xref: /freebsd/sys/kern/kern_mutex.c (revision a812392203d7c4c3f0db9d8a0f3391374c49c71f)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Machine independent bits of mutex implementation.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_adaptive_mutexes.h"
40 #include "opt_ddb.h"
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_sched.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bus.h>
47 #include <sys/conf.h>
48 #include <sys/kdb.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/sched.h>
57 #include <sys/sbuf.h>
58 #include <sys/sysctl.h>
59 #include <sys/turnstile.h>
60 #include <sys/vmmeter.h>
61 #include <sys/lock_profile.h>
62 
63 #include <machine/atomic.h>
64 #include <machine/bus.h>
65 #include <machine/cpu.h>
66 
67 #include <ddb/ddb.h>
68 
69 #include <fs/devfs/devfs_int.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_extern.h>
73 
74 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
75 #define	ADAPTIVE_MUTEXES
76 #endif
77 
78 #ifdef HWPMC_HOOKS
79 #include <sys/pmckern.h>
80 PMC_SOFT_DEFINE( , , lock, failed);
81 #endif
82 
83 /*
84  * Return the mutex address when the lock cookie address is provided.
85  * This functionality assumes that struct mtx* have a member named mtx_lock.
86  */
87 #define	mtxlock2mtx(c)	(__containerof(c, struct mtx, mtx_lock))
88 
89 /*
90  * Internal utility macros.
91  */
92 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
93 
94 #define	mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
95 
96 #define	mtx_owner(m)	((struct thread *)((m)->mtx_lock & ~MTX_FLAGMASK))
97 
98 static void	assert_mtx(const struct lock_object *lock, int what);
99 #ifdef DDB
100 static void	db_show_mtx(const struct lock_object *lock);
101 #endif
102 static void	lock_mtx(struct lock_object *lock, uintptr_t how);
103 static void	lock_spin(struct lock_object *lock, uintptr_t how);
104 #ifdef KDTRACE_HOOKS
105 static int	owner_mtx(const struct lock_object *lock,
106 		    struct thread **owner);
107 #endif
108 static uintptr_t unlock_mtx(struct lock_object *lock);
109 static uintptr_t unlock_spin(struct lock_object *lock);
110 
111 /*
112  * Lock classes for sleep and spin mutexes.
113  */
114 struct lock_class lock_class_mtx_sleep = {
115 	.lc_name = "sleep mutex",
116 	.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
117 	.lc_assert = assert_mtx,
118 #ifdef DDB
119 	.lc_ddb_show = db_show_mtx,
120 #endif
121 	.lc_lock = lock_mtx,
122 	.lc_unlock = unlock_mtx,
123 #ifdef KDTRACE_HOOKS
124 	.lc_owner = owner_mtx,
125 #endif
126 };
127 struct lock_class lock_class_mtx_spin = {
128 	.lc_name = "spin mutex",
129 	.lc_flags = LC_SPINLOCK | LC_RECURSABLE,
130 	.lc_assert = assert_mtx,
131 #ifdef DDB
132 	.lc_ddb_show = db_show_mtx,
133 #endif
134 	.lc_lock = lock_spin,
135 	.lc_unlock = unlock_spin,
136 #ifdef KDTRACE_HOOKS
137 	.lc_owner = owner_mtx,
138 #endif
139 };
140 
141 /*
142  * System-wide mutexes
143  */
144 struct mtx blocked_lock;
145 struct mtx Giant;
146 
147 void
148 assert_mtx(const struct lock_object *lock, int what)
149 {
150 
151 	mtx_assert((const struct mtx *)lock, what);
152 }
153 
154 void
155 lock_mtx(struct lock_object *lock, uintptr_t how)
156 {
157 
158 	mtx_lock((struct mtx *)lock);
159 }
160 
161 void
162 lock_spin(struct lock_object *lock, uintptr_t how)
163 {
164 
165 	panic("spin locks can only use msleep_spin");
166 }
167 
168 uintptr_t
169 unlock_mtx(struct lock_object *lock)
170 {
171 	struct mtx *m;
172 
173 	m = (struct mtx *)lock;
174 	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
175 	mtx_unlock(m);
176 	return (0);
177 }
178 
179 uintptr_t
180 unlock_spin(struct lock_object *lock)
181 {
182 
183 	panic("spin locks can only use msleep_spin");
184 }
185 
186 #ifdef KDTRACE_HOOKS
187 int
188 owner_mtx(const struct lock_object *lock, struct thread **owner)
189 {
190 	const struct mtx *m = (const struct mtx *)lock;
191 
192 	*owner = mtx_owner(m);
193 	return (mtx_unowned(m) == 0);
194 }
195 #endif
196 
197 /*
198  * Function versions of the inlined __mtx_* macros.  These are used by
199  * modules and can also be called from assembly language if needed.
200  */
201 void
202 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
203 {
204 	struct mtx *m;
205 
206 	if (SCHEDULER_STOPPED())
207 		return;
208 
209 	m = mtxlock2mtx(c);
210 
211 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
212 	    ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
213 	    curthread, m->lock_object.lo_name, file, line));
214 	KASSERT(m->mtx_lock != MTX_DESTROYED,
215 	    ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
216 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
217 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
218 	    file, line));
219 	WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
220 	    LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
221 
222 	__mtx_lock(m, curthread, opts, file, line);
223 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
224 	    line);
225 	WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
226 	    file, line);
227 	curthread->td_locks++;
228 }
229 
230 void
231 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
232 {
233 	struct mtx *m;
234 
235 	if (SCHEDULER_STOPPED())
236 		return;
237 
238 	m = mtxlock2mtx(c);
239 
240 	KASSERT(m->mtx_lock != MTX_DESTROYED,
241 	    ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
242 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
243 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
244 	    file, line));
245 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
246 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
247 	    line);
248 	mtx_assert(m, MA_OWNED);
249 
250 	__mtx_unlock(m, curthread, opts, file, line);
251 	curthread->td_locks--;
252 }
253 
254 void
255 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
256     int line)
257 {
258 	struct mtx *m;
259 
260 	if (SCHEDULER_STOPPED())
261 		return;
262 
263 	m = mtxlock2mtx(c);
264 
265 	KASSERT(m->mtx_lock != MTX_DESTROYED,
266 	    ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
267 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
268 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
269 	    m->lock_object.lo_name, file, line));
270 	if (mtx_owned(m))
271 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
272 		    (opts & MTX_RECURSE) != 0,
273 	    ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
274 		    m->lock_object.lo_name, file, line));
275 	opts &= ~MTX_RECURSE;
276 	WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
277 	    file, line, NULL);
278 	__mtx_lock_spin(m, curthread, opts, file, line);
279 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
280 	    line);
281 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
282 }
283 
284 void
285 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
286     int line)
287 {
288 	struct mtx *m;
289 
290 	if (SCHEDULER_STOPPED())
291 		return;
292 
293 	m = mtxlock2mtx(c);
294 
295 	KASSERT(m->mtx_lock != MTX_DESTROYED,
296 	    ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
297 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
298 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
299 	    m->lock_object.lo_name, file, line));
300 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
301 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
302 	    line);
303 	mtx_assert(m, MA_OWNED);
304 
305 	__mtx_unlock_spin(m);
306 }
307 
308 /*
309  * The important part of mtx_trylock{,_flags}()
310  * Tries to acquire lock `m.'  If this function is called on a mutex that
311  * is already owned, it will recursively acquire the lock.
312  */
313 int
314 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
315 {
316 	struct mtx *m;
317 #ifdef LOCK_PROFILING
318 	uint64_t waittime = 0;
319 	int contested = 0;
320 #endif
321 	int rval;
322 
323 	if (SCHEDULER_STOPPED())
324 		return (1);
325 
326 	m = mtxlock2mtx(c);
327 
328 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
329 	    ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
330 	    curthread, m->lock_object.lo_name, file, line));
331 	KASSERT(m->mtx_lock != MTX_DESTROYED,
332 	    ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
333 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
334 	    ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
335 	    file, line));
336 
337 	if (mtx_owned(m) && ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
338 	    (opts & MTX_RECURSE) != 0)) {
339 		m->mtx_recurse++;
340 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
341 		rval = 1;
342 	} else
343 		rval = _mtx_obtain_lock(m, (uintptr_t)curthread);
344 	opts &= ~MTX_RECURSE;
345 
346 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
347 	if (rval) {
348 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
349 		    file, line);
350 		curthread->td_locks++;
351 		if (m->mtx_recurse == 0)
352 			LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_LOCK_ACQUIRE,
353 			    m, contested, waittime, file, line);
354 
355 	}
356 
357 	return (rval);
358 }
359 
360 /*
361  * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
362  *
363  * We call this if the lock is either contested (i.e. we need to go to
364  * sleep waiting for it), or if we need to recurse on it.
365  */
366 void
367 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t tid, int opts,
368     const char *file, int line)
369 {
370 	struct mtx *m;
371 	struct turnstile *ts;
372 	uintptr_t v;
373 #ifdef ADAPTIVE_MUTEXES
374 	volatile struct thread *owner;
375 #endif
376 #ifdef KTR
377 	int cont_logged = 0;
378 #endif
379 #ifdef LOCK_PROFILING
380 	int contested = 0;
381 	uint64_t waittime = 0;
382 #endif
383 #ifdef KDTRACE_HOOKS
384 	uint64_t spin_cnt = 0;
385 	uint64_t sleep_cnt = 0;
386 	int64_t sleep_time = 0;
387 #endif
388 
389 	if (SCHEDULER_STOPPED())
390 		return;
391 
392 	m = mtxlock2mtx(c);
393 
394 	if (mtx_owned(m)) {
395 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
396 		    (opts & MTX_RECURSE) != 0,
397 	    ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
398 		    m->lock_object.lo_name, file, line));
399 		opts &= ~MTX_RECURSE;
400 		m->mtx_recurse++;
401 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
402 		if (LOCK_LOG_TEST(&m->lock_object, opts))
403 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
404 		return;
405 	}
406 	opts &= ~MTX_RECURSE;
407 
408 #ifdef HWPMC_HOOKS
409 	PMC_SOFT_CALL( , , lock, failed);
410 #endif
411 	lock_profile_obtain_lock_failed(&m->lock_object,
412 		    &contested, &waittime);
413 	if (LOCK_LOG_TEST(&m->lock_object, opts))
414 		CTR4(KTR_LOCK,
415 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
416 		    m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
417 
418 	while (!_mtx_obtain_lock(m, tid)) {
419 #ifdef KDTRACE_HOOKS
420 		spin_cnt++;
421 #endif
422 #ifdef ADAPTIVE_MUTEXES
423 		/*
424 		 * If the owner is running on another CPU, spin until the
425 		 * owner stops running or the state of the lock changes.
426 		 */
427 		v = m->mtx_lock;
428 		if (v != MTX_UNOWNED) {
429 			owner = (struct thread *)(v & ~MTX_FLAGMASK);
430 			if (TD_IS_RUNNING(owner)) {
431 				if (LOCK_LOG_TEST(&m->lock_object, 0))
432 					CTR3(KTR_LOCK,
433 					    "%s: spinning on %p held by %p",
434 					    __func__, m, owner);
435 				KTR_STATE1(KTR_SCHED, "thread",
436 				    sched_tdname((struct thread *)tid),
437 				    "spinning", "lockname:\"%s\"",
438 				    m->lock_object.lo_name);
439 				while (mtx_owner(m) == owner &&
440 				    TD_IS_RUNNING(owner)) {
441 					cpu_spinwait();
442 #ifdef KDTRACE_HOOKS
443 					spin_cnt++;
444 #endif
445 				}
446 				KTR_STATE0(KTR_SCHED, "thread",
447 				    sched_tdname((struct thread *)tid),
448 				    "running");
449 				continue;
450 			}
451 		}
452 #endif
453 
454 		ts = turnstile_trywait(&m->lock_object);
455 		v = m->mtx_lock;
456 
457 		/*
458 		 * Check if the lock has been released while spinning for
459 		 * the turnstile chain lock.
460 		 */
461 		if (v == MTX_UNOWNED) {
462 			turnstile_cancel(ts);
463 			continue;
464 		}
465 
466 #ifdef ADAPTIVE_MUTEXES
467 		/*
468 		 * The current lock owner might have started executing
469 		 * on another CPU (or the lock could have changed
470 		 * owners) while we were waiting on the turnstile
471 		 * chain lock.  If so, drop the turnstile lock and try
472 		 * again.
473 		 */
474 		owner = (struct thread *)(v & ~MTX_FLAGMASK);
475 		if (TD_IS_RUNNING(owner)) {
476 			turnstile_cancel(ts);
477 			continue;
478 		}
479 #endif
480 
481 		/*
482 		 * If the mutex isn't already contested and a failure occurs
483 		 * setting the contested bit, the mutex was either released
484 		 * or the state of the MTX_RECURSED bit changed.
485 		 */
486 		if ((v & MTX_CONTESTED) == 0 &&
487 		    !atomic_cmpset_ptr(&m->mtx_lock, v, v | MTX_CONTESTED)) {
488 			turnstile_cancel(ts);
489 			continue;
490 		}
491 
492 		/*
493 		 * We definitely must sleep for this lock.
494 		 */
495 		mtx_assert(m, MA_NOTOWNED);
496 
497 #ifdef KTR
498 		if (!cont_logged) {
499 			CTR6(KTR_CONTENTION,
500 			    "contention: %p at %s:%d wants %s, taken by %s:%d",
501 			    (void *)tid, file, line, m->lock_object.lo_name,
502 			    WITNESS_FILE(&m->lock_object),
503 			    WITNESS_LINE(&m->lock_object));
504 			cont_logged = 1;
505 		}
506 #endif
507 
508 		/*
509 		 * Block on the turnstile.
510 		 */
511 #ifdef KDTRACE_HOOKS
512 		sleep_time -= lockstat_nsecs();
513 #endif
514 		turnstile_wait(ts, mtx_owner(m), TS_EXCLUSIVE_QUEUE);
515 #ifdef KDTRACE_HOOKS
516 		sleep_time += lockstat_nsecs();
517 		sleep_cnt++;
518 #endif
519 	}
520 #ifdef KTR
521 	if (cont_logged) {
522 		CTR4(KTR_CONTENTION,
523 		    "contention end: %s acquired by %p at %s:%d",
524 		    m->lock_object.lo_name, (void *)tid, file, line);
525 	}
526 #endif
527 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_LOCK_ACQUIRE, m, contested,
528 	    waittime, file, line);
529 #ifdef KDTRACE_HOOKS
530 	if (sleep_time)
531 		LOCKSTAT_RECORD1(LS_MTX_LOCK_BLOCK, m, sleep_time);
532 
533 	/*
534 	 * Only record the loops spinning and not sleeping.
535 	 */
536 	if (spin_cnt > sleep_cnt)
537 		LOCKSTAT_RECORD1(LS_MTX_LOCK_SPIN, m, (spin_cnt - sleep_cnt));
538 #endif
539 }
540 
541 static void
542 _mtx_lock_spin_failed(struct mtx *m)
543 {
544 	struct thread *td;
545 
546 	td = mtx_owner(m);
547 
548 	/* If the mutex is unlocked, try again. */
549 	if (td == NULL)
550 		return;
551 
552 	printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
553 	    m, m->lock_object.lo_name, td, td->td_tid);
554 #ifdef WITNESS
555 	witness_display_spinlock(&m->lock_object, td, printf);
556 #endif
557 	panic("spin lock held too long");
558 }
559 
560 #ifdef SMP
561 /*
562  * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
563  *
564  * This is only called if we need to actually spin for the lock. Recursion
565  * is handled inline.
566  */
567 void
568 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t tid, int opts,
569     const char *file, int line)
570 {
571 	struct mtx *m;
572 	int i = 0;
573 #ifdef LOCK_PROFILING
574 	int contested = 0;
575 	uint64_t waittime = 0;
576 #endif
577 
578 	if (SCHEDULER_STOPPED())
579 		return;
580 
581 	m = mtxlock2mtx(c);
582 
583 	if (LOCK_LOG_TEST(&m->lock_object, opts))
584 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
585 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
586 	    "spinning", "lockname:\"%s\"", m->lock_object.lo_name);
587 
588 #ifdef HWPMC_HOOKS
589 	PMC_SOFT_CALL( , , lock, failed);
590 #endif
591 	lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime);
592 	while (!_mtx_obtain_lock(m, tid)) {
593 
594 		/* Give interrupts a chance while we spin. */
595 		spinlock_exit();
596 		while (m->mtx_lock != MTX_UNOWNED) {
597 			if (i++ < 10000000) {
598 				cpu_spinwait();
599 				continue;
600 			}
601 			if (i < 60000000 || kdb_active || panicstr != NULL)
602 				DELAY(1);
603 			else
604 				_mtx_lock_spin_failed(m);
605 			cpu_spinwait();
606 		}
607 		spinlock_enter();
608 	}
609 
610 	if (LOCK_LOG_TEST(&m->lock_object, opts))
611 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
612 	KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
613 	    "running");
614 
615 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_SPIN_LOCK_ACQUIRE, m,
616 	    contested, waittime, (file), (line));
617 	LOCKSTAT_RECORD1(LS_MTX_SPIN_LOCK_SPIN, m, i);
618 }
619 #endif /* SMP */
620 
621 void
622 thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
623 {
624 	struct mtx *m;
625 	uintptr_t tid;
626 	int i;
627 #ifdef LOCK_PROFILING
628 	int contested = 0;
629 	uint64_t waittime = 0;
630 #endif
631 #ifdef KDTRACE_HOOKS
632 	uint64_t spin_cnt = 0;
633 #endif
634 
635 	i = 0;
636 	tid = (uintptr_t)curthread;
637 
638 	if (SCHEDULER_STOPPED())
639 		return;
640 
641 	for (;;) {
642 retry:
643 		spinlock_enter();
644 		m = td->td_lock;
645 		KASSERT(m->mtx_lock != MTX_DESTROYED,
646 		    ("thread_lock() of destroyed mutex @ %s:%d", file, line));
647 		KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
648 		    ("thread_lock() of sleep mutex %s @ %s:%d",
649 		    m->lock_object.lo_name, file, line));
650 		if (mtx_owned(m))
651 			KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
652 	    ("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n",
653 			    m->lock_object.lo_name, file, line));
654 		WITNESS_CHECKORDER(&m->lock_object,
655 		    opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
656 		while (!_mtx_obtain_lock(m, tid)) {
657 #ifdef KDTRACE_HOOKS
658 			spin_cnt++;
659 #endif
660 			if (m->mtx_lock == tid) {
661 				m->mtx_recurse++;
662 				break;
663 			}
664 #ifdef HWPMC_HOOKS
665 			PMC_SOFT_CALL( , , lock, failed);
666 #endif
667 			lock_profile_obtain_lock_failed(&m->lock_object,
668 			    &contested, &waittime);
669 			/* Give interrupts a chance while we spin. */
670 			spinlock_exit();
671 			while (m->mtx_lock != MTX_UNOWNED) {
672 				if (i++ < 10000000)
673 					cpu_spinwait();
674 				else if (i < 60000000 ||
675 				    kdb_active || panicstr != NULL)
676 					DELAY(1);
677 				else
678 					_mtx_lock_spin_failed(m);
679 				cpu_spinwait();
680 				if (m != td->td_lock)
681 					goto retry;
682 			}
683 			spinlock_enter();
684 		}
685 		if (m == td->td_lock)
686 			break;
687 		__mtx_unlock_spin(m);	/* does spinlock_exit() */
688 #ifdef KDTRACE_HOOKS
689 		spin_cnt++;
690 #endif
691 	}
692 	if (m->mtx_recurse == 0)
693 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_SPIN_LOCK_ACQUIRE,
694 		    m, contested, waittime, (file), (line));
695 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
696 	    line);
697 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
698 	LOCKSTAT_RECORD1(LS_THREAD_LOCK_SPIN, m, spin_cnt);
699 }
700 
701 struct mtx *
702 thread_lock_block(struct thread *td)
703 {
704 	struct mtx *lock;
705 
706 	THREAD_LOCK_ASSERT(td, MA_OWNED);
707 	lock = td->td_lock;
708 	td->td_lock = &blocked_lock;
709 	mtx_unlock_spin(lock);
710 
711 	return (lock);
712 }
713 
714 void
715 thread_lock_unblock(struct thread *td, struct mtx *new)
716 {
717 	mtx_assert(new, MA_OWNED);
718 	MPASS(td->td_lock == &blocked_lock);
719 	atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
720 }
721 
722 void
723 thread_lock_set(struct thread *td, struct mtx *new)
724 {
725 	struct mtx *lock;
726 
727 	mtx_assert(new, MA_OWNED);
728 	THREAD_LOCK_ASSERT(td, MA_OWNED);
729 	lock = td->td_lock;
730 	td->td_lock = new;
731 	mtx_unlock_spin(lock);
732 }
733 
734 /*
735  * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
736  *
737  * We are only called here if the lock is recursed or contested (i.e. we
738  * need to wake up a blocked thread).
739  */
740 void
741 __mtx_unlock_sleep(volatile uintptr_t *c, int opts, const char *file, int line)
742 {
743 	struct mtx *m;
744 	struct turnstile *ts;
745 
746 	if (SCHEDULER_STOPPED())
747 		return;
748 
749 	m = mtxlock2mtx(c);
750 
751 	if (mtx_recursed(m)) {
752 		if (--(m->mtx_recurse) == 0)
753 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
754 		if (LOCK_LOG_TEST(&m->lock_object, opts))
755 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
756 		return;
757 	}
758 
759 	/*
760 	 * We have to lock the chain before the turnstile so this turnstile
761 	 * can be removed from the hash list if it is empty.
762 	 */
763 	turnstile_chain_lock(&m->lock_object);
764 	ts = turnstile_lookup(&m->lock_object);
765 	if (LOCK_LOG_TEST(&m->lock_object, opts))
766 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
767 	MPASS(ts != NULL);
768 	turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
769 	_mtx_release_lock_quick(m);
770 
771 	/*
772 	 * This turnstile is now no longer associated with the mutex.  We can
773 	 * unlock the chain lock so a new turnstile may take it's place.
774 	 */
775 	turnstile_unpend(ts, TS_EXCLUSIVE_LOCK);
776 	turnstile_chain_unlock(&m->lock_object);
777 }
778 
779 /*
780  * All the unlocking of MTX_SPIN locks is done inline.
781  * See the __mtx_unlock_spin() macro for the details.
782  */
783 
784 /*
785  * The backing function for the INVARIANTS-enabled mtx_assert()
786  */
787 #ifdef INVARIANT_SUPPORT
788 void
789 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
790 {
791 	const struct mtx *m;
792 
793 	if (panicstr != NULL || dumping)
794 		return;
795 
796 	m = mtxlock2mtx(c);
797 
798 	switch (what) {
799 	case MA_OWNED:
800 	case MA_OWNED | MA_RECURSED:
801 	case MA_OWNED | MA_NOTRECURSED:
802 		if (!mtx_owned(m))
803 			panic("mutex %s not owned at %s:%d",
804 			    m->lock_object.lo_name, file, line);
805 		if (mtx_recursed(m)) {
806 			if ((what & MA_NOTRECURSED) != 0)
807 				panic("mutex %s recursed at %s:%d",
808 				    m->lock_object.lo_name, file, line);
809 		} else if ((what & MA_RECURSED) != 0) {
810 			panic("mutex %s unrecursed at %s:%d",
811 			    m->lock_object.lo_name, file, line);
812 		}
813 		break;
814 	case MA_NOTOWNED:
815 		if (mtx_owned(m))
816 			panic("mutex %s owned at %s:%d",
817 			    m->lock_object.lo_name, file, line);
818 		break;
819 	default:
820 		panic("unknown mtx_assert at %s:%d", file, line);
821 	}
822 }
823 #endif
824 
825 /*
826  * The MUTEX_DEBUG-enabled mtx_validate()
827  *
828  * Most of these checks have been moved off into the LO_INITIALIZED flag
829  * maintained by the witness code.
830  */
831 #ifdef MUTEX_DEBUG
832 
833 void	mtx_validate(struct mtx *);
834 
835 void
836 mtx_validate(struct mtx *m)
837 {
838 
839 /*
840  * XXX: When kernacc() does not require Giant we can reenable this check
841  */
842 #ifdef notyet
843 	/*
844 	 * Can't call kernacc() from early init386(), especially when
845 	 * initializing Giant mutex, because some stuff in kernacc()
846 	 * requires Giant itself.
847 	 */
848 	if (!cold)
849 		if (!kernacc((caddr_t)m, sizeof(m),
850 		    VM_PROT_READ | VM_PROT_WRITE))
851 			panic("Can't read and write to mutex %p", m);
852 #endif
853 }
854 #endif
855 
856 /*
857  * General init routine used by the MTX_SYSINIT() macro.
858  */
859 void
860 mtx_sysinit(void *arg)
861 {
862 	struct mtx_args *margs = arg;
863 
864 	mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
865 	    margs->ma_opts);
866 }
867 
868 /*
869  * Mutex initialization routine; initialize lock `m' of type contained in
870  * `opts' with options contained in `opts' and name `name.'  The optional
871  * lock type `type' is used as a general lock category name for use with
872  * witness.
873  */
874 void
875 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
876 {
877 	struct mtx *m;
878 	struct lock_class *class;
879 	int flags;
880 
881 	m = mtxlock2mtx(c);
882 
883 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
884 	    MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0);
885 	ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
886 	    ("%s: mtx_lock not aligned for %s: %p", __func__, name,
887 	    &m->mtx_lock));
888 
889 #ifdef MUTEX_DEBUG
890 	/* Diagnostic and error correction */
891 	mtx_validate(m);
892 #endif
893 
894 	/* Determine lock class and lock flags. */
895 	if (opts & MTX_SPIN)
896 		class = &lock_class_mtx_spin;
897 	else
898 		class = &lock_class_mtx_sleep;
899 	flags = 0;
900 	if (opts & MTX_QUIET)
901 		flags |= LO_QUIET;
902 	if (opts & MTX_RECURSE)
903 		flags |= LO_RECURSABLE;
904 	if ((opts & MTX_NOWITNESS) == 0)
905 		flags |= LO_WITNESS;
906 	if (opts & MTX_DUPOK)
907 		flags |= LO_DUPOK;
908 	if (opts & MTX_NOPROFILE)
909 		flags |= LO_NOPROFILE;
910 	if (opts & MTX_NEW)
911 		flags |= LO_NEW;
912 
913 	/* Initialize mutex. */
914 	lock_init(&m->lock_object, class, name, type, flags);
915 
916 	m->mtx_lock = MTX_UNOWNED;
917 	m->mtx_recurse = 0;
918 }
919 
920 /*
921  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
922  * passed in as a flag here because if the corresponding mtx_init() was
923  * called with MTX_QUIET set, then it will already be set in the mutex's
924  * flags.
925  */
926 void
927 _mtx_destroy(volatile uintptr_t *c)
928 {
929 	struct mtx *m;
930 
931 	m = mtxlock2mtx(c);
932 
933 	if (!mtx_owned(m))
934 		MPASS(mtx_unowned(m));
935 	else {
936 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
937 
938 		/* Perform the non-mtx related part of mtx_unlock_spin(). */
939 		if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin)
940 			spinlock_exit();
941 		else
942 			curthread->td_locks--;
943 
944 		lock_profile_release_lock(&m->lock_object);
945 		/* Tell witness this isn't locked to make it happy. */
946 		WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
947 		    __LINE__);
948 	}
949 
950 	m->mtx_lock = MTX_DESTROYED;
951 	lock_destroy(&m->lock_object);
952 }
953 
954 /*
955  * Intialize the mutex code and system mutexes.  This is called from the MD
956  * startup code prior to mi_startup().  The per-CPU data space needs to be
957  * setup before this is called.
958  */
959 void
960 mutex_init(void)
961 {
962 
963 	/* Setup turnstiles so that sleep mutexes work. */
964 	init_turnstiles();
965 
966 	/*
967 	 * Initialize mutexes.
968 	 */
969 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
970 	mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
971 	blocked_lock.mtx_lock = 0xdeadc0de;	/* Always blocked. */
972 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
973 	mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN);
974 	mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN);
975 	mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN);
976 	mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN);
977 	mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
978 	mtx_lock(&Giant);
979 }
980 
981 #ifdef DDB
982 void
983 db_show_mtx(const struct lock_object *lock)
984 {
985 	struct thread *td;
986 	const struct mtx *m;
987 
988 	m = (const struct mtx *)lock;
989 
990 	db_printf(" flags: {");
991 	if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
992 		db_printf("SPIN");
993 	else
994 		db_printf("DEF");
995 	if (m->lock_object.lo_flags & LO_RECURSABLE)
996 		db_printf(", RECURSE");
997 	if (m->lock_object.lo_flags & LO_DUPOK)
998 		db_printf(", DUPOK");
999 	db_printf("}\n");
1000 	db_printf(" state: {");
1001 	if (mtx_unowned(m))
1002 		db_printf("UNOWNED");
1003 	else if (mtx_destroyed(m))
1004 		db_printf("DESTROYED");
1005 	else {
1006 		db_printf("OWNED");
1007 		if (m->mtx_lock & MTX_CONTESTED)
1008 			db_printf(", CONTESTED");
1009 		if (m->mtx_lock & MTX_RECURSED)
1010 			db_printf(", RECURSED");
1011 	}
1012 	db_printf("}\n");
1013 	if (!mtx_unowned(m) && !mtx_destroyed(m)) {
1014 		td = mtx_owner(m);
1015 		db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
1016 		    td->td_tid, td->td_proc->p_pid, td->td_name);
1017 		if (mtx_recursed(m))
1018 			db_printf(" recursed: %d\n", m->mtx_recurse);
1019 	}
1020 }
1021 #endif
1022