t unlock_spin(struct lock_object *lock); 109 110 /* 111 * Lock classes for sleep and spin mutexes. 112 */ 113 struct lock_class lock_class_mtx_sleep = { 114 .lc_name = "sleep mutex", 115 .lc_flags = LC_SLEEPLOCK | LC_RECURSABLE, 116 .lc_assert = assert_mtx, 117 #ifdef DDB 118 .lc_ddb_show = db_show_mtx, 119 #endif 120 .lc_lock = lock_mtx, 121 .lc_unlock = unlock_mtx, 122 #ifdef KDTRACE_HOOKS 123 .lc_owner = owner_mtx, 124 #endif 125 }; 126 struct lock_class lock_class_mtx_spin = { 127 .lc_name = "spin mutex", 128 .lc_flags = LC_SPINLOCK | LC_RECURSABLE, 129 .lc_assert = assert_mtx, 130 #ifdef DDB 131 .lc_ddb_show = db_show_mtx, 132 #endif 133 .lc_lock = lock_spin, 134 .lc_unlock = unlock_spin, 135 #ifdef KDTRACE_HOOKS 136 .lc_owner = owner_mtx, 137 #endif 138 }; 139 140 #ifdef ADAPTIVE_MUTEXES 141 static SYSCTL_NODE(_debug, OID_AUTO, mtx, CTLFLAG_RD, NULL, "mtx debugging"); 142 143 static struct lock_delay_config __read_frequently mtx_delay; 144 145 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_delay.base, 146 0, ""); 147 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_delay.max, 148 0, ""); 149 150 LOCK_DELAY_SYSINIT_DEFAULT(mtx_delay); 151 #endif 152 153 static SYSCTL_NODE(_debug, OID_AUTO, mtx_spin, CTLFLAG_RD, NULL, 154 "mtx spin debugging"); 155 156 static struct lock_delay_config __read_frequently mtx_spin_delay; 157 158 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_base, CTLFLAG_RW, 159 &mtx_spin_delay.base, 0, ""); 160 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_max, CTLFLAG_RW, 161 &mtx_spin_delay.max, 0, ""); 162 163 LOCK_DELAY_SYSINIT_DEFAULT(mtx_spin_delay); 164 165 /* 166 * System-wide mutexes 167 */ 168 struct mtx blocked_lock; 169 struct mtx __exclusive_cache_line Giant; 170 171 void 172 assert_mtx(const struct lock_object *lock, int what) 173 { 174 175 mtx_assert((const struct mtx *)lock, what); 176 } 177 178 void 179 lock_mtx(struct lock_object *lock, uintptr_t how) 180 { 181 182 mtx_lock((struct mtx *)lock); 183 } 184 185 void 186 lock_spin(struct lock_object *lock, uintptr_t how) 187 { 188 189 panic("spin locks can only use msleep_spin"); 190 } 191 192 uintptr_t 193 unlock_mtx(struct lock_object *lock) 194 { 195 struct mtx *m; 196 197 m = (struct mtx *)lock; 198 mtx_assert(m, MA_OWNED | MA_NOTRECURSED); 199 mtx_unlock(m); 200 return (0); 201 } 202 203 uintptr_t 204 unlock_spin(struct lock_object *lock) 205 { 206 207 panic("spin locks can only use msleep_spin"); 208 } 209 210 #ifdef KDTRACE_HOOKS 211 int 212 owner_mtx(const struct lock_object *lock, struct thread **owner) 213 { 214 const struct mtx *m; 215 uintptr_t x; 216 217 m = (const struct mtx *)lock; 218 x = m->mtx_lock; 219 *owner = (struct thread *)(x & ~MTX_FLAGMASK); 220 return (*owner != NULL); 221 } 222 #endif 223 224 /* 225 * Function versions of the inlined __mtx_* macros. These are used by 226 * modules and can also be called from assembly language if needed. 227 */ 228 void 229 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line) 230 { 231 struct mtx *m; 232 uintptr_t tid, v; 233 234 m = mtxlock2mtx(c); 235 236 KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() || 237 !TD_IS_IDLETHREAD(curthread), 238 ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d", 239 curthread, m->lock_object.lo_name, file, line)); 240 KASSERT(m->mtx_lock != MTX_DESTROYED, 241 ("mtx_lock() of destroyed mutex @ %s:%d", file, line)); 242 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep, 243 ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name, 244 file, line)); 245 WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) | 246 LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL); 247 248 tid = (uintptr_t)curthread; 249 v = MTX_UNOWNED; 250 if (!_mtx_obtain_lock_fetch(m, &v, tid)) 251 _mtx_lock_sleep(m, v, opts, file, line); 252 else 253 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, 254 m, 0, 0, file, line); 255 LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file, 256 line); 257 WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE, 258 file, line); 259 TD_LOCKS_INC(curthread); 260 } 261 262 void 263 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line) 264 { 265 struct mtx *m; 266 267 m = mtxlock2mtx(c); 268 269 KASSERT(m->mtx_lock != MTX_DESTROYED, 270 ("mtx_unlock() of destroyed mutex @ %s:%d", file, line)); 271 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep, 272 ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name, 273 file, line)); 274 WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); 275 LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file, 276 line); 277 mtx_assert(m, MA_OWNED); 278 279 #ifdef LOCK_PROFILING 280 __mtx_unlock_sleep(c, opts, file, line); 281 #else 282 __mtx_unlock(m, curthread, opts, file, line); 283 #endif 284 TD_LOCKS_DEC(curthread); 285 } 286 287 void 288 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file, 289 int line) 290 { 291 struct mtx *m; 292 #ifdef SMP 293 uintptr_t tid, v; 294 #endif 295 296 m = mtxlock2mtx(c); 297 298 KASSERT(m->mtx_lock != MTX_DESTROYED, 299 ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line)); 300 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin, 301 ("mtx_lock_spin() of sleep mutex %s @ %s:%d", 302 m->lock_object.lo_name, file, line)); 303 if (mtx_owned(m)) 304 KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 || 305 (opts & MTX_RECURSE) != 0, 306 ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n", 307 m->lock_object.lo_name, file, line)); 308 opts &= ~MTX_RECURSE; 309 WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE, 310 file, line, NULL); 311 #ifdef SMP 312 spinlock_enter(); 313 tid = (uintptr_t)curthread; 314 v = MTX_UNOWNED; 315 if (!_mtx_obtain_lock_fetch(m, &v, tid)) 316 _mtx_lock_spin(m, v, opts, file, line); 317 else 318 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, 319 m, 0, 0, file, line); 320 #else 321 __mtx_lock_spin(m, curthread, opts, file, line); 322 #endif 323 LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file, 324 line); 325 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); 326 } 327 328 int 329 __mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file, 330 int line) 331 { 332 struct mtx *m; 333 334 if (SCHEDULER_STOPPED()) 335 return (1); 336 337 m = mtxlock2mtx(c); 338 339 KASSERT(m->mtx_lock != MTX_DESTROYED, 340 ("mtx_trylock_spin() of destroyed mutex @ %s:%d", file, line)); 341 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin, 342 ("mtx_trylock_spin() of sleep mutex %s @ %s:%d", 343 m->lock_object.lo_name, file, line)); 344 KASSERT((opts & MTX_RECURSE) == 0, 345 ("mtx_trylock_spin: unsupp. opt MTX_RECURSE on mutex %s @ %s:%d\n", 346 m->lock_object.lo_name, file, line)); 347 if (__mtx_trylock_spin(m, curthread, opts, file, line)) { 348 LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 1, file, line); 349 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); 350 return (1); 351 } 352 LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 0, file, line); 353 return (0); 354 } 355 356 void 357 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file, 358 int line) 359 { 360 struct mtx *m; 361 362 m = mtxlock2mtx(c); 363 364 KASSERT(m->mtx_lock != MTX_DESTROYED, 365 ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line)); 366 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin, 367 ("mtx_unlock_spin() of sleep mutex %s @ %s:%d", 368 m->lock_object.lo_name, file, line)); 369 WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); 370 LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file, 371 line); 372 mtx_assert(m, MA_OWNED); 373 374 __mtx_unlock_spin(m); 375 } 376 377 /* 378 * The important part of mtx_trylock{,_flags}() 379 * Tries to acquire lock `m.' If this function is called on a mutex that 380 * is already owned, it will recursively acquire the lock. 381 */ 382 int 383 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line) 384 { 385 struct mtx *m; 386 struct thread *td; 387 uintptr_t tid, v; 388 #ifdef LOCK_PROFILING 389 uint64_t waittime = 0; 390 int contested = 0; 391 #endif 392 int rval; 393 bool recursed; 394 395 td = curthread; 396 tid = (uintptr_t)td; 397 if (SCHEDULER_STOPPED_TD(td)) 398 return (1); 399 400 m = mtxlock2mtx(c); 401 402 KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td), 403 ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d", 404 curthread, m->lock_object.lo_name, file, line)); 405 KASSERT(m->mtx_lock != MTX_DESTROYED, 406 ("mtx_trylock() of destroyed mutex @ %s:%d", file, line)); 407 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep, 408 ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name, 409 file, line)); 410 411 rval = 1; 412 recursed = false; 413 v = MTX_UNOWNED; 414 for (;;) { 415 if (_mtx_obtain_lock_fetch(m, &v, tid)) 416 break; 417 if (v == MTX_UNOWNED) 418 continue; 419 if (v == tid && 420 ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 || 421 (opts & MTX_RECURSE) != 0)) { 422 m->mtx_recurse++; 423 atomic_set_ptr(&m->mtx_lock, MTX_RECURSED); 424 recursed = true; 425 break; 426 } 427 rval = 0; 428 break; 429 } 430 431 opts &= ~MTX_RECURSE; 432 433 LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line); 434 if (rval) { 435 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK, 436 file, line); 437 TD_LOCKS_INC(curthread); 438 if (!recursed) 439 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, 440 m, contested, waittime, file, line); 441 } 442 443 return (rval); 444 } 445 446 /* 447 * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock. 448 * 449 * We call this if the lock is either contested (i.e. we need to go to 450 * sleep waiting for it), or if we need to recurse on it. 451 */ 452 #if LOCK_DEBUG > 0 453 void 454 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file, 455 int line) 456 #else 457 void 458 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v) 459 #endif 460 { 461 struct thread *td; 462 struct mtx *m; 463 struct turnstile *ts; 464 uintptr_t tid; 465 #ifdef ADAPTIVE_MUTEXES 466 struct thread *owner; 467 #endif 468 #ifdef KTR 469 int cont_logged = 0; 470 #endif 471 #ifdef LOCK_PROFILING 472 int contested = 0; 473 uint64_t waittime = 0; 474 #endif 475 #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS) 476 struct lock_delay_arg lda; 477 #endif 478 #ifdef KDTRACE_HOOKS 479 u_int sleep_cnt = 0; 480 int64_t sleep_time = 0; 481 int64_t all_time = 0; 482 #endif 483 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) 484 int doing_lockprof; 485 #endif 486 td = curthread; 487 tid = (uintptr_t)td; 488 if (SCHEDULER_STOPPED_TD(td)) 489 return; 490 491 #if defined(ADAPTIVE_MUTEXES) 492 lock_delay_arg_init(&lda, &mtx_delay); 493 #elif defined(KDTRACE_HOOKS) 494 lock_delay_arg_init(&lda, NULL); 495 #endif 496 m = mtxlock2mtx(c); 497 if (__predict_false(v == MTX_UNOWNED)) 498 v = MTX_READ_VALUE(m); 499 500 if (__predict_false(lv_mtx_owner(v) == td)) { 501 KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 || 502 (opts & MTX_RECURSE) != 0, 503 ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n", 504 m->lock_object.lo_name, file, line)); 505 #if LOCK_DEBUG > 0 506 opts &= ~MTX_RECURSE; 507 #endif 508 m->mtx_recurse++; 509 atomic_set_ptr(&m->mtx_lock, MTX_RECURSED); 510 if (LOCK_LOG_TEST(&m->lock_object, opts)) 511 CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m); 512 return; 513 } 514 #if LOCK_DEBUG > 0 515 opts &= ~MTX_RECURSE; 516 #endif 517 518 #ifdef HWPMC_HOOKS 519 PMC_SOFT_CALL( , , lock, failed); 520 #endif 521 lock_profile_obtain_lock_failed(&m->lock_object, 522 &contested, &waittime); 523 if (LOCK_LOG_TEST(&m->lock_object, opts)) 524 CTR4(KTR_LOCK, 525 "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d", 526 m->lock_object.lo_name, (void *)m->mtx_lock, file, line); 527 #ifdef LOCK_PROFILING 528 doing_lockprof = 1; 529 #elif defined(KDTRACE_HOOKS) 530 doing_lockprof = lockstat_enabled; 531 if (__predict_false(doing_lockprof)) 532 all_time -= lockstat_nsecs(&m->lock_object); 533 #endif 534 535 for (;;) { 536 if (v == MTX_UNOWNED) { 537 if (_mtx_obtain_lock_fetch(m, &v, tid)) 538 break; 539 continue; 540 } 541 #ifdef KDTRACE_HOOKS 542 lda.spin_cnt++; 543 #endif 544 #ifdef ADAPTIVE_MUTEXES 545 /* 546 * If the owner is running on another CPU, spin until the 547 * owner stops running or the state of the lock changes. 548 */ 549 owner = lv_mtx_owner(v); 550 if (TD_IS_RUNNING(owner)) { 551 if (LOCK_LOG_TEST(&m->lock_object, 0)) 552 CTR3(KTR_LOCK, 553 "%s: spinning on %p held by %p", 554 __func__, m, owner); 555 KTR_STATE1(KTR_SCHED, "thread", 556 sched_tdname((struct thread *)tid), 557 "spinning", "lockname:\"%s\"", 558 m->lock_object.lo_name); 559 do { 560 lock_delay(&lda); 561 v = MTX_READ_VALUE(m); 562 owner = lv_mtx_owner(v); 563 } while (v != MTX_UNOWNED && TD_IS_RUNNING(owner)); 564 KTR_STATE0(KTR_SCHED, "thread", 565 sched_tdname((struct thread *)tid), 566 "running"); 567 continue; 568 } 569 #endif 570 571 ts = turnstile_trywait(&m->lock_object); 572 v = MTX_READ_VALUE(m); 573 574 /* 575 * Check if the lock has been released while spinning for 576 * the turnstile chain lock. 577 */ 578 if (v == MTX_UNOWNED) { 579 turnstile_cancel(ts); 580 continue; 581 } 582 583 #ifdef ADAPTIVE_MUTEXES 584 /* 585 * The current lock owner might have started executing 586 * on another CPU (or the lock could have changed 587 * owners) while we were waiting on the turnstile 588 * chain lock. If so, drop the turnstile lock and try 589 * again. 590 */ 591 owner = lv_mtx_owner(v); 592 if (TD_IS_RUNNING(owner)) { 593 turnstile_cancel(ts); 594 continue; 595 } 596 #endif 597 598 /* 599 * If the mutex isn't already contested and a failure occurs 600 * setting the contested bit, the mutex was either released 601 * or the state of the MTX_RECURSED bit changed. 602 */ 603 if ((v & MTX_CONTESTED) == 0 && 604 !atomic_cmpset_ptr(&m->mtx_lock, v, v | MTX_CONTESTED)) { 605 turnstile_cancel(ts); 606 v = MTX_READ_VALUE(m); 607 continue; 608 } 609 610 /* 611 * We definitely must sleep for this lock. 612 */ 613 mtx_assert(m, MA_NOTOWNED); 614 615 #ifdef KTR 616 if (!cont_logged) { 617 CTR6(KTR_CONTENTION, 618 "contention: %p at %s:%d wants %s, taken by %s:%d", 619 (void *)tid, file, line, m->lock_object.lo_name, 620 WITNESS_FILE(&m->lock_object), 621 WITNESS_LINE(&m->lock_object)); 622 cont_logged = 1; 623 } 624 #endif 625 626 /* 627 * Block on the turnstile. 628 */ 629 #ifdef KDTRACE_HOOKS 630 sleep_time -= lockstat_nsecs(&m->lock_object); 631 #endif 632 MPASS(owner == mtx_owner(m)); 633 turnstile_wait(ts, owner, TS_EXCLUSIVE_QUEUE); 634 #ifdef KDTRACE_HOOKS 635 sleep_time += lockstat_nsecs(&m->lock_object); 636 sleep_cnt++; 637 #endif 638 v = MTX_READ_VALUE(m); 639 } 640 #ifdef KTR 641 if (cont_logged) { 642 CTR4(KTR_CONTENTION, 643 "contention end: %s acquired by %p at %s:%d", 644 m->lock_object.lo_name, (void *)tid, file, line); 645 } 646 #endif 647 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) 648 if (__predict_true(!doing_lockprof)) 649 return; 650 #endif 651 #ifdef KDTRACE_HOOKS 652 all_time += lockstat_nsecs(&m->lock_object); 653 #endif 654 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested, 655 waittime, file, line); 656 #ifdef KDTRACE_HOOKS 657 if (sleep_time) 658 LOCKSTAT_RECORD1(adaptive__block, m, sleep_time); 659 660 /* 661 * Only record the loops spinning and not sleeping. 662 */ 663 if (lda.spin_cnt > sleep_cnt) 664 LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time); 665 #endif 666 } 667 668 static void 669 _mtx_lock_spin_failed(struct mtx *m) 670 { 671 struct thread *td; 672 673 td = mtx_owner(m); 674 675 /* If the mutex is unlocked, try again. */ 676 if (td == NULL) 677 return; 678 679 printf( "spin lock %p (%s) held by %p (tid %d) too long\n", 680 m, m->lock_object.lo_name, td, td->td_tid); 681 #ifdef WITNESS 682 witness_display_spinlock(&m->lock_object, td, printf); 683 #endif 684 panic("spin lock held too long"); 685 } 686 687 #ifdef SMP 688 /* 689 * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock. 690 * 691 * This is only called if we need to actually spin for the lock. Recursion 692 * is handled inline. 693 */ 694 #if LOCK_DEBUG > 0 695 void 696 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v, int opts, 697 const char *file, int line) 698 #else 699 void 700 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v) 701 #endif 702 { 703 struct mtx *m; 704 struct lock_delay_arg lda; 705 uintptr_t tid; 706 #ifdef LOCK_PROFILING 707 int contested = 0; 708 uint64_t waittime = 0; 709 #endif 710 #ifdef KDTRACE_HOOKS 711 int64_t spin_time = 0; 712 #endif 713 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) 714 int doing_lockprof; 715 #endif 716 717 tid = (uintptr_t)curthread; 718 m = mtxlock2mtx(c); 719 720 if (__predict_false(v == MTX_UNOWNED)) 721 v = MTX_READ_VALUE(m); 722 723 if (__predict_false(v == tid)) { 724 m->mtx_recurse++; 725 return; 726 } 727 728 if (SCHEDULER_STOPPED()) 729 return; 730 731 lock_delay_arg_init(&lda, &mtx_spin_delay); 732 733 if (LOCK_LOG_TEST(&m->lock_object, opts)) 734 CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m); 735 KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), 736 "spinning", "lockname:\"%s\"", m->lock_object.lo_name); 737 738 #ifdef HWPMC_HOOKS 739 PMC_SOFT_CALL( , , lock, failed); 740 #endif 741 lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime); 742 #ifdef LOCK_PROFILING 743 doing_lockprof = 1; 744 #elif defined(KDTRACE_HOOKS) 745 doing_lockprof = lockstat_enabled; 746 if (__predict_false(doing_lockprof)) 747 spin_time -= lockstat_nsecs(&m->lock_object); 748 #endif 749 for (;;) { 750 if (v == MTX_UNOWNED) { 751 if (_mtx_obtain_lock_fetch(m, &v, tid)) 752 break; 753 continue; 754 } 755 /* Give interrupts a chance while we spin. */ 756 spinlock_exit(); 757 do { 758 if (lda.spin_cnt < 10000000) { 759 lock_delay(&lda); 760 } else { 761 lda.spin_cnt++; 762 if (lda.spin_cnt < 60000000 || kdb_active || 763 panicstr != NULL) 764 DELAY(1); 765 else 766 _mtx_lock_spin_failed(m); 767 cpu_spinwait(); 768 } 769 v = MTX_READ_VALUE(m); 770 } while (v != MTX_UNOWNED); 771 spinlock_enter(); 772 } 773 774 if (LOCK_LOG_TEST(&m->lock_object, opts)) 775 CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m); 776 KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), 777 "running"); 778 779 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) 780 if (__predict_true(!doing_lockprof)) 781 return; 782 #endif 783 #ifdef KDTRACE_HOOKS 784 spin_time += lockstat_nsecs(&m->lock_object); 785 #endif 786 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m, 787 contested, waittime, file, line); 788 #ifdef KDTRACE_HOOKS 789 if (lda.spin_cnt != 0) 790 LOCKSTAT_RECORD1(spin__spin, m, spin_time); 791 #endif 792 } 793 #endif /* SMP */ 794 795 #ifdef INVARIANTS 796 static void 797 thread_lock_validate(struct mtx *m, int opts, const char *file, int line) 798 { 799 800 KASSERT(m->mtx_lock != MTX_DESTROYED, 801 ("thread_lock() of destroyed mutex @ %s:%d", file, line)); 802 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin, 803 ("thread_lock() of sleep mutex %s @ %s:%d", 804 m->lock_object.lo_name, file, line)); 805 if (mtx_owned(m)) 806 KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0, 807 ("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n", 808 m->lock_object.lo_name, file, line)); 809 WITNESS_CHECKORDER(&m->lock_object, 810 opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL); 811 } 812 #else 813 #define thread_lock_validate(m, opts, file, line) do { } while (0) 814 #endif 815 816 #ifndef LOCK_PROFILING 817 #if LOCK_DEBUG > 0 818 void 819 _thread_lock(struct thread *td, int opts, const char *file, int line) 820 #else 821 void 822 _thread_lock(struct thread *td) 823 #endif 824 { 825 struct mtx *m; 826 uintptr_t tid, v; 827 828 tid = (uintptr_t)curthread; 829 830 spinlock_enter(); 831 m = td->td_lock; 832 thread_lock_validate(m, 0, file, line); 833 v = MTX_READ_VALUE(m); 834 if (__predict_true(v == MTX_UNOWNED)) { 835 if (__predict_false(!_mtx_obtain_lock(m, tid))) 836 goto slowpath_unlocked; 837 } else if (v == tid) { 838 m->mtx_recurse++; 839 } else 840 goto slowpath_unlocked; 841 if (__predict_true(m == td->td_lock)) { 842 WITNESS_LOCK(&m->lock_object, LOP_EXCLUSIVE, file, line); 843 return; 844 } 845 if (m->mtx_recurse != 0) 846 m->mtx_recurse--; 847 else 848 _mtx_release_lock_quick(m); 849 slowpath_unlocked: 850 spinlock_exit(); 851 thread_lock_flags_(td, 0, 0, 0); 852 } 853 #endif 854 855 void 856 thread_lock_flags_(struct thread *td, int opts, const char *file, int line) 857 { 858 struct mtx *m; 859 uintptr_t tid, v; 860 struct lock_delay_arg lda; 861 #ifdef LOCK_PROFILING 862 int contested = 0; 863 uint64_t waittime = 0; 864 #endif 865 #ifdef KDTRACE_HOOKS 866 int64_t spin_time = 0; 867 #endif 868 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) 869 int doing_lockprof = 1; 870 #endif 871 872 tid = (uintptr_t)curthread; 873 874 if (SCHEDULER_STOPPED()) { 875 /* 876 * Ensure that spinlock sections are balanced even when the 877 * scheduler is stopped, since we may otherwise inadvertently 878 * re-enable interrupts while dumping core. 879 */ 880 spinlock_enter(); 881 return; 882 } 883 884 lock_delay_arg_init(&lda, &mtx_spin_delay); 885 886 #ifdef LOCK_PROFILING 887 doing_lockprof = 1; 888 #elif defined(KDTRACE_HOOKS) 889 doing_lockprof = lockstat_enabled; 890 if (__predict_false(doing_lockprof)) 891 spin_time -= lockstat_nsecs(&td->td_lock->lock_object); 892 #endif 893 for (;;) { 894 retry: 895 v = MTX_UNOWNED; 896 spinlock_enter(); 897 m = td->td_lock; 898 thread_lock_validate(m, opts, file, line); 899 for (;;) { 900 if (_mtx_obtain_lock_fetch(m, &v, tid)) 901 break; 902 if (v == MTX_UNOWNED) 903 continue; 904 if (v == tid) { 905 m->mtx_recurse++; 906 break; 907 } 908 #ifdef HWPMC_HOOKS 909 PMC_SOFT_CALL( , , lock, failed); 910 #endif 911 lock_profile_obtain_lock_failed(&m->lock_object, 912 &contested, &waittime); 913 /* Give interrupts a chance while we spin. */ 914 spinlock_exit(); 915 do { 916 if (lda.spin_cnt < 10000000) { 917 lock_delay(&lda); 918 } else { 919 lda.spin_cnt++; 920 if (lda.spin_cnt < 60000000 || 921 kdb_active || panicstr != NULL) 922 DELAY(1); 923 else 924 _mtx_lock_spin_failed(m); 925 cpu_spinwait(); 926 } 927 if (m != td->td_lock) 928 goto retry; 929 v = MTX_READ_VALUE(m); 930 } while (v != MTX_UNOWNED); 931 spinlock_enter(); 932 } 933 if (m == td->td_lock) 934 break; 935 __mtx_unlock_spin(m); /* does spinlock_exit() */ 936 } 937 LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file, 938 line); 939 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); 940 941 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) 942 if (__predict_true(!doing_lockprof)) 943 return; 944 #endif 945 #ifdef KDTRACE_HOOKS 946 spin_time += lockstat_nsecs(&m->lock_object); 947 #endif 948 if (m->mtx_recurse == 0) 949 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m, 950 contested, waittime, file, line); 951 #ifdef KDTRACE_HOOKS 952 if (lda.spin_cnt != 0) 953 LOCKSTAT_RECORD1(thread__spin, m, spin_time); 954 #endif 955 } 956 957 struct mtx * 958 thread_lock_block(struct thread *td) 959 { 960 struct mtx *lock; 961 962 THREAD_LOCK_ASSERT(td, MA_OWNED); 963 lock = td->td_lock; 964 td->td_lock = &blocked_lock; 965 mtx_unlock_spin(lock); 966 967 return (lock); 968 } 969 970 void 971 thread_lock_unblock(struct thread *td, struct mtx *new) 972 { 973 mtx_assert(new, MA_OWNED); 974 MPASS(td->td_lock == &blocked_lock); 975 atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new); 976 } 977 978 void 979 thread_lock_set(struct thread *td, struct mtx *new) 980 { 981 struct mtx *lock; 982 983 mtx_assert(new, MA_OWNED); 984 THREAD_LOCK_ASSERT(td, MA_OWNED); 985 lock = td->td_lock; 986 td->td_lock = new; 987 mtx_unlock_spin(lock); 988 } 989 990 /* 991 * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock. 992 * 993 * We are only called here if the lock is recursed, contested (i.e. we 994 * need to wake up a blocked thread) or lockstat probe is active. 995 */ 996 #if LOCK_DEBUG > 0 997 void 998 __mtx_unlock_sleep(volatile uintptr_t *c, int opts, const char *file, int line) 999 #else 1000 void 1001 __mtx_unlock_sleep(volatile uintptr_t *c) 1002 #endif 1003 { 1004 struct mtx *m; 1005 struct turnstile *ts; 1006 uintptr_t tid, v; 1007 1008 if (SCHEDULER_STOPPED()) 1009 return; 1010 1011 tid = (uintptr_t)curthread; 1012 m = mtxlock2mtx(c); 1013 v = MTX_READ_VALUE(m); 1014 1015 if (v & MTX_RECURSED) { 1016 if (--(m->mtx_recurse) == 0) 1017 atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED); 1018 if (LOCK_LOG_TEST(&m->lock_object, opts)) 1019 CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m); 1020 return; 1021 } 1022 1023 LOCKSTAT_PROFILE_RELEASE_LOCK(adaptive__release, m); 1024 if (v == tid && _mtx_release_lock(m, tid)) 1025 return; 1026 1027 /* 1028 * We have to lock the chain before the turnstile so this turnstile 1029 * can be removed from the hash list if it is empty. 1030 */ 1031 turnstile_chain_lock(&m->lock_object); 1032 _mtx_release_lock_quick(m); 1033 ts = turnstile_lookup(&m->lock_object); 1034 MPASS(ts != NULL); 1035 if (LOCK_LOG_TEST(&m->lock_object, opts)) 1036 CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m); 1037 turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE); 1038 1039 /* 1040 * This turnstile is now no longer associated with the mutex. We can 1041 * unlock the chain lock so a new turnstile may take it's place. 1042 */ 1043 turnstile_unpend(ts, TS_EXCLUSIVE_LOCK); 1044 turnstile_chain_unlock(&m->lock_object); 1045 } 1046 1047 /* 1048 * All the unlocking of MTX_SPIN locks is done inline. 1049 * See the __mtx_unlock_spin() macro for the details. 1050 */ 1051 1052 /* 1053 * The backing function for the INVARIANTS-enabled mtx_assert() 1054 */ 1055 #ifdef INVARIANT_SUPPORT 1056 void 1057 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line) 1058 { 1059 const struct mtx *m; 1060 1061 if (panicstr != NULL || dumping || SCHEDULER_STOPPED()) 1062 return; 1063 1064 m = mtxlock2mtx(c); 1065 1066 switch (what) { 1067 case MA_OWNED: 1068 case MA_OWNED | MA_RECURSED: 1069 case MA_OWNED | MA_NOTRECURSED: 1070 if (!mtx_owned(m)) 1071 panic("mutex %s not owned at %s:%d", 1072 m->lock_object.lo_name, file, line); 1073 if (mtx_recursed(m)) { 1074 if ((what & MA_NOTRECURSED) != 0) 1075 panic("mutex %s recursed at %s:%d", 1076 m->lock_object.lo_name, file, line); 1077 } else if ((what & MA_RECURSED) != 0) { 1078 panic("mutex %s unrecursed at %s:%d", 1079 m->lock_object.lo_name, file, line); 1080 } 1081 break; 1082 case MA_NOTOWNED: 1083 if (mtx_owned(m)) 1084 panic("mutex %s owned at %s:%d", 1085 m->lock_object.lo_name, file, line); 1086 break; 1087 default: 1088 panic("unknown mtx_assert at %s:%d", file, line); 1089 } 1090 } 1091 #endif 1092 1093 /* 1094 * General init routine used by the MTX_SYSINIT() macro. 1095 */ 1096 void 1097 mtx_sysinit(void *arg) 1098 { 1099 struct mtx_args *margs = arg; 1100 1101 mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL, 1102 margs->ma_opts); 1103 } 1104 1105 /* 1106 * Mutex initialization routine; initialize lock `m' of type contained in 1107 * `opts' with options contained in `opts' and name `name.' The optional 1108 * lock type `type' is used as a general lock category name for use with 1109 * witness. 1110 */ 1111 void 1112 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts) 1113 { 1114 struct mtx *m; 1115 struct lock_class *class; 1116 int flags; 1117 1118 m = mtxlock2mtx(c); 1119 1120 MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE | 1121 MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0); 1122 ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock, 1123 ("%s: mtx_lock not aligned for %s: %p", __func__, name, 1124 &m->mtx_lock)); 1125 1126 /* Determine lock class and lock flags. */ 1127 if (opts & MTX_SPIN) 1128 class = &lock_class_mtx_spin; 1129 else 1130 class = &lock_class_mtx_sleep; 1131 flags = 0; 1132 if (opts & MTX_QUIET) 1133 flags |= LO_QUIET; 1134 if (opts & MTX_RECURSE) 1135 flags |= LO_RECURSABLE; 1136 if ((opts & MTX_NOWITNESS) == 0) 1137 flags |= LO_WITNESS; 1138 if (opts & MTX_DUPOK) 1139 flags |= LO_DUPOK; 1140 if (opts & MTX_NOPROFILE) 1141 flags |= LO_NOPROFILE; 1142 if (opts & MTX_NEW) 1143 flags |= LO_NEW; 1144 1145 /* Initialize mutex. */ 1146 lock_init(&m->lock_object, class, name, type, flags); 1147 1148 m->mtx_lock = MTX_UNOWNED; 1149 m->mtx_recurse = 0; 1150 } 1151 1152 /* 1153 * Remove lock `m' from all_mtx queue. We don't allow MTX_QUIET to be 1154 * passed in as a flag here because if the corresponding mtx_init() was 1155 * called with MTX_QUIET set, then it will already be set in the mutex's 1156 * flags. 1157 */ 1158 void 1159 _mtx_destroy(volatile uintptr_t *c) 1160 { 1161 struct mtx *m; 1162 1163 m = mtxlock2mtx(c); 1164 1165 if (!mtx_owned(m)) 1166 MPASS(mtx_unowned(m)); 1167 else { 1168 MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0); 1169 1170 /* Perform the non-mtx related part of mtx_unlock_spin(). */ 1171 if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin) 1172 spinlock_exit(); 1173 else 1174 TD_LOCKS_DEC(curthread); 1175 1176 lock_profile_release_lock(&m->lock_object); 1177 /* Tell witness this isn't locked to make it happy. */ 1178 WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__, 1179 __LINE__); 1180 } 1181 1182 m->mtx_lock = MTX_DESTROYED; 1183 lock_destroy(&m->lock_object); 1184 } 1185 1186 /* 1187 * Intialize the mutex code and system mutexes. This is called from the MD 1188 * startup code prior to mi_startup(). The per-CPU data space needs to be 1189 * setup before this is called. 1190 */ 1191 void 1192 mutex_init(void) 1193 { 1194 1195 /* Setup turnstiles so that sleep mutexes work. */ 1196 init_turnstiles(); 1197 1198 /* 1199 * Initialize mutexes. 1200 */ 1201 mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE); 1202 mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN); 1203 blocked_lock.mtx_lock = 0xdeadc0de; /* Always blocked. */ 1204 mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 1205 mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN); 1206 mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN); 1207 mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN); 1208 mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN); 1209 mtx_init(&devmtx, "cdev", NULL, MTX_DEF); 1210 mtx_lock(&Giant); 1211 } 1212 1213 #ifdef DDB 1214 void 1215 db_show_mtx(const struct lock_object *lock) 1216 { 1217 struct thread *td; 1218 const struct mtx *m; 1219 1220 m = (const struct mtx *)lock; 1221 1222 db_printf(" flags: {"); 1223 if (LOCK_CLASS(lock) == &lock_class_mtx_spin) 1224 db_printf("SPIN"); 1225 else 1226 db_printf("DEF"); 1227 if (m->lock_object.lo_flags & LO_RECURSABLE) 1228 db_printf(", RECURSE"); 1229 if (m->lock_object.lo_flags & LO_DUPOK) 1230 db_printf(", DUPOK"); 1231 db_printf("}\n"); 1232 db_printf(" state: {"); 1233 if (mtx_unowned(m)) 1234 db_printf("UNOWNED"); 1235 else if (mtx_destroyed(m)) 1236 db_printf("DESTROYED"); 1237 else { 1238 db_printf("OWNED"); 1239 if (m->mtx_lock & MTX_CONTESTED) 1240 db_printf(", CONTESTED"); 1241 if (m->mtx_lock & MTX_RECURSED) 1242 db_printf(", RECURSED"); 1243 } 1244 db_printf("}\n"); 1245 if (!mtx_unowned(m) && !mtx_destroyed(m)) { 1246 td = mtx_owner(m); 1247 db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td, 1248 td->td_tid, td->td_proc->p_pid, td->td_name); 1249 if (mtx_recursed(m)) 1250 db_printf(" recursed: %d\n", m->mtx_recurse); 1251 } 1252 } 1253 #endif 1254