xref: /freebsd/sys/kern/kern_mutex.c (revision 81ea85a8845662ca329a954eeeb3e6d4124282a2)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Berkeley Software Design Inc's name may not be used to endorse or
15  *    promote products derived from this software without specific prior
16  *    written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32  */
33 
34 /*
35  * Machine independent bits of mutex implementation.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_adaptive_mutexes.h"
42 #include "opt_ddb.h"
43 #include "opt_hwpmc_hooks.h"
44 #include "opt_sched.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bus.h>
49 #include <sys/conf.h>
50 #include <sys/kdb.h>
51 #include <sys/kernel.h>
52 #include <sys/ktr.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mutex.h>
56 #include <sys/proc.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/sbuf.h>
60 #include <sys/smp.h>
61 #include <sys/sysctl.h>
62 #include <sys/turnstile.h>
63 #include <sys/vmmeter.h>
64 #include <sys/lock_profile.h>
65 
66 #include <machine/atomic.h>
67 #include <machine/bus.h>
68 #include <machine/cpu.h>
69 
70 #include <ddb/ddb.h>
71 
72 #include <fs/devfs/devfs_int.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 
77 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
78 #define	ADAPTIVE_MUTEXES
79 #endif
80 
81 #ifdef HWPMC_HOOKS
82 #include <sys/pmckern.h>
83 PMC_SOFT_DEFINE( , , lock, failed);
84 #endif
85 
86 /*
87  * Return the mutex address when the lock cookie address is provided.
88  * This functionality assumes that struct mtx* have a member named mtx_lock.
89  */
90 #define	mtxlock2mtx(c)	(__containerof(c, struct mtx, mtx_lock))
91 
92 /*
93  * Internal utility macros.
94  */
95 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
96 
97 #define	mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
98 
99 static void	assert_mtx(const struct lock_object *lock, int what);
100 #ifdef DDB
101 static void	db_show_mtx(const struct lock_object *lock);
102 #endif
103 static void	lock_mtx(struct lock_object *lock, uintptr_t how);
104 static void	lock_spin(struct lock_object *lock, uintptr_t how);
105 #ifdef KDTRACE_HOOKS
106 static int	owner_mtx(const struct lock_object *lock,
107 		    struct thread **owner);
108 #endif
109 static uintptr_t unlock_mtx(struct lock_object *lock);
110 static uintptr_t unlock_spin(struct lock_object *lock);
111 
112 /*
113  * Lock classes for sleep and spin mutexes.
114  */
115 struct lock_class lock_class_mtx_sleep = {
116 	.lc_name = "sleep mutex",
117 	.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
118 	.lc_assert = assert_mtx,
119 #ifdef DDB
120 	.lc_ddb_show = db_show_mtx,
121 #endif
122 	.lc_lock = lock_mtx,
123 	.lc_unlock = unlock_mtx,
124 #ifdef KDTRACE_HOOKS
125 	.lc_owner = owner_mtx,
126 #endif
127 };
128 struct lock_class lock_class_mtx_spin = {
129 	.lc_name = "spin mutex",
130 	.lc_flags = LC_SPINLOCK | LC_RECURSABLE,
131 	.lc_assert = assert_mtx,
132 #ifdef DDB
133 	.lc_ddb_show = db_show_mtx,
134 #endif
135 	.lc_lock = lock_spin,
136 	.lc_unlock = unlock_spin,
137 #ifdef KDTRACE_HOOKS
138 	.lc_owner = owner_mtx,
139 #endif
140 };
141 
142 #ifdef ADAPTIVE_MUTEXES
143 static SYSCTL_NODE(_debug, OID_AUTO, mtx, CTLFLAG_RD, NULL, "mtx debugging");
144 
145 static struct lock_delay_config __read_frequently mtx_delay;
146 
147 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_delay.base,
148     0, "");
149 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_delay.max,
150     0, "");
151 
152 LOCK_DELAY_SYSINIT_DEFAULT(mtx_delay);
153 #endif
154 
155 static SYSCTL_NODE(_debug, OID_AUTO, mtx_spin, CTLFLAG_RD, NULL,
156     "mtx spin debugging");
157 
158 static struct lock_delay_config __read_frequently mtx_spin_delay;
159 
160 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_base, CTLFLAG_RW,
161     &mtx_spin_delay.base, 0, "");
162 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_max, CTLFLAG_RW,
163     &mtx_spin_delay.max, 0, "");
164 
165 LOCK_DELAY_SYSINIT_DEFAULT(mtx_spin_delay);
166 
167 /*
168  * System-wide mutexes
169  */
170 struct mtx blocked_lock;
171 struct mtx __exclusive_cache_line Giant;
172 
173 static void _mtx_lock_indefinite_check(struct mtx *, struct lock_delay_arg *);
174 
175 void
176 assert_mtx(const struct lock_object *lock, int what)
177 {
178 
179 	mtx_assert((const struct mtx *)lock, what);
180 }
181 
182 void
183 lock_mtx(struct lock_object *lock, uintptr_t how)
184 {
185 
186 	mtx_lock((struct mtx *)lock);
187 }
188 
189 void
190 lock_spin(struct lock_object *lock, uintptr_t how)
191 {
192 
193 	panic("spin locks can only use msleep_spin");
194 }
195 
196 uintptr_t
197 unlock_mtx(struct lock_object *lock)
198 {
199 	struct mtx *m;
200 
201 	m = (struct mtx *)lock;
202 	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
203 	mtx_unlock(m);
204 	return (0);
205 }
206 
207 uintptr_t
208 unlock_spin(struct lock_object *lock)
209 {
210 
211 	panic("spin locks can only use msleep_spin");
212 }
213 
214 #ifdef KDTRACE_HOOKS
215 int
216 owner_mtx(const struct lock_object *lock, struct thread **owner)
217 {
218 	const struct mtx *m;
219 	uintptr_t x;
220 
221 	m = (const struct mtx *)lock;
222 	x = m->mtx_lock;
223 	*owner = (struct thread *)(x & ~MTX_FLAGMASK);
224 	return (*owner != NULL);
225 }
226 #endif
227 
228 /*
229  * Function versions of the inlined __mtx_* macros.  These are used by
230  * modules and can also be called from assembly language if needed.
231  */
232 void
233 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
234 {
235 	struct mtx *m;
236 	uintptr_t tid, v;
237 
238 	m = mtxlock2mtx(c);
239 
240 	KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
241 	    !TD_IS_IDLETHREAD(curthread),
242 	    ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
243 	    curthread, m->lock_object.lo_name, file, line));
244 	KASSERT(m->mtx_lock != MTX_DESTROYED,
245 	    ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
246 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
247 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
248 	    file, line));
249 	WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
250 	    LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
251 
252 	tid = (uintptr_t)curthread;
253 	v = MTX_UNOWNED;
254 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
255 		_mtx_lock_sleep(m, v, opts, file, line);
256 	else
257 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
258 		    m, 0, 0, file, line);
259 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
260 	    line);
261 	WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
262 	    file, line);
263 	TD_LOCKS_INC(curthread);
264 }
265 
266 void
267 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
268 {
269 	struct mtx *m;
270 
271 	m = mtxlock2mtx(c);
272 
273 	KASSERT(m->mtx_lock != MTX_DESTROYED,
274 	    ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
275 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
276 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
277 	    file, line));
278 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
279 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
280 	    line);
281 	mtx_assert(m, MA_OWNED);
282 
283 #ifdef LOCK_PROFILING
284 	__mtx_unlock_sleep(c, (uintptr_t)curthread, opts, file, line);
285 #else
286 	__mtx_unlock(m, curthread, opts, file, line);
287 #endif
288 	TD_LOCKS_DEC(curthread);
289 }
290 
291 void
292 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
293     int line)
294 {
295 	struct mtx *m;
296 #ifdef SMP
297 	uintptr_t tid, v;
298 #endif
299 
300 	m = mtxlock2mtx(c);
301 
302 	KASSERT(m->mtx_lock != MTX_DESTROYED,
303 	    ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
304 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
305 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
306 	    m->lock_object.lo_name, file, line));
307 	if (mtx_owned(m))
308 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
309 		    (opts & MTX_RECURSE) != 0,
310 	    ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
311 		    m->lock_object.lo_name, file, line));
312 	opts &= ~MTX_RECURSE;
313 	WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
314 	    file, line, NULL);
315 #ifdef SMP
316 	spinlock_enter();
317 	tid = (uintptr_t)curthread;
318 	v = MTX_UNOWNED;
319 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
320 		_mtx_lock_spin(m, v, opts, file, line);
321 	else
322 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire,
323 		    m, 0, 0, file, line);
324 #else
325 	__mtx_lock_spin(m, curthread, opts, file, line);
326 #endif
327 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
328 	    line);
329 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
330 }
331 
332 int
333 __mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
334     int line)
335 {
336 	struct mtx *m;
337 
338 	if (SCHEDULER_STOPPED())
339 		return (1);
340 
341 	m = mtxlock2mtx(c);
342 
343 	KASSERT(m->mtx_lock != MTX_DESTROYED,
344 	    ("mtx_trylock_spin() of destroyed mutex @ %s:%d", file, line));
345 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
346 	    ("mtx_trylock_spin() of sleep mutex %s @ %s:%d",
347 	    m->lock_object.lo_name, file, line));
348 	KASSERT((opts & MTX_RECURSE) == 0,
349 	    ("mtx_trylock_spin: unsupp. opt MTX_RECURSE on mutex %s @ %s:%d\n",
350 	    m->lock_object.lo_name, file, line));
351 	if (__mtx_trylock_spin(m, curthread, opts, file, line)) {
352 		LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 1, file, line);
353 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
354 		return (1);
355 	}
356 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 0, file, line);
357 	return (0);
358 }
359 
360 void
361 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
362     int line)
363 {
364 	struct mtx *m;
365 
366 	m = mtxlock2mtx(c);
367 
368 	KASSERT(m->mtx_lock != MTX_DESTROYED,
369 	    ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
370 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
371 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
372 	    m->lock_object.lo_name, file, line));
373 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
374 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
375 	    line);
376 	mtx_assert(m, MA_OWNED);
377 
378 	__mtx_unlock_spin(m);
379 }
380 
381 /*
382  * The important part of mtx_trylock{,_flags}()
383  * Tries to acquire lock `m.'  If this function is called on a mutex that
384  * is already owned, it will recursively acquire the lock.
385  */
386 int
387 _mtx_trylock_flags_int(struct mtx *m, int opts LOCK_FILE_LINE_ARG_DEF)
388 {
389 	struct thread *td;
390 	uintptr_t tid, v;
391 #ifdef LOCK_PROFILING
392 	uint64_t waittime = 0;
393 	int contested = 0;
394 #endif
395 	int rval;
396 	bool recursed;
397 
398 	td = curthread;
399 	tid = (uintptr_t)td;
400 	if (SCHEDULER_STOPPED_TD(td))
401 		return (1);
402 
403 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td),
404 	    ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
405 	    curthread, m->lock_object.lo_name, file, line));
406 	KASSERT(m->mtx_lock != MTX_DESTROYED,
407 	    ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
408 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
409 	    ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
410 	    file, line));
411 
412 	rval = 1;
413 	recursed = false;
414 	v = MTX_UNOWNED;
415 	for (;;) {
416 		if (_mtx_obtain_lock_fetch(m, &v, tid))
417 			break;
418 		if (v == MTX_UNOWNED)
419 			continue;
420 		if (v == tid &&
421 		    ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
422 		    (opts & MTX_RECURSE) != 0)) {
423 			m->mtx_recurse++;
424 			atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
425 			recursed = true;
426 			break;
427 		}
428 		rval = 0;
429 		break;
430 	}
431 
432 	opts &= ~MTX_RECURSE;
433 
434 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
435 	if (rval) {
436 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
437 		    file, line);
438 		TD_LOCKS_INC(curthread);
439 		if (!recursed)
440 			LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
441 			    m, contested, waittime, file, line);
442 	}
443 
444 	return (rval);
445 }
446 
447 int
448 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
449 {
450 	struct mtx *m;
451 
452 	m = mtxlock2mtx(c);
453 	return (_mtx_trylock_flags_int(m, opts LOCK_FILE_LINE_ARG));
454 }
455 
456 /*
457  * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
458  *
459  * We call this if the lock is either contested (i.e. we need to go to
460  * sleep waiting for it), or if we need to recurse on it.
461  */
462 #if LOCK_DEBUG > 0
463 void
464 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file,
465     int line)
466 #else
467 void
468 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v)
469 #endif
470 {
471 	struct thread *td;
472 	struct mtx *m;
473 	struct turnstile *ts;
474 	uintptr_t tid;
475 	struct thread *owner;
476 #ifdef LOCK_PROFILING
477 	int contested = 0;
478 	uint64_t waittime = 0;
479 #endif
480 #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS)
481 	struct lock_delay_arg lda;
482 #endif
483 #ifdef KDTRACE_HOOKS
484 	u_int sleep_cnt = 0;
485 	int64_t sleep_time = 0;
486 	int64_t all_time = 0;
487 #endif
488 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
489 	int doing_lockprof;
490 #endif
491 
492 	td = curthread;
493 	tid = (uintptr_t)td;
494 	m = mtxlock2mtx(c);
495 
496 #ifdef KDTRACE_HOOKS
497 	if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
498 		while (v == MTX_UNOWNED) {
499 			if (_mtx_obtain_lock_fetch(m, &v, tid))
500 				goto out_lockstat;
501 		}
502 		doing_lockprof = 1;
503 		all_time -= lockstat_nsecs(&m->lock_object);
504 	}
505 #endif
506 #ifdef LOCK_PROFILING
507 	doing_lockprof = 1;
508 #endif
509 
510 	if (SCHEDULER_STOPPED_TD(td))
511 		return;
512 
513 #if defined(ADAPTIVE_MUTEXES)
514 	lock_delay_arg_init(&lda, &mtx_delay);
515 #elif defined(KDTRACE_HOOKS)
516 	lock_delay_arg_init(&lda, NULL);
517 #endif
518 
519 	if (__predict_false(v == MTX_UNOWNED))
520 		v = MTX_READ_VALUE(m);
521 
522 	if (__predict_false(lv_mtx_owner(v) == td)) {
523 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
524 		    (opts & MTX_RECURSE) != 0,
525 	    ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
526 		    m->lock_object.lo_name, file, line));
527 #if LOCK_DEBUG > 0
528 		opts &= ~MTX_RECURSE;
529 #endif
530 		m->mtx_recurse++;
531 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
532 		if (LOCK_LOG_TEST(&m->lock_object, opts))
533 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
534 		return;
535 	}
536 #if LOCK_DEBUG > 0
537 	opts &= ~MTX_RECURSE;
538 #endif
539 
540 #ifdef HWPMC_HOOKS
541 	PMC_SOFT_CALL( , , lock, failed);
542 #endif
543 	lock_profile_obtain_lock_failed(&m->lock_object,
544 		    &contested, &waittime);
545 	if (LOCK_LOG_TEST(&m->lock_object, opts))
546 		CTR4(KTR_LOCK,
547 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
548 		    m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
549 
550 	for (;;) {
551 		if (v == MTX_UNOWNED) {
552 			if (_mtx_obtain_lock_fetch(m, &v, tid))
553 				break;
554 			continue;
555 		}
556 #ifdef KDTRACE_HOOKS
557 		lda.spin_cnt++;
558 #endif
559 #ifdef ADAPTIVE_MUTEXES
560 		/*
561 		 * If the owner is running on another CPU, spin until the
562 		 * owner stops running or the state of the lock changes.
563 		 */
564 		owner = lv_mtx_owner(v);
565 		if (TD_IS_RUNNING(owner)) {
566 			if (LOCK_LOG_TEST(&m->lock_object, 0))
567 				CTR3(KTR_LOCK,
568 				    "%s: spinning on %p held by %p",
569 				    __func__, m, owner);
570 			KTR_STATE1(KTR_SCHED, "thread",
571 			    sched_tdname((struct thread *)tid),
572 			    "spinning", "lockname:\"%s\"",
573 			    m->lock_object.lo_name);
574 			do {
575 				lock_delay(&lda);
576 				v = MTX_READ_VALUE(m);
577 				owner = lv_mtx_owner(v);
578 			} while (v != MTX_UNOWNED && TD_IS_RUNNING(owner));
579 			KTR_STATE0(KTR_SCHED, "thread",
580 			    sched_tdname((struct thread *)tid),
581 			    "running");
582 			continue;
583 		}
584 #endif
585 
586 		ts = turnstile_trywait(&m->lock_object);
587 		v = MTX_READ_VALUE(m);
588 retry_turnstile:
589 
590 		/*
591 		 * Check if the lock has been released while spinning for
592 		 * the turnstile chain lock.
593 		 */
594 		if (v == MTX_UNOWNED) {
595 			turnstile_cancel(ts);
596 			continue;
597 		}
598 
599 #ifdef ADAPTIVE_MUTEXES
600 		/*
601 		 * The current lock owner might have started executing
602 		 * on another CPU (or the lock could have changed
603 		 * owners) while we were waiting on the turnstile
604 		 * chain lock.  If so, drop the turnstile lock and try
605 		 * again.
606 		 */
607 		owner = lv_mtx_owner(v);
608 		if (TD_IS_RUNNING(owner)) {
609 			turnstile_cancel(ts);
610 			continue;
611 		}
612 #endif
613 
614 		/*
615 		 * If the mutex isn't already contested and a failure occurs
616 		 * setting the contested bit, the mutex was either released
617 		 * or the state of the MTX_RECURSED bit changed.
618 		 */
619 		if ((v & MTX_CONTESTED) == 0 &&
620 		    !atomic_fcmpset_ptr(&m->mtx_lock, &v, v | MTX_CONTESTED)) {
621 			goto retry_turnstile;
622 		}
623 
624 		/*
625 		 * We definitely must sleep for this lock.
626 		 */
627 		mtx_assert(m, MA_NOTOWNED);
628 
629 		/*
630 		 * Block on the turnstile.
631 		 */
632 #ifdef KDTRACE_HOOKS
633 		sleep_time -= lockstat_nsecs(&m->lock_object);
634 #endif
635 #ifndef ADAPTIVE_MUTEXES
636 		owner = mtx_owner(m);
637 #endif
638 		MPASS(owner == mtx_owner(m));
639 		turnstile_wait(ts, owner, TS_EXCLUSIVE_QUEUE);
640 #ifdef KDTRACE_HOOKS
641 		sleep_time += lockstat_nsecs(&m->lock_object);
642 		sleep_cnt++;
643 #endif
644 		v = MTX_READ_VALUE(m);
645 	}
646 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
647 	if (__predict_true(!doing_lockprof))
648 		return;
649 #endif
650 #ifdef KDTRACE_HOOKS
651 	all_time += lockstat_nsecs(&m->lock_object);
652 	if (sleep_time)
653 		LOCKSTAT_RECORD1(adaptive__block, m, sleep_time);
654 
655 	/*
656 	 * Only record the loops spinning and not sleeping.
657 	 */
658 	if (lda.spin_cnt > sleep_cnt)
659 		LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time);
660 out_lockstat:
661 #endif
662 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested,
663 	    waittime, file, line);
664 }
665 
666 #ifdef SMP
667 /*
668  * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
669  *
670  * This is only called if we need to actually spin for the lock. Recursion
671  * is handled inline.
672  */
673 #if LOCK_DEBUG > 0
674 void
675 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v, int opts,
676     const char *file, int line)
677 #else
678 void
679 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v)
680 #endif
681 {
682 	struct mtx *m;
683 	struct lock_delay_arg lda;
684 	uintptr_t tid;
685 #ifdef LOCK_PROFILING
686 	int contested = 0;
687 	uint64_t waittime = 0;
688 #endif
689 #ifdef KDTRACE_HOOKS
690 	int64_t spin_time = 0;
691 #endif
692 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
693 	int doing_lockprof;
694 #endif
695 
696 	tid = (uintptr_t)curthread;
697 	m = mtxlock2mtx(c);
698 
699 #ifdef KDTRACE_HOOKS
700 	if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
701 		while (v == MTX_UNOWNED) {
702 			if (_mtx_obtain_lock_fetch(m, &v, tid))
703 				goto out_lockstat;
704 		}
705 		doing_lockprof = 1;
706 		spin_time -= lockstat_nsecs(&m->lock_object);
707 	}
708 #endif
709 #ifdef LOCK_PROFILING
710 	doing_lockprof = 1;
711 #endif
712 
713 	if (__predict_false(v == MTX_UNOWNED))
714 		v = MTX_READ_VALUE(m);
715 
716 	if (__predict_false(v == tid)) {
717 		m->mtx_recurse++;
718 		return;
719 	}
720 
721 	if (SCHEDULER_STOPPED())
722 		return;
723 
724 	lock_delay_arg_init(&lda, &mtx_spin_delay);
725 
726 	if (LOCK_LOG_TEST(&m->lock_object, opts))
727 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
728 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
729 	    "spinning", "lockname:\"%s\"", m->lock_object.lo_name);
730 
731 #ifdef HWPMC_HOOKS
732 	PMC_SOFT_CALL( , , lock, failed);
733 #endif
734 	lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime);
735 
736 	for (;;) {
737 		if (v == MTX_UNOWNED) {
738 			if (_mtx_obtain_lock_fetch(m, &v, tid))
739 				break;
740 			continue;
741 		}
742 		/* Give interrupts a chance while we spin. */
743 		spinlock_exit();
744 		do {
745 			if (__predict_true(lda.spin_cnt < 10000000)) {
746 				lock_delay(&lda);
747 			} else {
748 				_mtx_lock_indefinite_check(m, &lda);
749 			}
750 			v = MTX_READ_VALUE(m);
751 		} while (v != MTX_UNOWNED);
752 		spinlock_enter();
753 	}
754 
755 	if (LOCK_LOG_TEST(&m->lock_object, opts))
756 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
757 	KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
758 	    "running");
759 
760 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
761 	if (__predict_true(!doing_lockprof))
762 		return;
763 #endif
764 #ifdef KDTRACE_HOOKS
765 	spin_time += lockstat_nsecs(&m->lock_object);
766 	if (lda.spin_cnt != 0)
767 		LOCKSTAT_RECORD1(spin__spin, m, spin_time);
768 out_lockstat:
769 #endif
770 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
771 	    contested, waittime, file, line);
772 }
773 #endif /* SMP */
774 
775 #ifdef INVARIANTS
776 static void
777 thread_lock_validate(struct mtx *m, int opts, const char *file, int line)
778 {
779 
780 	KASSERT(m->mtx_lock != MTX_DESTROYED,
781 	    ("thread_lock() of destroyed mutex @ %s:%d", file, line));
782 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
783 	    ("thread_lock() of sleep mutex %s @ %s:%d",
784 	    m->lock_object.lo_name, file, line));
785 	if (mtx_owned(m))
786 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
787 		    ("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n",
788 		    m->lock_object.lo_name, file, line));
789 	WITNESS_CHECKORDER(&m->lock_object,
790 	    opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
791 }
792 #else
793 #define thread_lock_validate(m, opts, file, line) do { } while (0)
794 #endif
795 
796 #ifndef LOCK_PROFILING
797 #if LOCK_DEBUG > 0
798 void
799 _thread_lock(struct thread *td, int opts, const char *file, int line)
800 #else
801 void
802 _thread_lock(struct thread *td)
803 #endif
804 {
805 	struct mtx *m;
806 	uintptr_t tid, v;
807 
808 	tid = (uintptr_t)curthread;
809 
810 	if (__predict_false(LOCKSTAT_PROFILE_ENABLED(spin__acquire)))
811 		goto slowpath_noirq;
812 	spinlock_enter();
813 	m = td->td_lock;
814 	thread_lock_validate(m, 0, file, line);
815 	v = MTX_READ_VALUE(m);
816 	if (__predict_true(v == MTX_UNOWNED)) {
817 		if (__predict_false(!_mtx_obtain_lock(m, tid)))
818 			goto slowpath_unlocked;
819 	} else if (v == tid) {
820 		m->mtx_recurse++;
821 	} else
822 		goto slowpath_unlocked;
823 	if (__predict_true(m == td->td_lock)) {
824 		WITNESS_LOCK(&m->lock_object, LOP_EXCLUSIVE, file, line);
825 		return;
826 	}
827 	MPASS(m->mtx_recurse == 0);
828 	_mtx_release_lock_quick(m);
829 slowpath_unlocked:
830 	spinlock_exit();
831 slowpath_noirq:
832 #if LOCK_DEBUG > 0
833 	thread_lock_flags_(td, opts, file, line);
834 #else
835 	thread_lock_flags_(td, 0, 0, 0);
836 #endif
837 }
838 #endif
839 
840 void
841 thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
842 {
843 	struct mtx *m;
844 	uintptr_t tid, v;
845 	struct lock_delay_arg lda;
846 #ifdef LOCK_PROFILING
847 	int contested = 0;
848 	uint64_t waittime = 0;
849 #endif
850 #ifdef KDTRACE_HOOKS
851 	int64_t spin_time = 0;
852 #endif
853 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
854 	int doing_lockprof = 1;
855 #endif
856 
857 	tid = (uintptr_t)curthread;
858 
859 	if (SCHEDULER_STOPPED()) {
860 		/*
861 		 * Ensure that spinlock sections are balanced even when the
862 		 * scheduler is stopped, since we may otherwise inadvertently
863 		 * re-enable interrupts while dumping core.
864 		 */
865 		spinlock_enter();
866 		return;
867 	}
868 
869 	lock_delay_arg_init(&lda, &mtx_spin_delay);
870 
871 #ifdef HWPMC_HOOKS
872 	PMC_SOFT_CALL( , , lock, failed);
873 #endif
874 
875 #ifdef LOCK_PROFILING
876 	doing_lockprof = 1;
877 #elif defined(KDTRACE_HOOKS)
878 	doing_lockprof = lockstat_enabled;
879 	if (__predict_false(doing_lockprof))
880 		spin_time -= lockstat_nsecs(&td->td_lock->lock_object);
881 #endif
882 	spinlock_enter();
883 
884 	for (;;) {
885 retry:
886 		m = td->td_lock;
887 		thread_lock_validate(m, opts, file, line);
888 		v = MTX_READ_VALUE(m);
889 		for (;;) {
890 			if (v == MTX_UNOWNED) {
891 				if (_mtx_obtain_lock_fetch(m, &v, tid))
892 					break;
893 				continue;
894 			}
895 			if (v == tid) {
896 				m->mtx_recurse++;
897 				MPASS(m == td->td_lock);
898 				break;
899 			}
900 			lock_profile_obtain_lock_failed(&m->lock_object,
901 			    &contested, &waittime);
902 			/* Give interrupts a chance while we spin. */
903 			spinlock_exit();
904 			do {
905 				if (__predict_true(lda.spin_cnt < 10000000)) {
906 					lock_delay(&lda);
907 				} else {
908 					_mtx_lock_indefinite_check(m, &lda);
909 				}
910 				if (m != td->td_lock) {
911 					spinlock_enter();
912 					goto retry;
913 				}
914 				v = MTX_READ_VALUE(m);
915 			} while (v != MTX_UNOWNED);
916 			spinlock_enter();
917 		}
918 		if (m == td->td_lock)
919 			break;
920 		MPASS(m->mtx_recurse == 0);
921 		_mtx_release_lock_quick(m);
922 	}
923 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
924 	    line);
925 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
926 
927 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
928 	if (__predict_true(!doing_lockprof))
929 		return;
930 #endif
931 #ifdef KDTRACE_HOOKS
932 	spin_time += lockstat_nsecs(&m->lock_object);
933 #endif
934 	if (m->mtx_recurse == 0)
935 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
936 		    contested, waittime, file, line);
937 #ifdef KDTRACE_HOOKS
938 	if (lda.spin_cnt != 0)
939 		LOCKSTAT_RECORD1(thread__spin, m, spin_time);
940 #endif
941 }
942 
943 struct mtx *
944 thread_lock_block(struct thread *td)
945 {
946 	struct mtx *lock;
947 
948 	THREAD_LOCK_ASSERT(td, MA_OWNED);
949 	lock = td->td_lock;
950 	td->td_lock = &blocked_lock;
951 	mtx_unlock_spin(lock);
952 
953 	return (lock);
954 }
955 
956 void
957 thread_lock_unblock(struct thread *td, struct mtx *new)
958 {
959 	mtx_assert(new, MA_OWNED);
960 	MPASS(td->td_lock == &blocked_lock);
961 	atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
962 }
963 
964 void
965 thread_lock_set(struct thread *td, struct mtx *new)
966 {
967 	struct mtx *lock;
968 
969 	mtx_assert(new, MA_OWNED);
970 	THREAD_LOCK_ASSERT(td, MA_OWNED);
971 	lock = td->td_lock;
972 	td->td_lock = new;
973 	mtx_unlock_spin(lock);
974 }
975 
976 /*
977  * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
978  *
979  * We are only called here if the lock is recursed, contested (i.e. we
980  * need to wake up a blocked thread) or lockstat probe is active.
981  */
982 #if LOCK_DEBUG > 0
983 void
984 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v, int opts,
985     const char *file, int line)
986 #else
987 void
988 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v)
989 #endif
990 {
991 	struct mtx *m;
992 	struct turnstile *ts;
993 	uintptr_t tid;
994 
995 	if (SCHEDULER_STOPPED())
996 		return;
997 
998 	tid = (uintptr_t)curthread;
999 	m = mtxlock2mtx(c);
1000 
1001 	if (__predict_false(v == tid))
1002 		v = MTX_READ_VALUE(m);
1003 
1004 	if (__predict_false(v & MTX_RECURSED)) {
1005 		if (--(m->mtx_recurse) == 0)
1006 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
1007 		if (LOCK_LOG_TEST(&m->lock_object, opts))
1008 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
1009 		return;
1010 	}
1011 
1012 	LOCKSTAT_PROFILE_RELEASE_LOCK(adaptive__release, m);
1013 	if (v == tid && _mtx_release_lock(m, tid))
1014 		return;
1015 
1016 	/*
1017 	 * We have to lock the chain before the turnstile so this turnstile
1018 	 * can be removed from the hash list if it is empty.
1019 	 */
1020 	turnstile_chain_lock(&m->lock_object);
1021 	_mtx_release_lock_quick(m);
1022 	ts = turnstile_lookup(&m->lock_object);
1023 	MPASS(ts != NULL);
1024 	if (LOCK_LOG_TEST(&m->lock_object, opts))
1025 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
1026 	turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
1027 
1028 	/*
1029 	 * This turnstile is now no longer associated with the mutex.  We can
1030 	 * unlock the chain lock so a new turnstile may take it's place.
1031 	 */
1032 	turnstile_unpend(ts);
1033 	turnstile_chain_unlock(&m->lock_object);
1034 }
1035 
1036 /*
1037  * All the unlocking of MTX_SPIN locks is done inline.
1038  * See the __mtx_unlock_spin() macro for the details.
1039  */
1040 
1041 /*
1042  * The backing function for the INVARIANTS-enabled mtx_assert()
1043  */
1044 #ifdef INVARIANT_SUPPORT
1045 void
1046 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
1047 {
1048 	const struct mtx *m;
1049 
1050 	if (panicstr != NULL || dumping || SCHEDULER_STOPPED())
1051 		return;
1052 
1053 	m = mtxlock2mtx(c);
1054 
1055 	switch (what) {
1056 	case MA_OWNED:
1057 	case MA_OWNED | MA_RECURSED:
1058 	case MA_OWNED | MA_NOTRECURSED:
1059 		if (!mtx_owned(m))
1060 			panic("mutex %s not owned at %s:%d",
1061 			    m->lock_object.lo_name, file, line);
1062 		if (mtx_recursed(m)) {
1063 			if ((what & MA_NOTRECURSED) != 0)
1064 				panic("mutex %s recursed at %s:%d",
1065 				    m->lock_object.lo_name, file, line);
1066 		} else if ((what & MA_RECURSED) != 0) {
1067 			panic("mutex %s unrecursed at %s:%d",
1068 			    m->lock_object.lo_name, file, line);
1069 		}
1070 		break;
1071 	case MA_NOTOWNED:
1072 		if (mtx_owned(m))
1073 			panic("mutex %s owned at %s:%d",
1074 			    m->lock_object.lo_name, file, line);
1075 		break;
1076 	default:
1077 		panic("unknown mtx_assert at %s:%d", file, line);
1078 	}
1079 }
1080 #endif
1081 
1082 /*
1083  * General init routine used by the MTX_SYSINIT() macro.
1084  */
1085 void
1086 mtx_sysinit(void *arg)
1087 {
1088 	struct mtx_args *margs = arg;
1089 
1090 	mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
1091 	    margs->ma_opts);
1092 }
1093 
1094 /*
1095  * Mutex initialization routine; initialize lock `m' of type contained in
1096  * `opts' with options contained in `opts' and name `name.'  The optional
1097  * lock type `type' is used as a general lock category name for use with
1098  * witness.
1099  */
1100 void
1101 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
1102 {
1103 	struct mtx *m;
1104 	struct lock_class *class;
1105 	int flags;
1106 
1107 	m = mtxlock2mtx(c);
1108 
1109 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
1110 	    MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0);
1111 	ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
1112 	    ("%s: mtx_lock not aligned for %s: %p", __func__, name,
1113 	    &m->mtx_lock));
1114 
1115 	/* Determine lock class and lock flags. */
1116 	if (opts & MTX_SPIN)
1117 		class = &lock_class_mtx_spin;
1118 	else
1119 		class = &lock_class_mtx_sleep;
1120 	flags = 0;
1121 	if (opts & MTX_QUIET)
1122 		flags |= LO_QUIET;
1123 	if (opts & MTX_RECURSE)
1124 		flags |= LO_RECURSABLE;
1125 	if ((opts & MTX_NOWITNESS) == 0)
1126 		flags |= LO_WITNESS;
1127 	if (opts & MTX_DUPOK)
1128 		flags |= LO_DUPOK;
1129 	if (opts & MTX_NOPROFILE)
1130 		flags |= LO_NOPROFILE;
1131 	if (opts & MTX_NEW)
1132 		flags |= LO_NEW;
1133 
1134 	/* Initialize mutex. */
1135 	lock_init(&m->lock_object, class, name, type, flags);
1136 
1137 	m->mtx_lock = MTX_UNOWNED;
1138 	m->mtx_recurse = 0;
1139 }
1140 
1141 /*
1142  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
1143  * passed in as a flag here because if the corresponding mtx_init() was
1144  * called with MTX_QUIET set, then it will already be set in the mutex's
1145  * flags.
1146  */
1147 void
1148 _mtx_destroy(volatile uintptr_t *c)
1149 {
1150 	struct mtx *m;
1151 
1152 	m = mtxlock2mtx(c);
1153 
1154 	if (!mtx_owned(m))
1155 		MPASS(mtx_unowned(m));
1156 	else {
1157 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
1158 
1159 		/* Perform the non-mtx related part of mtx_unlock_spin(). */
1160 		if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin)
1161 			spinlock_exit();
1162 		else
1163 			TD_LOCKS_DEC(curthread);
1164 
1165 		lock_profile_release_lock(&m->lock_object);
1166 		/* Tell witness this isn't locked to make it happy. */
1167 		WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
1168 		    __LINE__);
1169 	}
1170 
1171 	m->mtx_lock = MTX_DESTROYED;
1172 	lock_destroy(&m->lock_object);
1173 }
1174 
1175 /*
1176  * Intialize the mutex code and system mutexes.  This is called from the MD
1177  * startup code prior to mi_startup().  The per-CPU data space needs to be
1178  * setup before this is called.
1179  */
1180 void
1181 mutex_init(void)
1182 {
1183 
1184 	/* Setup turnstiles so that sleep mutexes work. */
1185 	init_turnstiles();
1186 
1187 	/*
1188 	 * Initialize mutexes.
1189 	 */
1190 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
1191 	mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
1192 	blocked_lock.mtx_lock = 0xdeadc0de;	/* Always blocked. */
1193 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
1194 	mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN);
1195 	mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN);
1196 	mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN);
1197 	mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN);
1198 	mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
1199 	mtx_lock(&Giant);
1200 }
1201 
1202 static void __noinline
1203 _mtx_lock_indefinite_check(struct mtx *m, struct lock_delay_arg *ldap)
1204 {
1205 	struct thread *td;
1206 
1207 	ldap->spin_cnt++;
1208 	if (ldap->spin_cnt < 60000000 || kdb_active || panicstr != NULL)
1209 		DELAY(1);
1210 	else {
1211 		td = mtx_owner(m);
1212 
1213 		/* If the mutex is unlocked, try again. */
1214 		if (td == NULL)
1215 			return;
1216 
1217 		printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
1218 		    m, m->lock_object.lo_name, td, td->td_tid);
1219 #ifdef WITNESS
1220 		witness_display_spinlock(&m->lock_object, td, printf);
1221 #endif
1222 		panic("spin lock held too long");
1223 	}
1224 	cpu_spinwait();
1225 }
1226 
1227 void
1228 mtx_spin_wait_unlocked(struct mtx *m)
1229 {
1230 	struct lock_delay_arg lda;
1231 
1232 	KASSERT(m->mtx_lock != MTX_DESTROYED,
1233 	    ("%s() of destroyed mutex %p", __func__, m));
1234 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
1235 	    ("%s() of sleep mutex %p (%s)", __func__, m,
1236 	    m->lock_object.lo_name));
1237 	KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m,
1238 	    m->lock_object.lo_name));
1239 
1240 	lda.spin_cnt = 0;
1241 
1242 	while (atomic_load_acq_ptr(&m->mtx_lock) != MTX_UNOWNED) {
1243 		if (__predict_true(lda.spin_cnt < 10000000)) {
1244 			cpu_spinwait();
1245 			lda.spin_cnt++;
1246 		} else {
1247 			_mtx_lock_indefinite_check(m, &lda);
1248 		}
1249 	}
1250 }
1251 
1252 #ifdef DDB
1253 void
1254 db_show_mtx(const struct lock_object *lock)
1255 {
1256 	struct thread *td;
1257 	const struct mtx *m;
1258 
1259 	m = (const struct mtx *)lock;
1260 
1261 	db_printf(" flags: {");
1262 	if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
1263 		db_printf("SPIN");
1264 	else
1265 		db_printf("DEF");
1266 	if (m->lock_object.lo_flags & LO_RECURSABLE)
1267 		db_printf(", RECURSE");
1268 	if (m->lock_object.lo_flags & LO_DUPOK)
1269 		db_printf(", DUPOK");
1270 	db_printf("}\n");
1271 	db_printf(" state: {");
1272 	if (mtx_unowned(m))
1273 		db_printf("UNOWNED");
1274 	else if (mtx_destroyed(m))
1275 		db_printf("DESTROYED");
1276 	else {
1277 		db_printf("OWNED");
1278 		if (m->mtx_lock & MTX_CONTESTED)
1279 			db_printf(", CONTESTED");
1280 		if (m->mtx_lock & MTX_RECURSED)
1281 			db_printf(", RECURSED");
1282 	}
1283 	db_printf("}\n");
1284 	if (!mtx_unowned(m) && !mtx_destroyed(m)) {
1285 		td = mtx_owner(m);
1286 		db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
1287 		    td->td_tid, td->td_proc->p_pid, td->td_name);
1288 		if (mtx_recursed(m))
1289 			db_printf(" recursed: %d\n", m->mtx_recurse);
1290 	}
1291 }
1292 #endif
1293