xref: /freebsd/sys/kern/kern_mutex.c (revision aadb68849f9be8db8d20c3dca19f882d0ebc8bca)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Berkeley Software Design Inc's name may not be used to endorse or
15  *    promote products derived from this software without specific prior
16  *    written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32  */
33 
34 /*
35  * Machine independent bits of mutex implementation.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_adaptive_mutexes.h"
42 #include "opt_ddb.h"
43 #include "opt_hwpmc_hooks.h"
44 #include "opt_sched.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bus.h>
49 #include <sys/conf.h>
50 #include <sys/kdb.h>
51 #include <sys/kernel.h>
52 #include <sys/ktr.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mutex.h>
56 #include <sys/proc.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/sbuf.h>
60 #include <sys/smp.h>
61 #include <sys/sysctl.h>
62 #include <sys/turnstile.h>
63 #include <sys/vmmeter.h>
64 #include <sys/lock_profile.h>
65 
66 #include <machine/atomic.h>
67 #include <machine/bus.h>
68 #include <machine/cpu.h>
69 
70 #include <ddb/ddb.h>
71 
72 #include <fs/devfs/devfs_int.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 
77 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
78 #define	ADAPTIVE_MUTEXES
79 #endif
80 
81 #ifdef HWPMC_HOOKS
82 #include <sys/pmckern.h>
83 PMC_SOFT_DEFINE( , , lock, failed);
84 #endif
85 
86 /*
87  * Return the mutex address when the lock cookie address is provided.
88  * This functionality assumes that struct mtx* have a member named mtx_lock.
89  */
90 #define	mtxlock2mtx(c)	(__containerof(c, struct mtx, mtx_lock))
91 
92 /*
93  * Internal utility macros.
94  */
95 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
96 
97 #define	mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
98 
99 static void	assert_mtx(const struct lock_object *lock, int what);
100 #ifdef DDB
101 static void	db_show_mtx(const struct lock_object *lock);
102 #endif
103 static void	lock_mtx(struct lock_object *lock, uintptr_t how);
104 static void	lock_spin(struct lock_object *lock, uintptr_t how);
105 #ifdef KDTRACE_HOOKS
106 static int	owner_mtx(const struct lock_object *lock,
107 		    struct thread **owner);
108 #endif
109 static uintptr_t unlock_mtx(struct lock_object *lock);
110 static uintptr_t unlock_spin(struct lock_object *lock);
111 
112 /*
113  * Lock classes for sleep and spin mutexes.
114  */
115 struct lock_class lock_class_mtx_sleep = {
116 	.lc_name = "sleep mutex",
117 	.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
118 	.lc_assert = assert_mtx,
119 #ifdef DDB
120 	.lc_ddb_show = db_show_mtx,
121 #endif
122 	.lc_lock = lock_mtx,
123 	.lc_unlock = unlock_mtx,
124 #ifdef KDTRACE_HOOKS
125 	.lc_owner = owner_mtx,
126 #endif
127 };
128 struct lock_class lock_class_mtx_spin = {
129 	.lc_name = "spin mutex",
130 	.lc_flags = LC_SPINLOCK | LC_RECURSABLE,
131 	.lc_assert = assert_mtx,
132 #ifdef DDB
133 	.lc_ddb_show = db_show_mtx,
134 #endif
135 	.lc_lock = lock_spin,
136 	.lc_unlock = unlock_spin,
137 #ifdef KDTRACE_HOOKS
138 	.lc_owner = owner_mtx,
139 #endif
140 };
141 
142 #ifdef ADAPTIVE_MUTEXES
143 static SYSCTL_NODE(_debug, OID_AUTO, mtx, CTLFLAG_RD, NULL, "mtx debugging");
144 
145 static struct lock_delay_config __read_frequently mtx_delay;
146 
147 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_delay.base,
148     0, "");
149 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_delay.max,
150     0, "");
151 
152 LOCK_DELAY_SYSINIT_DEFAULT(mtx_delay);
153 #endif
154 
155 static SYSCTL_NODE(_debug, OID_AUTO, mtx_spin, CTLFLAG_RD, NULL,
156     "mtx spin debugging");
157 
158 static struct lock_delay_config __read_frequently mtx_spin_delay;
159 
160 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_base, CTLFLAG_RW,
161     &mtx_spin_delay.base, 0, "");
162 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_max, CTLFLAG_RW,
163     &mtx_spin_delay.max, 0, "");
164 
165 LOCK_DELAY_SYSINIT_DEFAULT(mtx_spin_delay);
166 
167 /*
168  * System-wide mutexes
169  */
170 struct mtx blocked_lock;
171 struct mtx __exclusive_cache_line Giant;
172 
173 static void _mtx_lock_indefinite_check(struct mtx *, struct lock_delay_arg *);
174 
175 void
176 assert_mtx(const struct lock_object *lock, int what)
177 {
178 
179 	mtx_assert((const struct mtx *)lock, what);
180 }
181 
182 void
183 lock_mtx(struct lock_object *lock, uintptr_t how)
184 {
185 
186 	mtx_lock((struct mtx *)lock);
187 }
188 
189 void
190 lock_spin(struct lock_object *lock, uintptr_t how)
191 {
192 
193 	panic("spin locks can only use msleep_spin");
194 }
195 
196 uintptr_t
197 unlock_mtx(struct lock_object *lock)
198 {
199 	struct mtx *m;
200 
201 	m = (struct mtx *)lock;
202 	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
203 	mtx_unlock(m);
204 	return (0);
205 }
206 
207 uintptr_t
208 unlock_spin(struct lock_object *lock)
209 {
210 
211 	panic("spin locks can only use msleep_spin");
212 }
213 
214 #ifdef KDTRACE_HOOKS
215 int
216 owner_mtx(const struct lock_object *lock, struct thread **owner)
217 {
218 	const struct mtx *m;
219 	uintptr_t x;
220 
221 	m = (const struct mtx *)lock;
222 	x = m->mtx_lock;
223 	*owner = (struct thread *)(x & ~MTX_FLAGMASK);
224 	return (*owner != NULL);
225 }
226 #endif
227 
228 /*
229  * Function versions of the inlined __mtx_* macros.  These are used by
230  * modules and can also be called from assembly language if needed.
231  */
232 void
233 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
234 {
235 	struct mtx *m;
236 	uintptr_t tid, v;
237 
238 	m = mtxlock2mtx(c);
239 
240 	KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
241 	    !TD_IS_IDLETHREAD(curthread),
242 	    ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
243 	    curthread, m->lock_object.lo_name, file, line));
244 	KASSERT(m->mtx_lock != MTX_DESTROYED,
245 	    ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
246 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
247 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
248 	    file, line));
249 	WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
250 	    LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
251 
252 	tid = (uintptr_t)curthread;
253 	v = MTX_UNOWNED;
254 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
255 		_mtx_lock_sleep(m, v, opts, file, line);
256 	else
257 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
258 		    m, 0, 0, file, line);
259 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
260 	    line);
261 	WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
262 	    file, line);
263 	TD_LOCKS_INC(curthread);
264 }
265 
266 void
267 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
268 {
269 	struct mtx *m;
270 
271 	m = mtxlock2mtx(c);
272 
273 	KASSERT(m->mtx_lock != MTX_DESTROYED,
274 	    ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
275 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
276 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
277 	    file, line));
278 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
279 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
280 	    line);
281 	mtx_assert(m, MA_OWNED);
282 
283 #ifdef LOCK_PROFILING
284 	__mtx_unlock_sleep(c, (uintptr_t)curthread, opts, file, line);
285 #else
286 	__mtx_unlock(m, curthread, opts, file, line);
287 #endif
288 	TD_LOCKS_DEC(curthread);
289 }
290 
291 void
292 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
293     int line)
294 {
295 	struct mtx *m;
296 #ifdef SMP
297 	uintptr_t tid, v;
298 #endif
299 
300 	m = mtxlock2mtx(c);
301 
302 	KASSERT(m->mtx_lock != MTX_DESTROYED,
303 	    ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
304 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
305 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
306 	    m->lock_object.lo_name, file, line));
307 	if (mtx_owned(m))
308 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
309 		    (opts & MTX_RECURSE) != 0,
310 	    ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
311 		    m->lock_object.lo_name, file, line));
312 	opts &= ~MTX_RECURSE;
313 	WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
314 	    file, line, NULL);
315 #ifdef SMP
316 	spinlock_enter();
317 	tid = (uintptr_t)curthread;
318 	v = MTX_UNOWNED;
319 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
320 		_mtx_lock_spin(m, v, opts, file, line);
321 	else
322 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire,
323 		    m, 0, 0, file, line);
324 #else
325 	__mtx_lock_spin(m, curthread, opts, file, line);
326 #endif
327 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
328 	    line);
329 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
330 }
331 
332 int
333 __mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
334     int line)
335 {
336 	struct mtx *m;
337 
338 	if (SCHEDULER_STOPPED())
339 		return (1);
340 
341 	m = mtxlock2mtx(c);
342 
343 	KASSERT(m->mtx_lock != MTX_DESTROYED,
344 	    ("mtx_trylock_spin() of destroyed mutex @ %s:%d", file, line));
345 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
346 	    ("mtx_trylock_spin() of sleep mutex %s @ %s:%d",
347 	    m->lock_object.lo_name, file, line));
348 	KASSERT((opts & MTX_RECURSE) == 0,
349 	    ("mtx_trylock_spin: unsupp. opt MTX_RECURSE on mutex %s @ %s:%d\n",
350 	    m->lock_object.lo_name, file, line));
351 	if (__mtx_trylock_spin(m, curthread, opts, file, line)) {
352 		LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 1, file, line);
353 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
354 		return (1);
355 	}
356 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 0, file, line);
357 	return (0);
358 }
359 
360 void
361 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
362     int line)
363 {
364 	struct mtx *m;
365 
366 	m = mtxlock2mtx(c);
367 
368 	KASSERT(m->mtx_lock != MTX_DESTROYED,
369 	    ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
370 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
371 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
372 	    m->lock_object.lo_name, file, line));
373 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
374 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
375 	    line);
376 	mtx_assert(m, MA_OWNED);
377 
378 	__mtx_unlock_spin(m);
379 }
380 
381 /*
382  * The important part of mtx_trylock{,_flags}()
383  * Tries to acquire lock `m.'  If this function is called on a mutex that
384  * is already owned, it will recursively acquire the lock.
385  */
386 int
387 _mtx_trylock_flags_int(struct mtx *m, int opts LOCK_FILE_LINE_ARG_DEF)
388 {
389 	struct thread *td;
390 	uintptr_t tid, v;
391 #ifdef LOCK_PROFILING
392 	uint64_t waittime = 0;
393 	int contested = 0;
394 #endif
395 	int rval;
396 	bool recursed;
397 
398 	td = curthread;
399 	tid = (uintptr_t)td;
400 	if (SCHEDULER_STOPPED_TD(td))
401 		return (1);
402 
403 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td),
404 	    ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
405 	    curthread, m->lock_object.lo_name, file, line));
406 	KASSERT(m->mtx_lock != MTX_DESTROYED,
407 	    ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
408 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
409 	    ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
410 	    file, line));
411 
412 	rval = 1;
413 	recursed = false;
414 	v = MTX_UNOWNED;
415 	for (;;) {
416 		if (_mtx_obtain_lock_fetch(m, &v, tid))
417 			break;
418 		if (v == MTX_UNOWNED)
419 			continue;
420 		if (v == tid &&
421 		    ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
422 		    (opts & MTX_RECURSE) != 0)) {
423 			m->mtx_recurse++;
424 			atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
425 			recursed = true;
426 			break;
427 		}
428 		rval = 0;
429 		break;
430 	}
431 
432 	opts &= ~MTX_RECURSE;
433 
434 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
435 	if (rval) {
436 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
437 		    file, line);
438 		TD_LOCKS_INC(curthread);
439 		if (!recursed)
440 			LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
441 			    m, contested, waittime, file, line);
442 	}
443 
444 	return (rval);
445 }
446 
447 int
448 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
449 {
450 	struct mtx *m;
451 
452 	m = mtxlock2mtx(c);
453 	return (_mtx_trylock_flags_int(m, opts LOCK_FILE_LINE_ARG));
454 }
455 
456 /*
457  * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
458  *
459  * We call this if the lock is either contested (i.e. we need to go to
460  * sleep waiting for it), or if we need to recurse on it.
461  */
462 #if LOCK_DEBUG > 0
463 void
464 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file,
465     int line)
466 #else
467 void
468 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v)
469 #endif
470 {
471 	struct thread *td;
472 	struct mtx *m;
473 	struct turnstile *ts;
474 	uintptr_t tid;
475 	struct thread *owner;
476 #ifdef KTR
477 	int cont_logged = 0;
478 #endif
479 #ifdef LOCK_PROFILING
480 	int contested = 0;
481 	uint64_t waittime = 0;
482 #endif
483 #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS)
484 	struct lock_delay_arg lda;
485 #endif
486 #ifdef KDTRACE_HOOKS
487 	u_int sleep_cnt = 0;
488 	int64_t sleep_time = 0;
489 	int64_t all_time = 0;
490 #endif
491 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
492 	int doing_lockprof;
493 #endif
494 	td = curthread;
495 	tid = (uintptr_t)td;
496 	if (SCHEDULER_STOPPED_TD(td))
497 		return;
498 
499 #if defined(ADAPTIVE_MUTEXES)
500 	lock_delay_arg_init(&lda, &mtx_delay);
501 #elif defined(KDTRACE_HOOKS)
502 	lock_delay_arg_init(&lda, NULL);
503 #endif
504 	m = mtxlock2mtx(c);
505 	if (__predict_false(v == MTX_UNOWNED))
506 		v = MTX_READ_VALUE(m);
507 
508 	if (__predict_false(lv_mtx_owner(v) == td)) {
509 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
510 		    (opts & MTX_RECURSE) != 0,
511 	    ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
512 		    m->lock_object.lo_name, file, line));
513 #if LOCK_DEBUG > 0
514 		opts &= ~MTX_RECURSE;
515 #endif
516 		m->mtx_recurse++;
517 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
518 		if (LOCK_LOG_TEST(&m->lock_object, opts))
519 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
520 		return;
521 	}
522 #if LOCK_DEBUG > 0
523 	opts &= ~MTX_RECURSE;
524 #endif
525 
526 #ifdef HWPMC_HOOKS
527 	PMC_SOFT_CALL( , , lock, failed);
528 #endif
529 	lock_profile_obtain_lock_failed(&m->lock_object,
530 		    &contested, &waittime);
531 	if (LOCK_LOG_TEST(&m->lock_object, opts))
532 		CTR4(KTR_LOCK,
533 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
534 		    m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
535 #ifdef LOCK_PROFILING
536 	doing_lockprof = 1;
537 #elif defined(KDTRACE_HOOKS)
538 	doing_lockprof = lockstat_enabled;
539 	if (__predict_false(doing_lockprof))
540 		all_time -= lockstat_nsecs(&m->lock_object);
541 #endif
542 
543 	for (;;) {
544 		if (v == MTX_UNOWNED) {
545 			if (_mtx_obtain_lock_fetch(m, &v, tid))
546 				break;
547 			continue;
548 		}
549 #ifdef KDTRACE_HOOKS
550 		lda.spin_cnt++;
551 #endif
552 #ifdef ADAPTIVE_MUTEXES
553 		/*
554 		 * If the owner is running on another CPU, spin until the
555 		 * owner stops running or the state of the lock changes.
556 		 */
557 		owner = lv_mtx_owner(v);
558 		if (TD_IS_RUNNING(owner)) {
559 			if (LOCK_LOG_TEST(&m->lock_object, 0))
560 				CTR3(KTR_LOCK,
561 				    "%s: spinning on %p held by %p",
562 				    __func__, m, owner);
563 			KTR_STATE1(KTR_SCHED, "thread",
564 			    sched_tdname((struct thread *)tid),
565 			    "spinning", "lockname:\"%s\"",
566 			    m->lock_object.lo_name);
567 			do {
568 				lock_delay(&lda);
569 				v = MTX_READ_VALUE(m);
570 				owner = lv_mtx_owner(v);
571 			} while (v != MTX_UNOWNED && TD_IS_RUNNING(owner));
572 			KTR_STATE0(KTR_SCHED, "thread",
573 			    sched_tdname((struct thread *)tid),
574 			    "running");
575 			continue;
576 		}
577 #endif
578 
579 		ts = turnstile_trywait(&m->lock_object);
580 		v = MTX_READ_VALUE(m);
581 
582 		/*
583 		 * Check if the lock has been released while spinning for
584 		 * the turnstile chain lock.
585 		 */
586 		if (v == MTX_UNOWNED) {
587 			turnstile_cancel(ts);
588 			continue;
589 		}
590 
591 #ifdef ADAPTIVE_MUTEXES
592 		/*
593 		 * The current lock owner might have started executing
594 		 * on another CPU (or the lock could have changed
595 		 * owners) while we were waiting on the turnstile
596 		 * chain lock.  If so, drop the turnstile lock and try
597 		 * again.
598 		 */
599 		owner = lv_mtx_owner(v);
600 		if (TD_IS_RUNNING(owner)) {
601 			turnstile_cancel(ts);
602 			continue;
603 		}
604 #endif
605 
606 		/*
607 		 * If the mutex isn't already contested and a failure occurs
608 		 * setting the contested bit, the mutex was either released
609 		 * or the state of the MTX_RECURSED bit changed.
610 		 */
611 		if ((v & MTX_CONTESTED) == 0 &&
612 		    !atomic_cmpset_ptr(&m->mtx_lock, v, v | MTX_CONTESTED)) {
613 			turnstile_cancel(ts);
614 			v = MTX_READ_VALUE(m);
615 			continue;
616 		}
617 
618 		/*
619 		 * We definitely must sleep for this lock.
620 		 */
621 		mtx_assert(m, MA_NOTOWNED);
622 
623 #ifdef KTR
624 		if (!cont_logged) {
625 			CTR6(KTR_CONTENTION,
626 			    "contention: %p at %s:%d wants %s, taken by %s:%d",
627 			    (void *)tid, file, line, m->lock_object.lo_name,
628 			    WITNESS_FILE(&m->lock_object),
629 			    WITNESS_LINE(&m->lock_object));
630 			cont_logged = 1;
631 		}
632 #endif
633 
634 		/*
635 		 * Block on the turnstile.
636 		 */
637 #ifdef KDTRACE_HOOKS
638 		sleep_time -= lockstat_nsecs(&m->lock_object);
639 #endif
640 #ifndef ADAPTIVE_MUTEXES
641 		owner = mtx_owner(m);
642 #endif
643 		MPASS(owner == mtx_owner(m));
644 		turnstile_wait(ts, owner, TS_EXCLUSIVE_QUEUE);
645 #ifdef KDTRACE_HOOKS
646 		sleep_time += lockstat_nsecs(&m->lock_object);
647 		sleep_cnt++;
648 #endif
649 		v = MTX_READ_VALUE(m);
650 	}
651 #ifdef KTR
652 	if (cont_logged) {
653 		CTR4(KTR_CONTENTION,
654 		    "contention end: %s acquired by %p at %s:%d",
655 		    m->lock_object.lo_name, (void *)tid, file, line);
656 	}
657 #endif
658 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
659 	if (__predict_true(!doing_lockprof))
660 		return;
661 #endif
662 #ifdef KDTRACE_HOOKS
663 	all_time += lockstat_nsecs(&m->lock_object);
664 #endif
665 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested,
666 	    waittime, file, line);
667 #ifdef KDTRACE_HOOKS
668 	if (sleep_time)
669 		LOCKSTAT_RECORD1(adaptive__block, m, sleep_time);
670 
671 	/*
672 	 * Only record the loops spinning and not sleeping.
673 	 */
674 	if (lda.spin_cnt > sleep_cnt)
675 		LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time);
676 #endif
677 }
678 
679 #ifdef SMP
680 /*
681  * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
682  *
683  * This is only called if we need to actually spin for the lock. Recursion
684  * is handled inline.
685  */
686 #if LOCK_DEBUG > 0
687 void
688 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v, int opts,
689     const char *file, int line)
690 #else
691 void
692 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v)
693 #endif
694 {
695 	struct mtx *m;
696 	struct lock_delay_arg lda;
697 	uintptr_t tid;
698 #ifdef LOCK_PROFILING
699 	int contested = 0;
700 	uint64_t waittime = 0;
701 #endif
702 #ifdef KDTRACE_HOOKS
703 	int64_t spin_time = 0;
704 #endif
705 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
706 	int doing_lockprof;
707 #endif
708 
709 	tid = (uintptr_t)curthread;
710 	m = mtxlock2mtx(c);
711 
712 	if (__predict_false(v == MTX_UNOWNED))
713 		v = MTX_READ_VALUE(m);
714 
715 	if (__predict_false(v == tid)) {
716 		m->mtx_recurse++;
717 		return;
718 	}
719 
720 	if (SCHEDULER_STOPPED())
721 		return;
722 
723 	lock_delay_arg_init(&lda, &mtx_spin_delay);
724 
725 	if (LOCK_LOG_TEST(&m->lock_object, opts))
726 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
727 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
728 	    "spinning", "lockname:\"%s\"", m->lock_object.lo_name);
729 
730 #ifdef HWPMC_HOOKS
731 	PMC_SOFT_CALL( , , lock, failed);
732 #endif
733 	lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime);
734 #ifdef LOCK_PROFILING
735 	doing_lockprof = 1;
736 #elif defined(KDTRACE_HOOKS)
737 	doing_lockprof = lockstat_enabled;
738 	if (__predict_false(doing_lockprof))
739 		spin_time -= lockstat_nsecs(&m->lock_object);
740 #endif
741 	for (;;) {
742 		if (v == MTX_UNOWNED) {
743 			if (_mtx_obtain_lock_fetch(m, &v, tid))
744 				break;
745 			continue;
746 		}
747 		/* Give interrupts a chance while we spin. */
748 		spinlock_exit();
749 		do {
750 			if (__predict_true(lda.spin_cnt < 10000000)) {
751 				lock_delay(&lda);
752 			} else {
753 				_mtx_lock_indefinite_check(m, &lda);
754 			}
755 			v = MTX_READ_VALUE(m);
756 		} while (v != MTX_UNOWNED);
757 		spinlock_enter();
758 	}
759 
760 	if (LOCK_LOG_TEST(&m->lock_object, opts))
761 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
762 	KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
763 	    "running");
764 
765 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
766 	if (__predict_true(!doing_lockprof))
767 		return;
768 #endif
769 #ifdef KDTRACE_HOOKS
770 	spin_time += lockstat_nsecs(&m->lock_object);
771 #endif
772 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
773 	    contested, waittime, file, line);
774 #ifdef KDTRACE_HOOKS
775 	if (lda.spin_cnt != 0)
776 		LOCKSTAT_RECORD1(spin__spin, m, spin_time);
777 #endif
778 }
779 #endif /* SMP */
780 
781 #ifdef INVARIANTS
782 static void
783 thread_lock_validate(struct mtx *m, int opts, const char *file, int line)
784 {
785 
786 	KASSERT(m->mtx_lock != MTX_DESTROYED,
787 	    ("thread_lock() of destroyed mutex @ %s:%d", file, line));
788 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
789 	    ("thread_lock() of sleep mutex %s @ %s:%d",
790 	    m->lock_object.lo_name, file, line));
791 	if (mtx_owned(m))
792 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
793 		    ("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n",
794 		    m->lock_object.lo_name, file, line));
795 	WITNESS_CHECKORDER(&m->lock_object,
796 	    opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
797 }
798 #else
799 #define thread_lock_validate(m, opts, file, line) do { } while (0)
800 #endif
801 
802 #ifndef LOCK_PROFILING
803 #if LOCK_DEBUG > 0
804 void
805 _thread_lock(struct thread *td, int opts, const char *file, int line)
806 #else
807 void
808 _thread_lock(struct thread *td)
809 #endif
810 {
811 	struct mtx *m;
812 	uintptr_t tid, v;
813 
814 	tid = (uintptr_t)curthread;
815 
816 	if (__predict_false(LOCKSTAT_PROFILE_ENABLED(spin__acquire)))
817 		goto slowpath_noirq;
818 	spinlock_enter();
819 	m = td->td_lock;
820 	thread_lock_validate(m, 0, file, line);
821 	v = MTX_READ_VALUE(m);
822 	if (__predict_true(v == MTX_UNOWNED)) {
823 		if (__predict_false(!_mtx_obtain_lock(m, tid)))
824 			goto slowpath_unlocked;
825 	} else if (v == tid) {
826 		m->mtx_recurse++;
827 	} else
828 		goto slowpath_unlocked;
829 	if (__predict_true(m == td->td_lock)) {
830 		WITNESS_LOCK(&m->lock_object, LOP_EXCLUSIVE, file, line);
831 		return;
832 	}
833 	if (m->mtx_recurse != 0)
834 		m->mtx_recurse--;
835 	else
836 		_mtx_release_lock_quick(m);
837 slowpath_unlocked:
838 	spinlock_exit();
839 slowpath_noirq:
840 #if LOCK_DEBUG > 0
841 	thread_lock_flags_(td, opts, file, line);
842 #else
843 	thread_lock_flags_(td, 0, 0, 0);
844 #endif
845 }
846 #endif
847 
848 void
849 thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
850 {
851 	struct mtx *m;
852 	uintptr_t tid, v;
853 	struct lock_delay_arg lda;
854 #ifdef LOCK_PROFILING
855 	int contested = 0;
856 	uint64_t waittime = 0;
857 #endif
858 #ifdef KDTRACE_HOOKS
859 	int64_t spin_time = 0;
860 #endif
861 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
862 	int doing_lockprof = 1;
863 #endif
864 
865 	tid = (uintptr_t)curthread;
866 
867 	if (SCHEDULER_STOPPED()) {
868 		/*
869 		 * Ensure that spinlock sections are balanced even when the
870 		 * scheduler is stopped, since we may otherwise inadvertently
871 		 * re-enable interrupts while dumping core.
872 		 */
873 		spinlock_enter();
874 		return;
875 	}
876 
877 	lock_delay_arg_init(&lda, &mtx_spin_delay);
878 
879 #ifdef HWPMC_HOOKS
880 	PMC_SOFT_CALL( , , lock, failed);
881 #endif
882 
883 #ifdef LOCK_PROFILING
884 	doing_lockprof = 1;
885 #elif defined(KDTRACE_HOOKS)
886 	doing_lockprof = lockstat_enabled;
887 	if (__predict_false(doing_lockprof))
888 		spin_time -= lockstat_nsecs(&td->td_lock->lock_object);
889 #endif
890 	for (;;) {
891 retry:
892 		spinlock_enter();
893 		m = td->td_lock;
894 		thread_lock_validate(m, opts, file, line);
895 		v = MTX_READ_VALUE(m);
896 		for (;;) {
897 			if (v == MTX_UNOWNED) {
898 				if (_mtx_obtain_lock_fetch(m, &v, tid))
899 					break;
900 				continue;
901 			}
902 			if (v == tid) {
903 				m->mtx_recurse++;
904 				break;
905 			}
906 			lock_profile_obtain_lock_failed(&m->lock_object,
907 			    &contested, &waittime);
908 			/* Give interrupts a chance while we spin. */
909 			spinlock_exit();
910 			do {
911 				if (__predict_true(lda.spin_cnt < 10000000)) {
912 					lock_delay(&lda);
913 				} else {
914 					_mtx_lock_indefinite_check(m, &lda);
915 				}
916 				if (m != td->td_lock)
917 					goto retry;
918 				v = MTX_READ_VALUE(m);
919 			} while (v != MTX_UNOWNED);
920 			spinlock_enter();
921 		}
922 		if (m == td->td_lock)
923 			break;
924 		__mtx_unlock_spin(m);	/* does spinlock_exit() */
925 	}
926 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
927 	    line);
928 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
929 
930 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
931 	if (__predict_true(!doing_lockprof))
932 		return;
933 #endif
934 #ifdef KDTRACE_HOOKS
935 	spin_time += lockstat_nsecs(&m->lock_object);
936 #endif
937 	if (m->mtx_recurse == 0)
938 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
939 		    contested, waittime, file, line);
940 #ifdef KDTRACE_HOOKS
941 	if (lda.spin_cnt != 0)
942 		LOCKSTAT_RECORD1(thread__spin, m, spin_time);
943 #endif
944 }
945 
946 struct mtx *
947 thread_lock_block(struct thread *td)
948 {
949 	struct mtx *lock;
950 
951 	THREAD_LOCK_ASSERT(td, MA_OWNED);
952 	lock = td->td_lock;
953 	td->td_lock = &blocked_lock;
954 	mtx_unlock_spin(lock);
955 
956 	return (lock);
957 }
958 
959 void
960 thread_lock_unblock(struct thread *td, struct mtx *new)
961 {
962 	mtx_assert(new, MA_OWNED);
963 	MPASS(td->td_lock == &blocked_lock);
964 	atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
965 }
966 
967 void
968 thread_lock_set(struct thread *td, struct mtx *new)
969 {
970 	struct mtx *lock;
971 
972 	mtx_assert(new, MA_OWNED);
973 	THREAD_LOCK_ASSERT(td, MA_OWNED);
974 	lock = td->td_lock;
975 	td->td_lock = new;
976 	mtx_unlock_spin(lock);
977 }
978 
979 /*
980  * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
981  *
982  * We are only called here if the lock is recursed, contested (i.e. we
983  * need to wake up a blocked thread) or lockstat probe is active.
984  */
985 #if LOCK_DEBUG > 0
986 void
987 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v, int opts,
988     const char *file, int line)
989 #else
990 void
991 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v)
992 #endif
993 {
994 	struct mtx *m;
995 	struct turnstile *ts;
996 	uintptr_t tid;
997 
998 	if (SCHEDULER_STOPPED())
999 		return;
1000 
1001 	tid = (uintptr_t)curthread;
1002 	m = mtxlock2mtx(c);
1003 
1004 	if (__predict_false(v == tid))
1005 		v = MTX_READ_VALUE(m);
1006 
1007 	if (__predict_false(v & MTX_RECURSED)) {
1008 		if (--(m->mtx_recurse) == 0)
1009 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
1010 		if (LOCK_LOG_TEST(&m->lock_object, opts))
1011 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
1012 		return;
1013 	}
1014 
1015 	LOCKSTAT_PROFILE_RELEASE_LOCK(adaptive__release, m);
1016 	if (v == tid && _mtx_release_lock(m, tid))
1017 		return;
1018 
1019 	/*
1020 	 * We have to lock the chain before the turnstile so this turnstile
1021 	 * can be removed from the hash list if it is empty.
1022 	 */
1023 	turnstile_chain_lock(&m->lock_object);
1024 	_mtx_release_lock_quick(m);
1025 	ts = turnstile_lookup(&m->lock_object);
1026 	MPASS(ts != NULL);
1027 	if (LOCK_LOG_TEST(&m->lock_object, opts))
1028 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
1029 	turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
1030 
1031 	/*
1032 	 * This turnstile is now no longer associated with the mutex.  We can
1033 	 * unlock the chain lock so a new turnstile may take it's place.
1034 	 */
1035 	turnstile_unpend(ts, TS_EXCLUSIVE_LOCK);
1036 	turnstile_chain_unlock(&m->lock_object);
1037 }
1038 
1039 /*
1040  * All the unlocking of MTX_SPIN locks is done inline.
1041  * See the __mtx_unlock_spin() macro for the details.
1042  */
1043 
1044 /*
1045  * The backing function for the INVARIANTS-enabled mtx_assert()
1046  */
1047 #ifdef INVARIANT_SUPPORT
1048 void
1049 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
1050 {
1051 	const struct mtx *m;
1052 
1053 	if (panicstr != NULL || dumping || SCHEDULER_STOPPED())
1054 		return;
1055 
1056 	m = mtxlock2mtx(c);
1057 
1058 	switch (what) {
1059 	case MA_OWNED:
1060 	case MA_OWNED | MA_RECURSED:
1061 	case MA_OWNED | MA_NOTRECURSED:
1062 		if (!mtx_owned(m))
1063 			panic("mutex %s not owned at %s:%d",
1064 			    m->lock_object.lo_name, file, line);
1065 		if (mtx_recursed(m)) {
1066 			if ((what & MA_NOTRECURSED) != 0)
1067 				panic("mutex %s recursed at %s:%d",
1068 				    m->lock_object.lo_name, file, line);
1069 		} else if ((what & MA_RECURSED) != 0) {
1070 			panic("mutex %s unrecursed at %s:%d",
1071 			    m->lock_object.lo_name, file, line);
1072 		}
1073 		break;
1074 	case MA_NOTOWNED:
1075 		if (mtx_owned(m))
1076 			panic("mutex %s owned at %s:%d",
1077 			    m->lock_object.lo_name, file, line);
1078 		break;
1079 	default:
1080 		panic("unknown mtx_assert at %s:%d", file, line);
1081 	}
1082 }
1083 #endif
1084 
1085 /*
1086  * General init routine used by the MTX_SYSINIT() macro.
1087  */
1088 void
1089 mtx_sysinit(void *arg)
1090 {
1091 	struct mtx_args *margs = arg;
1092 
1093 	mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
1094 	    margs->ma_opts);
1095 }
1096 
1097 /*
1098  * Mutex initialization routine; initialize lock `m' of type contained in
1099  * `opts' with options contained in `opts' and name `name.'  The optional
1100  * lock type `type' is used as a general lock category name for use with
1101  * witness.
1102  */
1103 void
1104 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
1105 {
1106 	struct mtx *m;
1107 	struct lock_class *class;
1108 	int flags;
1109 
1110 	m = mtxlock2mtx(c);
1111 
1112 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
1113 	    MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0);
1114 	ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
1115 	    ("%s: mtx_lock not aligned for %s: %p", __func__, name,
1116 	    &m->mtx_lock));
1117 
1118 	/* Determine lock class and lock flags. */
1119 	if (opts & MTX_SPIN)
1120 		class = &lock_class_mtx_spin;
1121 	else
1122 		class = &lock_class_mtx_sleep;
1123 	flags = 0;
1124 	if (opts & MTX_QUIET)
1125 		flags |= LO_QUIET;
1126 	if (opts & MTX_RECURSE)
1127 		flags |= LO_RECURSABLE;
1128 	if ((opts & MTX_NOWITNESS) == 0)
1129 		flags |= LO_WITNESS;
1130 	if (opts & MTX_DUPOK)
1131 		flags |= LO_DUPOK;
1132 	if (opts & MTX_NOPROFILE)
1133 		flags |= LO_NOPROFILE;
1134 	if (opts & MTX_NEW)
1135 		flags |= LO_NEW;
1136 
1137 	/* Initialize mutex. */
1138 	lock_init(&m->lock_object, class, name, type, flags);
1139 
1140 	m->mtx_lock = MTX_UNOWNED;
1141 	m->mtx_recurse = 0;
1142 }
1143 
1144 /*
1145  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
1146  * passed in as a flag here because if the corresponding mtx_init() was
1147  * called with MTX_QUIET set, then it will already be set in the mutex's
1148  * flags.
1149  */
1150 void
1151 _mtx_destroy(volatile uintptr_t *c)
1152 {
1153 	struct mtx *m;
1154 
1155 	m = mtxlock2mtx(c);
1156 
1157 	if (!mtx_owned(m))
1158 		MPASS(mtx_unowned(m));
1159 	else {
1160 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
1161 
1162 		/* Perform the non-mtx related part of mtx_unlock_spin(). */
1163 		if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin)
1164 			spinlock_exit();
1165 		else
1166 			TD_LOCKS_DEC(curthread);
1167 
1168 		lock_profile_release_lock(&m->lock_object);
1169 		/* Tell witness this isn't locked to make it happy. */
1170 		WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
1171 		    __LINE__);
1172 	}
1173 
1174 	m->mtx_lock = MTX_DESTROYED;
1175 	lock_destroy(&m->lock_object);
1176 }
1177 
1178 /*
1179  * Intialize the mutex code and system mutexes.  This is called from the MD
1180  * startup code prior to mi_startup().  The per-CPU data space needs to be
1181  * setup before this is called.
1182  */
1183 void
1184 mutex_init(void)
1185 {
1186 
1187 	/* Setup turnstiles so that sleep mutexes work. */
1188 	init_turnstiles();
1189 
1190 	/*
1191 	 * Initialize mutexes.
1192 	 */
1193 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
1194 	mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
1195 	blocked_lock.mtx_lock = 0xdeadc0de;	/* Always blocked. */
1196 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
1197 	mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN);
1198 	mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN);
1199 	mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN);
1200 	mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN);
1201 	mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
1202 	mtx_lock(&Giant);
1203 }
1204 
1205 static void __noinline
1206 _mtx_lock_indefinite_check(struct mtx *m, struct lock_delay_arg *ldap)
1207 {
1208 	struct thread *td;
1209 
1210 	ldap->spin_cnt++;
1211 	if (ldap->spin_cnt < 60000000 || kdb_active || panicstr != NULL)
1212 		DELAY(1);
1213 	else {
1214 		td = mtx_owner(m);
1215 
1216 		/* If the mutex is unlocked, try again. */
1217 		if (td == NULL)
1218 			return;
1219 
1220 		printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
1221 		    m, m->lock_object.lo_name, td, td->td_tid);
1222 #ifdef WITNESS
1223 		witness_display_spinlock(&m->lock_object, td, printf);
1224 #endif
1225 		panic("spin lock held too long");
1226 	}
1227 	cpu_spinwait();
1228 }
1229 
1230 #ifdef DDB
1231 void
1232 db_show_mtx(const struct lock_object *lock)
1233 {
1234 	struct thread *td;
1235 	const struct mtx *m;
1236 
1237 	m = (const struct mtx *)lock;
1238 
1239 	db_printf(" flags: {");
1240 	if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
1241 		db_printf("SPIN");
1242 	else
1243 		db_printf("DEF");
1244 	if (m->lock_object.lo_flags & LO_RECURSABLE)
1245 		db_printf(", RECURSE");
1246 	if (m->lock_object.lo_flags & LO_DUPOK)
1247 		db_printf(", DUPOK");
1248 	db_printf("}\n");
1249 	db_printf(" state: {");
1250 	if (mtx_unowned(m))
1251 		db_printf("UNOWNED");
1252 	else if (mtx_destroyed(m))
1253 		db_printf("DESTROYED");
1254 	else {
1255 		db_printf("OWNED");
1256 		if (m->mtx_lock & MTX_CONTESTED)
1257 			db_printf(", CONTESTED");
1258 		if (m->mtx_lock & MTX_RECURSED)
1259 			db_printf(", RECURSED");
1260 	}
1261 	db_printf("}\n");
1262 	if (!mtx_unowned(m) && !mtx_destroyed(m)) {
1263 		td = mtx_owner(m);
1264 		db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
1265 		    td->td_tid, td->td_proc->p_pid, td->td_name);
1266 		if (mtx_recursed(m))
1267 			db_printf(" recursed: %d\n", m->mtx_recurse);
1268 	}
1269 }
1270 #endif
1271