xref: /freebsd/sys/kern/kern_mutex.c (revision 852ba100814e41898dc6e673fe0af017084e411d)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Machine independent bits of mutex implementation.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_adaptive_mutexes.h"
40 #include "opt_ddb.h"
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_sched.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bus.h>
47 #include <sys/conf.h>
48 #include <sys/kdb.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/sched.h>
57 #include <sys/sbuf.h>
58 #include <sys/smp.h>
59 #include <sys/sysctl.h>
60 #include <sys/turnstile.h>
61 #include <sys/vmmeter.h>
62 #include <sys/lock_profile.h>
63 
64 #include <machine/atomic.h>
65 #include <machine/bus.h>
66 #include <machine/cpu.h>
67 
68 #include <ddb/ddb.h>
69 
70 #include <fs/devfs/devfs_int.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_extern.h>
74 
75 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
76 #define	ADAPTIVE_MUTEXES
77 #endif
78 
79 #ifdef HWPMC_HOOKS
80 #include <sys/pmckern.h>
81 PMC_SOFT_DEFINE( , , lock, failed);
82 #endif
83 
84 /*
85  * Return the mutex address when the lock cookie address is provided.
86  * This functionality assumes that struct mtx* have a member named mtx_lock.
87  */
88 #define	mtxlock2mtx(c)	(__containerof(c, struct mtx, mtx_lock))
89 
90 /*
91  * Internal utility macros.
92  */
93 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
94 
95 #define	mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
96 
97 static void	assert_mtx(const struct lock_object *lock, int what);
98 #ifdef DDB
99 static void	db_show_mtx(const struct lock_object *lock);
100 #endif
101 static void	lock_mtx(struct lock_object *lock, uintptr_t how);
102 static void	lock_spin(struct lock_object *lock, uintptr_t how);
103 #ifdef KDTRACE_HOOKS
104 static int	owner_mtx(const struct lock_object *lock,
105 		    struct thread **owner);
106 #endif
107 static uintptr_t unlock_mtx(struct lock_object *lock);
108 static uintptr_t unlock_spin(struct lock_object *lock);
109 
110 /*
111  * Lock classes for sleep and spin mutexes.
112  */
113 struct lock_class lock_class_mtx_sleep = {
114 	.lc_name = "sleep mutex",
115 	.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
116 	.lc_assert = assert_mtx,
117 #ifdef DDB
118 	.lc_ddb_show = db_show_mtx,
119 #endif
120 	.lc_lock = lock_mtx,
121 	.lc_unlock = unlock_mtx,
122 #ifdef KDTRACE_HOOKS
123 	.lc_owner = owner_mtx,
124 #endif
125 };
126 struct lock_class lock_class_mtx_spin = {
127 	.lc_name = "spin mutex",
128 	.lc_flags = LC_SPINLOCK | LC_RECURSABLE,
129 	.lc_assert = assert_mtx,
130 #ifdef DDB
131 	.lc_ddb_show = db_show_mtx,
132 #endif
133 	.lc_lock = lock_spin,
134 	.lc_unlock = unlock_spin,
135 #ifdef KDTRACE_HOOKS
136 	.lc_owner = owner_mtx,
137 #endif
138 };
139 
140 #ifdef ADAPTIVE_MUTEXES
141 static SYSCTL_NODE(_debug, OID_AUTO, mtx, CTLFLAG_RD, NULL, "mtx debugging");
142 
143 static struct lock_delay_config __read_frequently mtx_delay;
144 
145 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_delay.base,
146     0, "");
147 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_delay.max,
148     0, "");
149 
150 LOCK_DELAY_SYSINIT_DEFAULT(mtx_delay);
151 #endif
152 
153 static SYSCTL_NODE(_debug, OID_AUTO, mtx_spin, CTLFLAG_RD, NULL,
154     "mtx spin debugging");
155 
156 static struct lock_delay_config __read_frequently mtx_spin_delay;
157 
158 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_base, CTLFLAG_RW,
159     &mtx_spin_delay.base, 0, "");
160 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_max, CTLFLAG_RW,
161     &mtx_spin_delay.max, 0, "");
162 
163 LOCK_DELAY_SYSINIT_DEFAULT(mtx_spin_delay);
164 
165 /*
166  * System-wide mutexes
167  */
168 struct mtx blocked_lock;
169 struct mtx __exclusive_cache_line Giant;
170 
171 void
172 assert_mtx(const struct lock_object *lock, int what)
173 {
174 
175 	mtx_assert((const struct mtx *)lock, what);
176 }
177 
178 void
179 lock_mtx(struct lock_object *lock, uintptr_t how)
180 {
181 
182 	mtx_lock((struct mtx *)lock);
183 }
184 
185 void
186 lock_spin(struct lock_object *lock, uintptr_t how)
187 {
188 
189 	panic("spin locks can only use msleep_spin");
190 }
191 
192 uintptr_t
193 unlock_mtx(struct lock_object *lock)
194 {
195 	struct mtx *m;
196 
197 	m = (struct mtx *)lock;
198 	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
199 	mtx_unlock(m);
200 	return (0);
201 }
202 
203 uintptr_t
204 unlock_spin(struct lock_object *lock)
205 {
206 
207 	panic("spin locks can only use msleep_spin");
208 }
209 
210 #ifdef KDTRACE_HOOKS
211 int
212 owner_mtx(const struct lock_object *lock, struct thread **owner)
213 {
214 	const struct mtx *m;
215 	uintptr_t x;
216 
217 	m = (const struct mtx *)lock;
218 	x = m->mtx_lock;
219 	*owner = (struct thread *)(x & ~MTX_FLAGMASK);
220 	return (*owner != NULL);
221 }
222 #endif
223 
224 /*
225  * Function versions of the inlined __mtx_* macros.  These are used by
226  * modules and can also be called from assembly language if needed.
227  */
228 void
229 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
230 {
231 	struct mtx *m;
232 	uintptr_t tid, v;
233 
234 	m = mtxlock2mtx(c);
235 
236 	KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
237 	    !TD_IS_IDLETHREAD(curthread),
238 	    ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
239 	    curthread, m->lock_object.lo_name, file, line));
240 	KASSERT(m->mtx_lock != MTX_DESTROYED,
241 	    ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
242 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
243 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
244 	    file, line));
245 	WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
246 	    LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
247 
248 	tid = (uintptr_t)curthread;
249 	v = MTX_UNOWNED;
250 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
251 		_mtx_lock_sleep(m, v, opts, file, line);
252 	else
253 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
254 		    m, 0, 0, file, line);
255 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
256 	    line);
257 	WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
258 	    file, line);
259 	TD_LOCKS_INC(curthread);
260 }
261 
262 void
263 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
264 {
265 	struct mtx *m;
266 
267 	m = mtxlock2mtx(c);
268 
269 	KASSERT(m->mtx_lock != MTX_DESTROYED,
270 	    ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
271 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
272 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
273 	    file, line));
274 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
275 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
276 	    line);
277 	mtx_assert(m, MA_OWNED);
278 
279 #ifdef LOCK_PROFILING
280 	__mtx_unlock_sleep(c, opts, file, line);
281 #else
282 	__mtx_unlock(m, curthread, opts, file, line);
283 #endif
284 	TD_LOCKS_DEC(curthread);
285 }
286 
287 void
288 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
289     int line)
290 {
291 	struct mtx *m;
292 #ifdef SMP
293 	uintptr_t tid, v;
294 #endif
295 
296 	m = mtxlock2mtx(c);
297 
298 	KASSERT(m->mtx_lock != MTX_DESTROYED,
299 	    ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
300 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
301 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
302 	    m->lock_object.lo_name, file, line));
303 	if (mtx_owned(m))
304 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
305 		    (opts & MTX_RECURSE) != 0,
306 	    ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
307 		    m->lock_object.lo_name, file, line));
308 	opts &= ~MTX_RECURSE;
309 	WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
310 	    file, line, NULL);
311 #ifdef SMP
312 	spinlock_enter();
313 	tid = (uintptr_t)curthread;
314 	v = MTX_UNOWNED;
315 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
316 		_mtx_lock_spin(m, v, opts, file, line);
317 	else
318 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire,
319 		    m, 0, 0, file, line);
320 #else
321 	__mtx_lock_spin(m, curthread, opts, file, line);
322 #endif
323 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
324 	    line);
325 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
326 }
327 
328 int
329 __mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
330     int line)
331 {
332 	struct mtx *m;
333 
334 	if (SCHEDULER_STOPPED())
335 		return (1);
336 
337 	m = mtxlock2mtx(c);
338 
339 	KASSERT(m->mtx_lock != MTX_DESTROYED,
340 	    ("mtx_trylock_spin() of destroyed mutex @ %s:%d", file, line));
341 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
342 	    ("mtx_trylock_spin() of sleep mutex %s @ %s:%d",
343 	    m->lock_object.lo_name, file, line));
344 	KASSERT((opts & MTX_RECURSE) == 0,
345 	    ("mtx_trylock_spin: unsupp. opt MTX_RECURSE on mutex %s @ %s:%d\n",
346 	    m->lock_object.lo_name, file, line));
347 	if (__mtx_trylock_spin(m, curthread, opts, file, line)) {
348 		LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 1, file, line);
349 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
350 		return (1);
351 	}
352 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 0, file, line);
353 	return (0);
354 }
355 
356 void
357 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
358     int line)
359 {
360 	struct mtx *m;
361 
362 	m = mtxlock2mtx(c);
363 
364 	KASSERT(m->mtx_lock != MTX_DESTROYED,
365 	    ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
366 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
367 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
368 	    m->lock_object.lo_name, file, line));
369 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
370 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
371 	    line);
372 	mtx_assert(m, MA_OWNED);
373 
374 	__mtx_unlock_spin(m);
375 }
376 
377 /*
378  * The important part of mtx_trylock{,_flags}()
379  * Tries to acquire lock `m.'  If this function is called on a mutex that
380  * is already owned, it will recursively acquire the lock.
381  */
382 int
383 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
384 {
385 	struct mtx *m;
386 	struct thread *td;
387 	uintptr_t tid, v;
388 #ifdef LOCK_PROFILING
389 	uint64_t waittime = 0;
390 	int contested = 0;
391 #endif
392 	int rval;
393 	bool recursed;
394 
395 	td = curthread;
396 	tid = (uintptr_t)td;
397 	if (SCHEDULER_STOPPED_TD(td))
398 		return (1);
399 
400 	m = mtxlock2mtx(c);
401 
402 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td),
403 	    ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
404 	    curthread, m->lock_object.lo_name, file, line));
405 	KASSERT(m->mtx_lock != MTX_DESTROYED,
406 	    ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
407 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
408 	    ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
409 	    file, line));
410 
411 	rval = 1;
412 	recursed = false;
413 	v = MTX_UNOWNED;
414 	for (;;) {
415 		if (_mtx_obtain_lock_fetch(m, &v, tid))
416 			break;
417 		if (v == MTX_UNOWNED)
418 			continue;
419 		if (v == tid &&
420 		    ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
421 		    (opts & MTX_RECURSE) != 0)) {
422 			m->mtx_recurse++;
423 			atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
424 			recursed = true;
425 			break;
426 		}
427 		rval = 0;
428 		break;
429 	}
430 
431 	opts &= ~MTX_RECURSE;
432 
433 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
434 	if (rval) {
435 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
436 		    file, line);
437 		TD_LOCKS_INC(curthread);
438 		if (!recursed)
439 			LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
440 			    m, contested, waittime, file, line);
441 	}
442 
443 	return (rval);
444 }
445 
446 /*
447  * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
448  *
449  * We call this if the lock is either contested (i.e. we need to go to
450  * sleep waiting for it), or if we need to recurse on it.
451  */
452 #if LOCK_DEBUG > 0
453 void
454 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file,
455     int line)
456 #else
457 void
458 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v)
459 #endif
460 {
461 	struct thread *td;
462 	struct mtx *m;
463 	struct turnstile *ts;
464 	uintptr_t tid;
465 #ifdef ADAPTIVE_MUTEXES
466 	volatile struct thread *owner;
467 #endif
468 #ifdef KTR
469 	int cont_logged = 0;
470 #endif
471 #ifdef LOCK_PROFILING
472 	int contested = 0;
473 	uint64_t waittime = 0;
474 #endif
475 #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS)
476 	struct lock_delay_arg lda;
477 #endif
478 #ifdef KDTRACE_HOOKS
479 	u_int sleep_cnt = 0;
480 	int64_t sleep_time = 0;
481 	int64_t all_time = 0;
482 #endif
483 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
484 	int doing_lockprof;
485 #endif
486 	td = curthread;
487 	tid = (uintptr_t)td;
488 	if (SCHEDULER_STOPPED_TD(td))
489 		return;
490 
491 #if defined(ADAPTIVE_MUTEXES)
492 	lock_delay_arg_init(&lda, &mtx_delay);
493 #elif defined(KDTRACE_HOOKS)
494 	lock_delay_arg_init(&lda, NULL);
495 #endif
496 	m = mtxlock2mtx(c);
497 	if (__predict_false(v == MTX_UNOWNED))
498 		v = MTX_READ_VALUE(m);
499 
500 	if (__predict_false(lv_mtx_owner(v) == td)) {
501 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
502 		    (opts & MTX_RECURSE) != 0,
503 	    ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
504 		    m->lock_object.lo_name, file, line));
505 #if LOCK_DEBUG > 0
506 		opts &= ~MTX_RECURSE;
507 #endif
508 		m->mtx_recurse++;
509 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
510 		if (LOCK_LOG_TEST(&m->lock_object, opts))
511 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
512 		return;
513 	}
514 #if LOCK_DEBUG > 0
515 	opts &= ~MTX_RECURSE;
516 #endif
517 
518 #ifdef HWPMC_HOOKS
519 	PMC_SOFT_CALL( , , lock, failed);
520 #endif
521 	lock_profile_obtain_lock_failed(&m->lock_object,
522 		    &contested, &waittime);
523 	if (LOCK_LOG_TEST(&m->lock_object, opts))
524 		CTR4(KTR_LOCK,
525 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
526 		    m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
527 #ifdef LOCK_PROFILING
528 	doing_lockprof = 1;
529 #elif defined(KDTRACE_HOOKS)
530 	doing_lockprof = lockstat_enabled;
531 	if (__predict_false(doing_lockprof))
532 		all_time -= lockstat_nsecs(&m->lock_object);
533 #endif
534 
535 	for (;;) {
536 		if (v == MTX_UNOWNED) {
537 			if (_mtx_obtain_lock_fetch(m, &v, tid))
538 				break;
539 			continue;
540 		}
541 #ifdef KDTRACE_HOOKS
542 		lda.spin_cnt++;
543 #endif
544 #ifdef ADAPTIVE_MUTEXES
545 		/*
546 		 * If the owner is running on another CPU, spin until the
547 		 * owner stops running or the state of the lock changes.
548 		 */
549 		owner = lv_mtx_owner(v);
550 		if (TD_IS_RUNNING(owner)) {
551 			if (LOCK_LOG_TEST(&m->lock_object, 0))
552 				CTR3(KTR_LOCK,
553 				    "%s: spinning on %p held by %p",
554 				    __func__, m, owner);
555 			KTR_STATE1(KTR_SCHED, "thread",
556 			    sched_tdname((struct thread *)tid),
557 			    "spinning", "lockname:\"%s\"",
558 			    m->lock_object.lo_name);
559 			do {
560 				lock_delay(&lda);
561 				v = MTX_READ_VALUE(m);
562 				owner = lv_mtx_owner(v);
563 			} while (v != MTX_UNOWNED && TD_IS_RUNNING(owner));
564 			KTR_STATE0(KTR_SCHED, "thread",
565 			    sched_tdname((struct thread *)tid),
566 			    "running");
567 			continue;
568 		}
569 #endif
570 
571 		ts = turnstile_trywait(&m->lock_object);
572 		v = MTX_READ_VALUE(m);
573 
574 		/*
575 		 * Check if the lock has been released while spinning for
576 		 * the turnstile chain lock.
577 		 */
578 		if (v == MTX_UNOWNED) {
579 			turnstile_cancel(ts);
580 			continue;
581 		}
582 
583 #ifdef ADAPTIVE_MUTEXES
584 		/*
585 		 * The current lock owner might have started executing
586 		 * on another CPU (or the lock could have changed
587 		 * owners) while we were waiting on the turnstile
588 		 * chain lock.  If so, drop the turnstile lock and try
589 		 * again.
590 		 */
591 		owner = lv_mtx_owner(v);
592 		if (TD_IS_RUNNING(owner)) {
593 			turnstile_cancel(ts);
594 			continue;
595 		}
596 #endif
597 
598 		/*
599 		 * If the mutex isn't already contested and a failure occurs
600 		 * setting the contested bit, the mutex was either released
601 		 * or the state of the MTX_RECURSED bit changed.
602 		 */
603 		if ((v & MTX_CONTESTED) == 0 &&
604 		    !atomic_cmpset_ptr(&m->mtx_lock, v, v | MTX_CONTESTED)) {
605 			turnstile_cancel(ts);
606 			v = MTX_READ_VALUE(m);
607 			continue;
608 		}
609 
610 		/*
611 		 * We definitely must sleep for this lock.
612 		 */
613 		mtx_assert(m, MA_NOTOWNED);
614 
615 #ifdef KTR
616 		if (!cont_logged) {
617 			CTR6(KTR_CONTENTION,
618 			    "contention: %p at %s:%d wants %s, taken by %s:%d",
619 			    (void *)tid, file, line, m->lock_object.lo_name,
620 			    WITNESS_FILE(&m->lock_object),
621 			    WITNESS_LINE(&m->lock_object));
622 			cont_logged = 1;
623 		}
624 #endif
625 
626 		/*
627 		 * Block on the turnstile.
628 		 */
629 #ifdef KDTRACE_HOOKS
630 		sleep_time -= lockstat_nsecs(&m->lock_object);
631 #endif
632 		turnstile_wait(ts, mtx_owner(m), TS_EXCLUSIVE_QUEUE);
633 #ifdef KDTRACE_HOOKS
634 		sleep_time += lockstat_nsecs(&m->lock_object);
635 		sleep_cnt++;
636 #endif
637 		v = MTX_READ_VALUE(m);
638 	}
639 #ifdef KTR
640 	if (cont_logged) {
641 		CTR4(KTR_CONTENTION,
642 		    "contention end: %s acquired by %p at %s:%d",
643 		    m->lock_object.lo_name, (void *)tid, file, line);
644 	}
645 #endif
646 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
647 	if (__predict_true(!doing_lockprof))
648 		return;
649 #endif
650 #ifdef KDTRACE_HOOKS
651 	all_time += lockstat_nsecs(&m->lock_object);
652 #endif
653 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested,
654 	    waittime, file, line);
655 #ifdef KDTRACE_HOOKS
656 	if (sleep_time)
657 		LOCKSTAT_RECORD1(adaptive__block, m, sleep_time);
658 
659 	/*
660 	 * Only record the loops spinning and not sleeping.
661 	 */
662 	if (lda.spin_cnt > sleep_cnt)
663 		LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time);
664 #endif
665 }
666 
667 static void
668 _mtx_lock_spin_failed(struct mtx *m)
669 {
670 	struct thread *td;
671 
672 	td = mtx_owner(m);
673 
674 	/* If the mutex is unlocked, try again. */
675 	if (td == NULL)
676 		return;
677 
678 	printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
679 	    m, m->lock_object.lo_name, td, td->td_tid);
680 #ifdef WITNESS
681 	witness_display_spinlock(&m->lock_object, td, printf);
682 #endif
683 	panic("spin lock held too long");
684 }
685 
686 #ifdef SMP
687 /*
688  * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
689  *
690  * This is only called if we need to actually spin for the lock. Recursion
691  * is handled inline.
692  */
693 #if LOCK_DEBUG > 0
694 void
695 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v, int opts,
696     const char *file, int line)
697 #else
698 void
699 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v)
700 #endif
701 {
702 	struct mtx *m;
703 	struct lock_delay_arg lda;
704 	uintptr_t tid;
705 #ifdef LOCK_PROFILING
706 	int contested = 0;
707 	uint64_t waittime = 0;
708 #endif
709 #ifdef KDTRACE_HOOKS
710 	int64_t spin_time = 0;
711 #endif
712 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
713 	int doing_lockprof;
714 #endif
715 
716 	tid = (uintptr_t)curthread;
717 	m = mtxlock2mtx(c);
718 
719 	if (__predict_false(v == MTX_UNOWNED))
720 		v = MTX_READ_VALUE(m);
721 
722 	if (__predict_false(v == tid)) {
723 		m->mtx_recurse++;
724 		return;
725 	}
726 
727 	if (SCHEDULER_STOPPED())
728 		return;
729 
730 	lock_delay_arg_init(&lda, &mtx_spin_delay);
731 
732 	if (LOCK_LOG_TEST(&m->lock_object, opts))
733 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
734 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
735 	    "spinning", "lockname:\"%s\"", m->lock_object.lo_name);
736 
737 #ifdef HWPMC_HOOKS
738 	PMC_SOFT_CALL( , , lock, failed);
739 #endif
740 	lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime);
741 #ifdef LOCK_PROFILING
742 	doing_lockprof = 1;
743 #elif defined(KDTRACE_HOOKS)
744 	doing_lockprof = lockstat_enabled;
745 	if (__predict_false(doing_lockprof))
746 		spin_time -= lockstat_nsecs(&m->lock_object);
747 #endif
748 	for (;;) {
749 		if (v == MTX_UNOWNED) {
750 			if (_mtx_obtain_lock_fetch(m, &v, tid))
751 				break;
752 			continue;
753 		}
754 		/* Give interrupts a chance while we spin. */
755 		spinlock_exit();
756 		do {
757 			if (lda.spin_cnt < 10000000) {
758 				lock_delay(&lda);
759 			} else {
760 				lda.spin_cnt++;
761 				if (lda.spin_cnt < 60000000 || kdb_active ||
762 				    panicstr != NULL)
763 					DELAY(1);
764 				else
765 					_mtx_lock_spin_failed(m);
766 				cpu_spinwait();
767 			}
768 			v = MTX_READ_VALUE(m);
769 		} while (v != MTX_UNOWNED);
770 		spinlock_enter();
771 	}
772 
773 	if (LOCK_LOG_TEST(&m->lock_object, opts))
774 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
775 	KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
776 	    "running");
777 
778 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
779 	if (__predict_true(!doing_lockprof))
780 		return;
781 #endif
782 #ifdef KDTRACE_HOOKS
783 	spin_time += lockstat_nsecs(&m->lock_object);
784 #endif
785 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
786 	    contested, waittime, file, line);
787 #ifdef KDTRACE_HOOKS
788 	if (lda.spin_cnt != 0)
789 		LOCKSTAT_RECORD1(spin__spin, m, spin_time);
790 #endif
791 }
792 #endif /* SMP */
793 
794 #ifdef INVARIANTS
795 static void
796 thread_lock_validate(struct mtx *m, int opts, const char *file, int line)
797 {
798 
799 	KASSERT(m->mtx_lock != MTX_DESTROYED,
800 	    ("thread_lock() of destroyed mutex @ %s:%d", file, line));
801 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
802 	    ("thread_lock() of sleep mutex %s @ %s:%d",
803 	    m->lock_object.lo_name, file, line));
804 	if (mtx_owned(m))
805 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
806 		    ("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n",
807 		    m->lock_object.lo_name, file, line));
808 	WITNESS_CHECKORDER(&m->lock_object,
809 	    opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
810 }
811 #else
812 #define thread_lock_validate(m, opts, file, line) do { } while (0)
813 #endif
814 
815 #ifndef LOCK_PROFILING
816 #if LOCK_DEBUG > 0
817 void
818 _thread_lock(struct thread *td, int opts, const char *file, int line)
819 #else
820 void
821 _thread_lock(struct thread *td)
822 #endif
823 {
824 	struct mtx *m;
825 	uintptr_t tid, v;
826 
827 	tid = (uintptr_t)curthread;
828 
829 	spinlock_enter();
830 	m = td->td_lock;
831 	thread_lock_validate(m, 0, file, line);
832 	v = MTX_READ_VALUE(m);
833 	if (__predict_true(v == MTX_UNOWNED)) {
834 		if (__predict_false(!_mtx_obtain_lock(m, tid)))
835 			goto slowpath_unlocked;
836 	} else if (v == tid) {
837 		m->mtx_recurse++;
838 	} else
839 		goto slowpath_unlocked;
840 	if (__predict_true(m == td->td_lock)) {
841 		WITNESS_LOCK(&m->lock_object, LOP_EXCLUSIVE, file, line);
842 		return;
843 	}
844 	if (m->mtx_recurse != 0)
845 		m->mtx_recurse--;
846 	else
847 		_mtx_release_lock_quick(m);
848 slowpath_unlocked:
849 	spinlock_exit();
850 	thread_lock_flags_(td, 0, 0, 0);
851 }
852 #endif
853 
854 void
855 thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
856 {
857 	struct mtx *m;
858 	uintptr_t tid, v;
859 	struct lock_delay_arg lda;
860 #ifdef LOCK_PROFILING
861 	int contested = 0;
862 	uint64_t waittime = 0;
863 #endif
864 #ifdef KDTRACE_HOOKS
865 	int64_t spin_time = 0;
866 #endif
867 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
868 	int doing_lockprof = 1;
869 #endif
870 
871 	tid = (uintptr_t)curthread;
872 
873 	if (SCHEDULER_STOPPED()) {
874 		/*
875 		 * Ensure that spinlock sections are balanced even when the
876 		 * scheduler is stopped, since we may otherwise inadvertently
877 		 * re-enable interrupts while dumping core.
878 		 */
879 		spinlock_enter();
880 		return;
881 	}
882 
883 	lock_delay_arg_init(&lda, &mtx_spin_delay);
884 
885 #ifdef LOCK_PROFILING
886 	doing_lockprof = 1;
887 #elif defined(KDTRACE_HOOKS)
888 	doing_lockprof = lockstat_enabled;
889 	if (__predict_false(doing_lockprof))
890 		spin_time -= lockstat_nsecs(&td->td_lock->lock_object);
891 #endif
892 	for (;;) {
893 retry:
894 		v = MTX_UNOWNED;
895 		spinlock_enter();
896 		m = td->td_lock;
897 		thread_lock_validate(m, opts, file, line);
898 		for (;;) {
899 			if (_mtx_obtain_lock_fetch(m, &v, tid))
900 				break;
901 			if (v == MTX_UNOWNED)
902 				continue;
903 			if (v == tid) {
904 				m->mtx_recurse++;
905 				break;
906 			}
907 #ifdef HWPMC_HOOKS
908 			PMC_SOFT_CALL( , , lock, failed);
909 #endif
910 			lock_profile_obtain_lock_failed(&m->lock_object,
911 			    &contested, &waittime);
912 			/* Give interrupts a chance while we spin. */
913 			spinlock_exit();
914 			do {
915 				if (lda.spin_cnt < 10000000) {
916 					lock_delay(&lda);
917 				} else {
918 					lda.spin_cnt++;
919 					if (lda.spin_cnt < 60000000 ||
920 					    kdb_active || panicstr != NULL)
921 						DELAY(1);
922 					else
923 						_mtx_lock_spin_failed(m);
924 					cpu_spinwait();
925 				}
926 				if (m != td->td_lock)
927 					goto retry;
928 				v = MTX_READ_VALUE(m);
929 			} while (v != MTX_UNOWNED);
930 			spinlock_enter();
931 		}
932 		if (m == td->td_lock)
933 			break;
934 		__mtx_unlock_spin(m);	/* does spinlock_exit() */
935 	}
936 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
937 	    line);
938 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
939 
940 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
941 	if (__predict_true(!doing_lockprof))
942 		return;
943 #endif
944 #ifdef KDTRACE_HOOKS
945 	spin_time += lockstat_nsecs(&m->lock_object);
946 #endif
947 	if (m->mtx_recurse == 0)
948 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
949 		    contested, waittime, file, line);
950 #ifdef KDTRACE_HOOKS
951 	if (lda.spin_cnt != 0)
952 		LOCKSTAT_RECORD1(thread__spin, m, spin_time);
953 #endif
954 }
955 
956 struct mtx *
957 thread_lock_block(struct thread *td)
958 {
959 	struct mtx *lock;
960 
961 	THREAD_LOCK_ASSERT(td, MA_OWNED);
962 	lock = td->td_lock;
963 	td->td_lock = &blocked_lock;
964 	mtx_unlock_spin(lock);
965 
966 	return (lock);
967 }
968 
969 void
970 thread_lock_unblock(struct thread *td, struct mtx *new)
971 {
972 	mtx_assert(new, MA_OWNED);
973 	MPASS(td->td_lock == &blocked_lock);
974 	atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
975 }
976 
977 void
978 thread_lock_set(struct thread *td, struct mtx *new)
979 {
980 	struct mtx *lock;
981 
982 	mtx_assert(new, MA_OWNED);
983 	THREAD_LOCK_ASSERT(td, MA_OWNED);
984 	lock = td->td_lock;
985 	td->td_lock = new;
986 	mtx_unlock_spin(lock);
987 }
988 
989 /*
990  * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
991  *
992  * We are only called here if the lock is recursed, contested (i.e. we
993  * need to wake up a blocked thread) or lockstat probe is active.
994  */
995 #if LOCK_DEBUG > 0
996 void
997 __mtx_unlock_sleep(volatile uintptr_t *c, int opts, const char *file, int line)
998 #else
999 void
1000 __mtx_unlock_sleep(volatile uintptr_t *c)
1001 #endif
1002 {
1003 	struct mtx *m;
1004 	struct turnstile *ts;
1005 	uintptr_t tid, v;
1006 
1007 	if (SCHEDULER_STOPPED())
1008 		return;
1009 
1010 	tid = (uintptr_t)curthread;
1011 	m = mtxlock2mtx(c);
1012 	v = MTX_READ_VALUE(m);
1013 
1014 	if (v & MTX_RECURSED) {
1015 		if (--(m->mtx_recurse) == 0)
1016 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
1017 		if (LOCK_LOG_TEST(&m->lock_object, opts))
1018 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
1019 		return;
1020 	}
1021 
1022 	LOCKSTAT_PROFILE_RELEASE_LOCK(adaptive__release, m);
1023 	if (v == tid && _mtx_release_lock(m, tid))
1024 		return;
1025 
1026 	/*
1027 	 * We have to lock the chain before the turnstile so this turnstile
1028 	 * can be removed from the hash list if it is empty.
1029 	 */
1030 	turnstile_chain_lock(&m->lock_object);
1031 	ts = turnstile_lookup(&m->lock_object);
1032 	if (LOCK_LOG_TEST(&m->lock_object, opts))
1033 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
1034 	MPASS(ts != NULL);
1035 	turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
1036 	_mtx_release_lock_quick(m);
1037 
1038 	/*
1039 	 * This turnstile is now no longer associated with the mutex.  We can
1040 	 * unlock the chain lock so a new turnstile may take it's place.
1041 	 */
1042 	turnstile_unpend(ts, TS_EXCLUSIVE_LOCK);
1043 	turnstile_chain_unlock(&m->lock_object);
1044 }
1045 
1046 /*
1047  * All the unlocking of MTX_SPIN locks is done inline.
1048  * See the __mtx_unlock_spin() macro for the details.
1049  */
1050 
1051 /*
1052  * The backing function for the INVARIANTS-enabled mtx_assert()
1053  */
1054 #ifdef INVARIANT_SUPPORT
1055 void
1056 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
1057 {
1058 	const struct mtx *m;
1059 
1060 	if (panicstr != NULL || dumping || SCHEDULER_STOPPED())
1061 		return;
1062 
1063 	m = mtxlock2mtx(c);
1064 
1065 	switch (what) {
1066 	case MA_OWNED:
1067 	case MA_OWNED | MA_RECURSED:
1068 	case MA_OWNED | MA_NOTRECURSED:
1069 		if (!mtx_owned(m))
1070 			panic("mutex %s not owned at %s:%d",
1071 			    m->lock_object.lo_name, file, line);
1072 		if (mtx_recursed(m)) {
1073 			if ((what & MA_NOTRECURSED) != 0)
1074 				panic("mutex %s recursed at %s:%d",
1075 				    m->lock_object.lo_name, file, line);
1076 		} else if ((what & MA_RECURSED) != 0) {
1077 			panic("mutex %s unrecursed at %s:%d",
1078 			    m->lock_object.lo_name, file, line);
1079 		}
1080 		break;
1081 	case MA_NOTOWNED:
1082 		if (mtx_owned(m))
1083 			panic("mutex %s owned at %s:%d",
1084 			    m->lock_object.lo_name, file, line);
1085 		break;
1086 	default:
1087 		panic("unknown mtx_assert at %s:%d", file, line);
1088 	}
1089 }
1090 #endif
1091 
1092 /*
1093  * General init routine used by the MTX_SYSINIT() macro.
1094  */
1095 void
1096 mtx_sysinit(void *arg)
1097 {
1098 	struct mtx_args *margs = arg;
1099 
1100 	mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
1101 	    margs->ma_opts);
1102 }
1103 
1104 /*
1105  * Mutex initialization routine; initialize lock `m' of type contained in
1106  * `opts' with options contained in `opts' and name `name.'  The optional
1107  * lock type `type' is used as a general lock category name for use with
1108  * witness.
1109  */
1110 void
1111 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
1112 {
1113 	struct mtx *m;
1114 	struct lock_class *class;
1115 	int flags;
1116 
1117 	m = mtxlock2mtx(c);
1118 
1119 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
1120 	    MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0);
1121 	ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
1122 	    ("%s: mtx_lock not aligned for %s: %p", __func__, name,
1123 	    &m->mtx_lock));
1124 
1125 	/* Determine lock class and lock flags. */
1126 	if (opts & MTX_SPIN)
1127 		class = &lock_class_mtx_spin;
1128 	else
1129 		class = &lock_class_mtx_sleep;
1130 	flags = 0;
1131 	if (opts & MTX_QUIET)
1132 		flags |= LO_QUIET;
1133 	if (opts & MTX_RECURSE)
1134 		flags |= LO_RECURSABLE;
1135 	if ((opts & MTX_NOWITNESS) == 0)
1136 		flags |= LO_WITNESS;
1137 	if (opts & MTX_DUPOK)
1138 		flags |= LO_DUPOK;
1139 	if (opts & MTX_NOPROFILE)
1140 		flags |= LO_NOPROFILE;
1141 	if (opts & MTX_NEW)
1142 		flags |= LO_NEW;
1143 
1144 	/* Initialize mutex. */
1145 	lock_init(&m->lock_object, class, name, type, flags);
1146 
1147 	m->mtx_lock = MTX_UNOWNED;
1148 	m->mtx_recurse = 0;
1149 }
1150 
1151 /*
1152  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
1153  * passed in as a flag here because if the corresponding mtx_init() was
1154  * called with MTX_QUIET set, then it will already be set in the mutex's
1155  * flags.
1156  */
1157 void
1158 _mtx_destroy(volatile uintptr_t *c)
1159 {
1160 	struct mtx *m;
1161 
1162 	m = mtxlock2mtx(c);
1163 
1164 	if (!mtx_owned(m))
1165 		MPASS(mtx_unowned(m));
1166 	else {
1167 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
1168 
1169 		/* Perform the non-mtx related part of mtx_unlock_spin(). */
1170 		if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin)
1171 			spinlock_exit();
1172 		else
1173 			TD_LOCKS_DEC(curthread);
1174 
1175 		lock_profile_release_lock(&m->lock_object);
1176 		/* Tell witness this isn't locked to make it happy. */
1177 		WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
1178 		    __LINE__);
1179 	}
1180 
1181 	m->mtx_lock = MTX_DESTROYED;
1182 	lock_destroy(&m->lock_object);
1183 }
1184 
1185 /*
1186  * Intialize the mutex code and system mutexes.  This is called from the MD
1187  * startup code prior to mi_startup().  The per-CPU data space needs to be
1188  * setup before this is called.
1189  */
1190 void
1191 mutex_init(void)
1192 {
1193 
1194 	/* Setup turnstiles so that sleep mutexes work. */
1195 	init_turnstiles();
1196 
1197 	/*
1198 	 * Initialize mutexes.
1199 	 */
1200 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
1201 	mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
1202 	blocked_lock.mtx_lock = 0xdeadc0de;	/* Always blocked. */
1203 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
1204 	mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN);
1205 	mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN);
1206 	mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN);
1207 	mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN);
1208 	mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
1209 	mtx_lock(&Giant);
1210 }
1211 
1212 #ifdef DDB
1213 void
1214 db_show_mtx(const struct lock_object *lock)
1215 {
1216 	struct thread *td;
1217 	const struct mtx *m;
1218 
1219 	m = (const struct mtx *)lock;
1220 
1221 	db_printf(" flags: {");
1222 	if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
1223 		db_printf("SPIN");
1224 	else
1225 		db_printf("DEF");
1226 	if (m->lock_object.lo_flags & LO_RECURSABLE)
1227 		db_printf(", RECURSE");
1228 	if (m->lock_object.lo_flags & LO_DUPOK)
1229 		db_printf(", DUPOK");
1230 	db_printf("}\n");
1231 	db_printf(" state: {");
1232 	if (mtx_unowned(m))
1233 		db_printf("UNOWNED");
1234 	else if (mtx_destroyed(m))
1235 		db_printf("DESTROYED");
1236 	else {
1237 		db_printf("OWNED");
1238 		if (m->mtx_lock & MTX_CONTESTED)
1239 			db_printf(", CONTESTED");
1240 		if (m->mtx_lock & MTX_RECURSED)
1241 			db_printf(", RECURSED");
1242 	}
1243 	db_printf("}\n");
1244 	if (!mtx_unowned(m) && !mtx_destroyed(m)) {
1245 		td = mtx_owner(m);
1246 		db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
1247 		    td->td_tid, td->td_proc->p_pid, td->td_name);
1248 		if (mtx_recursed(m))
1249 			db_printf(" recursed: %d\n", m->mtx_recurse);
1250 	}
1251 }
1252 #endif
1253