xref: /freebsd/sys/kern/kern_mutex.c (revision 81d1ffee089aab2652954909acbe6aadd8a1a72c)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  * $FreeBSD$
31  */
32 
33 /*
34  * Machine independent bits of mutex implementation.
35  */
36 
37 #include "opt_adaptive_mutexes.h"
38 #include "opt_ddb.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bus.h>
43 #include <sys/kernel.h>
44 #include <sys/ktr.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/sbuf.h>
52 #include <sys/stdint.h>
53 #include <sys/sysctl.h>
54 #include <sys/vmmeter.h>
55 
56 #include <machine/atomic.h>
57 #include <machine/bus.h>
58 #include <machine/clock.h>
59 #include <machine/cpu.h>
60 
61 #include <ddb/ddb.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_extern.h>
65 
66 /*
67  * Internal utility macros.
68  */
69 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
70 
71 #define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
72 	: (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
73 
74 /* XXXKSE This test will change. */
75 #define	thread_running(td)						\
76 	((td)->td_kse != NULL && (td)->td_kse->ke_oncpu != NOCPU)
77 
78 /*
79  * Lock classes for sleep and spin mutexes.
80  */
81 struct lock_class lock_class_mtx_sleep = {
82 	"sleep mutex",
83 	LC_SLEEPLOCK | LC_RECURSABLE
84 };
85 struct lock_class lock_class_mtx_spin = {
86 	"spin mutex",
87 	LC_SPINLOCK | LC_RECURSABLE
88 };
89 
90 /*
91  * System-wide mutexes
92  */
93 struct mtx sched_lock;
94 struct mtx Giant;
95 
96 /*
97  * Prototypes for non-exported routines.
98  */
99 static void	propagate_priority(struct thread *);
100 
101 static void
102 propagate_priority(struct thread *td)
103 {
104 	int pri = td->td_priority;
105 	struct mtx *m = td->td_blocked;
106 
107 	mtx_assert(&sched_lock, MA_OWNED);
108 	for (;;) {
109 		struct thread *td1;
110 
111 		td = mtx_owner(m);
112 
113 		if (td == NULL) {
114 			/*
115 			 * This really isn't quite right. Really
116 			 * ought to bump priority of thread that
117 			 * next acquires the mutex.
118 			 */
119 			MPASS(m->mtx_lock == MTX_CONTESTED);
120 			return;
121 		}
122 
123 		MPASS(td->td_proc != NULL);
124 		MPASS(td->td_proc->p_magic == P_MAGIC);
125 		KASSERT(!TD_IS_SLEEPING(td), ("sleeping thread owns a mutex"));
126 		if (td->td_priority <= pri) /* lower is higher priority */
127 			return;
128 
129 
130 		/*
131 		 * If lock holder is actually running, just bump priority.
132 		 */
133 		if (TD_IS_RUNNING(td)) {
134 			td->td_priority = pri;
135 			return;
136 		}
137 
138 #ifndef SMP
139 		/*
140 		 * For UP, we check to see if td is curthread (this shouldn't
141 		 * ever happen however as it would mean we are in a deadlock.)
142 		 */
143 		KASSERT(td != curthread, ("Deadlock detected"));
144 #endif
145 
146 		/*
147 		 * If on run queue move to new run queue, and quit.
148 		 * XXXKSE this gets a lot more complicated under threads
149 		 * but try anyhow.
150 		 */
151 		if (TD_ON_RUNQ(td)) {
152 			MPASS(td->td_blocked == NULL);
153 			sched_prio(td, pri);
154 			return;
155 		}
156 		/*
157 		 * Adjust for any other cases.
158 		 */
159 		td->td_priority = pri;
160 
161 		/*
162 		 * If we aren't blocked on a mutex, we should be.
163 		 */
164 		KASSERT(TD_ON_LOCK(td), (
165 		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
166 		    td->td_proc->p_pid, td->td_proc->p_comm, td->td_state,
167 		    m->mtx_object.lo_name));
168 
169 		/*
170 		 * Pick up the mutex that td is blocked on.
171 		 */
172 		m = td->td_blocked;
173 		MPASS(m != NULL);
174 
175 		/*
176 		 * Check if the thread needs to be moved up on
177 		 * the blocked chain
178 		 */
179 		if (td == TAILQ_FIRST(&m->mtx_blocked)) {
180 			continue;
181 		}
182 
183 		td1 = TAILQ_PREV(td, threadqueue, td_lockq);
184 		if (td1->td_priority <= pri) {
185 			continue;
186 		}
187 
188 		/*
189 		 * Remove thread from blocked chain and determine where
190 		 * it should be moved up to.  Since we know that td1 has
191 		 * a lower priority than td, we know that at least one
192 		 * thread in the chain has a lower priority and that
193 		 * td1 will thus not be NULL after the loop.
194 		 */
195 		TAILQ_REMOVE(&m->mtx_blocked, td, td_lockq);
196 		TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq) {
197 			MPASS(td1->td_proc->p_magic == P_MAGIC);
198 			if (td1->td_priority > pri)
199 				break;
200 		}
201 
202 		MPASS(td1 != NULL);
203 		TAILQ_INSERT_BEFORE(td1, td, td_lockq);
204 		CTR4(KTR_LOCK,
205 		    "propagate_priority: p %p moved before %p on [%p] %s",
206 		    td, td1, m, m->mtx_object.lo_name);
207 	}
208 }
209 
210 #ifdef MUTEX_PROFILING
211 SYSCTL_NODE(_debug, OID_AUTO, mutex, CTLFLAG_RD, NULL, "mutex debugging");
212 SYSCTL_NODE(_debug_mutex, OID_AUTO, prof, CTLFLAG_RD, NULL, "mutex profiling");
213 static int mutex_prof_enable = 0;
214 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, enable, CTLFLAG_RW,
215     &mutex_prof_enable, 0, "Enable tracing of mutex holdtime");
216 
217 struct mutex_prof {
218 	const char	*name;
219 	const char	*file;
220 	int		line;
221 	uintmax_t	cnt_max;
222 	uintmax_t	cnt_tot;
223 	uintmax_t	cnt_cur;
224 	struct mutex_prof *next;
225 };
226 
227 /*
228  * mprof_buf is a static pool of profiling records to avoid possible
229  * reentrance of the memory allocation functions.
230  *
231  * Note: NUM_MPROF_BUFFERS must be smaller than MPROF_HASH_SIZE.
232  */
233 #define	NUM_MPROF_BUFFERS	1000
234 static struct mutex_prof mprof_buf[NUM_MPROF_BUFFERS];
235 static int first_free_mprof_buf;
236 #define	MPROF_HASH_SIZE		1009
237 static struct mutex_prof *mprof_hash[MPROF_HASH_SIZE];
238 /* SWAG: sbuf size = avg stat. line size * number of locks */
239 #define MPROF_SBUF_SIZE		256 * 400
240 
241 static int mutex_prof_acquisitions;
242 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, acquisitions, CTLFLAG_RD,
243     &mutex_prof_acquisitions, 0, "Number of mutex acquistions recorded");
244 static int mutex_prof_records;
245 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, records, CTLFLAG_RD,
246     &mutex_prof_records, 0, "Number of profiling records");
247 static int mutex_prof_maxrecords = NUM_MPROF_BUFFERS;
248 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, maxrecords, CTLFLAG_RD,
249     &mutex_prof_maxrecords, 0, "Maximum number of profiling records");
250 static int mutex_prof_rejected;
251 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, rejected, CTLFLAG_RD,
252     &mutex_prof_rejected, 0, "Number of rejected profiling records");
253 static int mutex_prof_hashsize = MPROF_HASH_SIZE;
254 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, hashsize, CTLFLAG_RD,
255     &mutex_prof_hashsize, 0, "Hash size");
256 static int mutex_prof_collisions = 0;
257 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, collisions, CTLFLAG_RD,
258     &mutex_prof_collisions, 0, "Number of hash collisions");
259 
260 /*
261  * mprof_mtx protects the profiling buffers and the hash.
262  */
263 static struct mtx mprof_mtx;
264 MTX_SYSINIT(mprof, &mprof_mtx, "mutex profiling lock", MTX_SPIN | MTX_QUIET);
265 
266 static u_int64_t
267 nanoseconds(void)
268 {
269 	struct timespec tv;
270 
271 	nanotime(&tv);
272 	return (tv.tv_sec * (u_int64_t)1000000000 + tv.tv_nsec);
273 }
274 
275 static int
276 dump_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
277 {
278 	struct sbuf *sb;
279 	int error, i;
280 	static int multiplier = 1;
281 
282 	if (first_free_mprof_buf == 0)
283 		return (SYSCTL_OUT(req, "No locking recorded",
284 		    sizeof("No locking recorded")));
285 
286 retry_sbufops:
287 	sb = sbuf_new(NULL, NULL, MPROF_SBUF_SIZE * multiplier, SBUF_FIXEDLEN);
288 	sbuf_printf(sb, "%6s %12s %11s %5s %s\n",
289 	    "max", "total", "count", "avg", "name");
290 	/*
291 	 * XXX this spinlock seems to be by far the largest perpetrator
292 	 * of spinlock latency (1.6 msec on an Athlon1600 was recorded
293 	 * even before I pessimized it further by moving the average
294 	 * computation here).
295 	 */
296 	mtx_lock_spin(&mprof_mtx);
297 	for (i = 0; i < first_free_mprof_buf; ++i) {
298 		sbuf_printf(sb, "%6ju %12ju %11ju %5ju %s:%d (%s)\n",
299 		    mprof_buf[i].cnt_max / 1000,
300 		    mprof_buf[i].cnt_tot / 1000,
301 		    mprof_buf[i].cnt_cur,
302 		    mprof_buf[i].cnt_cur == 0 ? (uintmax_t)0 :
303 			mprof_buf[i].cnt_tot / (mprof_buf[i].cnt_cur * 1000),
304 		    mprof_buf[i].file, mprof_buf[i].line, mprof_buf[i].name);
305 		if (sbuf_overflowed(sb)) {
306 			mtx_unlock_spin(&mprof_mtx);
307 			sbuf_delete(sb);
308 			multiplier++;
309 			goto retry_sbufops;
310 		}
311 	}
312 	mtx_unlock_spin(&mprof_mtx);
313 	sbuf_finish(sb);
314 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
315 	sbuf_delete(sb);
316 	return (error);
317 }
318 SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
319     NULL, 0, dump_mutex_prof_stats, "A", "Mutex profiling statistics");
320 #endif
321 
322 /*
323  * Function versions of the inlined __mtx_* macros.  These are used by
324  * modules and can also be called from assembly language if needed.
325  */
326 void
327 _mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
328 {
329 
330 	MPASS(curthread != NULL);
331 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
332 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
333 	    file, line));
334 	_get_sleep_lock(m, curthread, opts, file, line);
335 	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
336 	    line);
337 	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
338 #ifdef MUTEX_PROFILING
339 	/* don't reset the timer when/if recursing */
340 	if (m->mtx_acqtime == 0) {
341 		m->mtx_filename = file;
342 		m->mtx_lineno = line;
343 		m->mtx_acqtime = mutex_prof_enable ? nanoseconds() : 0;
344 		++mutex_prof_acquisitions;
345 	}
346 #endif
347 }
348 
349 void
350 _mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
351 {
352 
353 	MPASS(curthread != NULL);
354 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
355 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
356 	    file, line));
357 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
358 	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
359 	    line);
360 	mtx_assert(m, MA_OWNED);
361 #ifdef MUTEX_PROFILING
362 	if (m->mtx_acqtime != 0) {
363 		static const char *unknown = "(unknown)";
364 		struct mutex_prof *mpp;
365 		u_int64_t acqtime, now;
366 		const char *p, *q;
367 		volatile u_int hash;
368 
369 		now = nanoseconds();
370 		acqtime = m->mtx_acqtime;
371 		m->mtx_acqtime = 0;
372 		if (now <= acqtime)
373 			goto out;
374 		for (p = m->mtx_filename;
375 		    p != NULL && strncmp(p, "../", 3) == 0; p += 3)
376 			/* nothing */ ;
377 		if (p == NULL || *p == '\0')
378 			p = unknown;
379 		for (hash = m->mtx_lineno, q = p; *q != '\0'; ++q)
380 			hash = (hash * 2 + *q) % MPROF_HASH_SIZE;
381 		mtx_lock_spin(&mprof_mtx);
382 		for (mpp = mprof_hash[hash]; mpp != NULL; mpp = mpp->next)
383 			if (mpp->line == m->mtx_lineno &&
384 			    strcmp(mpp->file, p) == 0)
385 				break;
386 		if (mpp == NULL) {
387 			/* Just exit if we cannot get a trace buffer */
388 			if (first_free_mprof_buf >= NUM_MPROF_BUFFERS) {
389 				++mutex_prof_rejected;
390 				goto unlock;
391 			}
392 			mpp = &mprof_buf[first_free_mprof_buf++];
393 			mpp->name = mtx_name(m);
394 			mpp->file = p;
395 			mpp->line = m->mtx_lineno;
396 			mpp->next = mprof_hash[hash];
397 			if (mprof_hash[hash] != NULL)
398 				++mutex_prof_collisions;
399 			mprof_hash[hash] = mpp;
400 			++mutex_prof_records;
401 		}
402 		/*
403 		 * Record if the mutex has been held longer now than ever
404 		 * before.
405 		 */
406 		if (now - acqtime > mpp->cnt_max)
407 			mpp->cnt_max = now - acqtime;
408 		mpp->cnt_tot += now - acqtime;
409 		mpp->cnt_cur++;
410 unlock:
411 		mtx_unlock_spin(&mprof_mtx);
412 	}
413 out:
414 #endif
415 	_rel_sleep_lock(m, curthread, opts, file, line);
416 }
417 
418 void
419 _mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
420 {
421 
422 	MPASS(curthread != NULL);
423 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
424 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
425 	    m->mtx_object.lo_name, file, line));
426 #if defined(SMP) || LOCK_DEBUG > 0 || 1
427 	_get_spin_lock(m, curthread, opts, file, line);
428 #else
429 	critical_enter();
430 #endif
431 	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
432 	    line);
433 	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
434 }
435 
436 void
437 _mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
438 {
439 
440 	MPASS(curthread != NULL);
441 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
442 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
443 	    m->mtx_object.lo_name, file, line));
444 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
445 	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
446 	    line);
447 	mtx_assert(m, MA_OWNED);
448 #if defined(SMP) || LOCK_DEBUG > 0 || 1
449 	_rel_spin_lock(m);
450 #else
451 	critical_exit();
452 #endif
453 }
454 
455 /*
456  * The important part of mtx_trylock{,_flags}()
457  * Tries to acquire lock `m.' We do NOT handle recursion here.  If this
458  * function is called on a recursed mutex, it will return failure and
459  * will not recursively acquire the lock.  You are expected to know what
460  * you are doing.
461  */
462 int
463 _mtx_trylock(struct mtx *m, int opts, const char *file, int line)
464 {
465 	int rval;
466 
467 	MPASS(curthread != NULL);
468 
469 	rval = _obtain_lock(m, curthread);
470 
471 	LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
472 	if (rval)
473 		WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
474 		    file, line);
475 
476 	return (rval);
477 }
478 
479 /*
480  * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
481  *
482  * We call this if the lock is either contested (i.e. we need to go to
483  * sleep waiting for it), or if we need to recurse on it.
484  */
485 void
486 _mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
487 {
488 	struct thread *td = curthread;
489 	struct thread *td1;
490 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
491 	struct thread *owner;
492 #endif
493 	uintptr_t v;
494 #ifdef KTR
495 	int cont_logged = 0;
496 #endif
497 
498 	if (mtx_owned(m)) {
499 		m->mtx_recurse++;
500 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
501 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
502 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
503 		return;
504 	}
505 
506 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
507 		CTR4(KTR_LOCK,
508 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
509 		    m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
510 
511 	while (!_obtain_lock(m, td)) {
512 
513 		mtx_lock_spin(&sched_lock);
514 		v = m->mtx_lock;
515 
516 		/*
517 		 * Check if the lock has been released while spinning for
518 		 * the sched_lock.
519 		 */
520 		if (v == MTX_UNOWNED) {
521 			mtx_unlock_spin(&sched_lock);
522 #ifdef __i386__
523 			ia32_pause();
524 #endif
525 			continue;
526 		}
527 
528 		/*
529 		 * The mutex was marked contested on release. This means that
530 		 * there are threads blocked on it.
531 		 */
532 		if (v == MTX_CONTESTED) {
533 			td1 = TAILQ_FIRST(&m->mtx_blocked);
534 			MPASS(td1 != NULL);
535 			m->mtx_lock = (uintptr_t)td | MTX_CONTESTED;
536 
537 			if (td1->td_priority < td->td_priority)
538 				td->td_priority = td1->td_priority;
539 			mtx_unlock_spin(&sched_lock);
540 			return;
541 		}
542 
543 		/*
544 		 * If the mutex isn't already contested and a failure occurs
545 		 * setting the contested bit, the mutex was either released
546 		 * or the state of the MTX_RECURSED bit changed.
547 		 */
548 		if ((v & MTX_CONTESTED) == 0 &&
549 		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
550 			(void *)(v | MTX_CONTESTED))) {
551 			mtx_unlock_spin(&sched_lock);
552 #ifdef __i386__
553 			ia32_pause();
554 #endif
555 			continue;
556 		}
557 
558 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
559 		/*
560 		 * If the current owner of the lock is executing on another
561 		 * CPU, spin instead of blocking.
562 		 */
563 		owner = (struct thread *)(v & MTX_FLAGMASK);
564 		if (m != &Giant && thread_running(owner)) {
565 			mtx_unlock_spin(&sched_lock);
566 			while (mtx_owner(m) == owner && thread_running(owner)) {
567 #ifdef __i386__
568 				ia32_pause();
569 #endif
570 			}
571 			continue;
572 		}
573 #endif	/* SMP && ADAPTIVE_MUTEXES */
574 
575 		/*
576 		 * We definitely must sleep for this lock.
577 		 */
578 		mtx_assert(m, MA_NOTOWNED);
579 
580 #ifdef notyet
581 		/*
582 		 * If we're borrowing an interrupted thread's VM context, we
583 		 * must clean up before going to sleep.
584 		 */
585 		if (td->td_ithd != NULL) {
586 			struct ithd *it = td->td_ithd;
587 
588 			if (it->it_interrupted) {
589 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
590 					CTR2(KTR_LOCK,
591 				    "_mtx_lock_sleep: %p interrupted %p",
592 					    it, it->it_interrupted);
593 				intr_thd_fixup(it);
594 			}
595 		}
596 #endif
597 
598 		/*
599 		 * Put us on the list of threads blocked on this mutex.
600 		 */
601 		if (TAILQ_EMPTY(&m->mtx_blocked)) {
602 			td1 = mtx_owner(m);
603 			LIST_INSERT_HEAD(&td1->td_contested, m, mtx_contested);
604 			TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
605 		} else {
606 			TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq)
607 				if (td1->td_priority > td->td_priority)
608 					break;
609 			if (td1)
610 				TAILQ_INSERT_BEFORE(td1, td, td_lockq);
611 			else
612 				TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
613 		}
614 #ifdef KTR
615 		if (!cont_logged) {
616 			CTR6(KTR_CONTENTION,
617 			    "contention: %p at %s:%d wants %s, taken by %s:%d",
618 			    td, file, line, m->mtx_object.lo_name,
619 			    WITNESS_FILE(&m->mtx_object),
620 			    WITNESS_LINE(&m->mtx_object));
621 			cont_logged = 1;
622 		}
623 #endif
624 
625 		/*
626 		 * Save who we're blocked on.
627 		 */
628 		td->td_blocked = m;
629 		td->td_lockname = m->mtx_object.lo_name;
630 		TD_SET_LOCK(td);
631 		propagate_priority(td);
632 
633 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
634 			CTR3(KTR_LOCK,
635 			    "_mtx_lock_sleep: p %p blocked on [%p] %s", td, m,
636 			    m->mtx_object.lo_name);
637 
638 		td->td_proc->p_stats->p_ru.ru_nvcsw++;
639 		mi_switch();
640 
641 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
642 			CTR3(KTR_LOCK,
643 			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
644 			  td, m, m->mtx_object.lo_name);
645 
646 		mtx_unlock_spin(&sched_lock);
647 	}
648 
649 #ifdef KTR
650 	if (cont_logged) {
651 		CTR4(KTR_CONTENTION,
652 		    "contention end: %s acquired by %p at %s:%d",
653 		    m->mtx_object.lo_name, td, file, line);
654 	}
655 #endif
656 	return;
657 }
658 
659 /*
660  * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
661  *
662  * This is only called if we need to actually spin for the lock. Recursion
663  * is handled inline.
664  */
665 void
666 _mtx_lock_spin(struct mtx *m, int opts, const char *file, int line)
667 {
668 	int i = 0;
669 
670 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
671 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
672 
673 	for (;;) {
674 		if (_obtain_lock(m, curthread))
675 			break;
676 
677 		/* Give interrupts a chance while we spin. */
678 		critical_exit();
679 		while (m->mtx_lock != MTX_UNOWNED) {
680 			if (i++ < 10000000) {
681 #ifdef __i386__
682 				ia32_pause();
683 #endif
684 				continue;
685 			}
686 			if (i < 60000000)
687 				DELAY(1);
688 #ifdef DDB
689 			else if (!db_active)
690 #else
691 			else
692 #endif
693 				panic("spin lock %s held by %p for > 5 seconds",
694 				    m->mtx_object.lo_name, (void *)m->mtx_lock);
695 #ifdef __i386__
696 			ia32_pause();
697 #endif
698 		}
699 		critical_enter();
700 	}
701 
702 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
703 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
704 
705 	return;
706 }
707 
708 /*
709  * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
710  *
711  * We are only called here if the lock is recursed or contested (i.e. we
712  * need to wake up a blocked thread).
713  */
714 void
715 _mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
716 {
717 	struct thread *td, *td1;
718 	struct mtx *m1;
719 	int pri;
720 
721 	td = curthread;
722 
723 	if (mtx_recursed(m)) {
724 		if (--(m->mtx_recurse) == 0)
725 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
726 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
727 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
728 		return;
729 	}
730 
731 	mtx_lock_spin(&sched_lock);
732 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
733 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
734 
735 	td1 = TAILQ_FIRST(&m->mtx_blocked);
736 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
737 	if (td1 == NULL) {
738 		_release_lock_quick(m);
739 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
740 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p no sleepers", m);
741 		mtx_unlock_spin(&sched_lock);
742 		return;
743 	}
744 #endif
745 	MPASS(td->td_proc->p_magic == P_MAGIC);
746 	MPASS(td1->td_proc->p_magic == P_MAGIC);
747 
748 	TAILQ_REMOVE(&m->mtx_blocked, td1, td_lockq);
749 
750 	if (TAILQ_EMPTY(&m->mtx_blocked)) {
751 		LIST_REMOVE(m, mtx_contested);
752 		_release_lock_quick(m);
753 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
754 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
755 	} else
756 		atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED);
757 
758 	pri = PRI_MAX;
759 	LIST_FOREACH(m1, &td->td_contested, mtx_contested) {
760 		int cp = TAILQ_FIRST(&m1->mtx_blocked)->td_priority;
761 		if (cp < pri)
762 			pri = cp;
763 	}
764 
765 	if (pri > td->td_base_pri)
766 		pri = td->td_base_pri;
767 	td->td_priority = pri;
768 
769 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
770 		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
771 		    m, td1);
772 
773 	td1->td_blocked = NULL;
774 	TD_CLR_LOCK(td1);
775 	if (!TD_CAN_RUN(td1)) {
776 		mtx_unlock_spin(&sched_lock);
777 		return;
778 	}
779 	setrunqueue(td1);
780 
781 	if (td->td_critnest == 1 && td1->td_priority < pri) {
782 #ifdef notyet
783 		if (td->td_ithd != NULL) {
784 			struct ithd *it = td->td_ithd;
785 
786 			if (it->it_interrupted) {
787 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
788 					CTR2(KTR_LOCK,
789 				    "_mtx_unlock_sleep: %p interrupted %p",
790 					    it, it->it_interrupted);
791 				intr_thd_fixup(it);
792 			}
793 		}
794 #endif
795 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
796 			CTR2(KTR_LOCK,
797 			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
798 			    (void *)m->mtx_lock);
799 
800 		td->td_proc->p_stats->p_ru.ru_nivcsw++;
801 		mi_switch();
802 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
803 			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
804 			    m, (void *)m->mtx_lock);
805 	}
806 
807 	mtx_unlock_spin(&sched_lock);
808 
809 	return;
810 }
811 
812 /*
813  * All the unlocking of MTX_SPIN locks is done inline.
814  * See the _rel_spin_lock() macro for the details.
815  */
816 
817 /*
818  * The backing function for the INVARIANTS-enabled mtx_assert()
819  */
820 #ifdef INVARIANT_SUPPORT
821 void
822 _mtx_assert(struct mtx *m, int what, const char *file, int line)
823 {
824 
825 	if (panicstr != NULL)
826 		return;
827 	switch (what) {
828 	case MA_OWNED:
829 	case MA_OWNED | MA_RECURSED:
830 	case MA_OWNED | MA_NOTRECURSED:
831 		if (!mtx_owned(m))
832 			panic("mutex %s not owned at %s:%d",
833 			    m->mtx_object.lo_name, file, line);
834 		if (mtx_recursed(m)) {
835 			if ((what & MA_NOTRECURSED) != 0)
836 				panic("mutex %s recursed at %s:%d",
837 				    m->mtx_object.lo_name, file, line);
838 		} else if ((what & MA_RECURSED) != 0) {
839 			panic("mutex %s unrecursed at %s:%d",
840 			    m->mtx_object.lo_name, file, line);
841 		}
842 		break;
843 	case MA_NOTOWNED:
844 		if (mtx_owned(m))
845 			panic("mutex %s owned at %s:%d",
846 			    m->mtx_object.lo_name, file, line);
847 		break;
848 	default:
849 		panic("unknown mtx_assert at %s:%d", file, line);
850 	}
851 }
852 #endif
853 
854 /*
855  * The MUTEX_DEBUG-enabled mtx_validate()
856  *
857  * Most of these checks have been moved off into the LO_INITIALIZED flag
858  * maintained by the witness code.
859  */
860 #ifdef MUTEX_DEBUG
861 
862 void	mtx_validate(struct mtx *);
863 
864 void
865 mtx_validate(struct mtx *m)
866 {
867 
868 /*
869  * XXX: When kernacc() does not require Giant we can reenable this check
870  */
871 #ifdef notyet
872 /*
873  * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
874  * we can re-enable the kernacc() checks.
875  */
876 #ifndef __alpha__
877 	/*
878 	 * Can't call kernacc() from early init386(), especially when
879 	 * initializing Giant mutex, because some stuff in kernacc()
880 	 * requires Giant itself.
881 	 */
882 	if (!cold)
883 		if (!kernacc((caddr_t)m, sizeof(m),
884 		    VM_PROT_READ | VM_PROT_WRITE))
885 			panic("Can't read and write to mutex %p", m);
886 #endif
887 #endif
888 }
889 #endif
890 
891 /*
892  * General init routine used by the MTX_SYSINIT() macro.
893  */
894 void
895 mtx_sysinit(void *arg)
896 {
897 	struct mtx_args *margs = arg;
898 
899 	mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts);
900 }
901 
902 /*
903  * Mutex initialization routine; initialize lock `m' of type contained in
904  * `opts' with options contained in `opts' and name `name.'  The optional
905  * lock type `type' is used as a general lock category name for use with
906  * witness.
907  */
908 void
909 mtx_init(struct mtx *m, const char *name, const char *type, int opts)
910 {
911 	struct lock_object *lock;
912 
913 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
914 	    MTX_SLEEPABLE | MTX_NOWITNESS | MTX_DUPOK)) == 0);
915 
916 #ifdef MUTEX_DEBUG
917 	/* Diagnostic and error correction */
918 	mtx_validate(m);
919 #endif
920 
921 	lock = &m->mtx_object;
922 	KASSERT((lock->lo_flags & LO_INITIALIZED) == 0,
923 	    ("mutex %s %p already initialized", name, m));
924 	bzero(m, sizeof(*m));
925 	if (opts & MTX_SPIN)
926 		lock->lo_class = &lock_class_mtx_spin;
927 	else
928 		lock->lo_class = &lock_class_mtx_sleep;
929 	lock->lo_name = name;
930 	lock->lo_type = type != NULL ? type : name;
931 	if (opts & MTX_QUIET)
932 		lock->lo_flags = LO_QUIET;
933 	if (opts & MTX_RECURSE)
934 		lock->lo_flags |= LO_RECURSABLE;
935 	if (opts & MTX_SLEEPABLE)
936 		lock->lo_flags |= LO_SLEEPABLE;
937 	if ((opts & MTX_NOWITNESS) == 0)
938 		lock->lo_flags |= LO_WITNESS;
939 	if (opts & MTX_DUPOK)
940 		lock->lo_flags |= LO_DUPOK;
941 
942 	m->mtx_lock = MTX_UNOWNED;
943 	TAILQ_INIT(&m->mtx_blocked);
944 
945 	LOCK_LOG_INIT(lock, opts);
946 
947 	WITNESS_INIT(lock);
948 }
949 
950 /*
951  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
952  * passed in as a flag here because if the corresponding mtx_init() was
953  * called with MTX_QUIET set, then it will already be set in the mutex's
954  * flags.
955  */
956 void
957 mtx_destroy(struct mtx *m)
958 {
959 
960 	LOCK_LOG_DESTROY(&m->mtx_object, 0);
961 
962 	if (!mtx_owned(m))
963 		MPASS(mtx_unowned(m));
964 	else {
965 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
966 
967 		/* Tell witness this isn't locked to make it happy. */
968 		WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
969 		    __LINE__);
970 	}
971 
972 	WITNESS_DESTROY(&m->mtx_object);
973 }
974 
975 /*
976  * Intialize the mutex code and system mutexes.  This is called from the MD
977  * startup code prior to mi_startup().  The per-CPU data space needs to be
978  * setup before this is called.
979  */
980 void
981 mutex_init(void)
982 {
983 
984 	/* Setup thread0 so that mutexes work. */
985 	LIST_INIT(&thread0.td_contested);
986 
987 	/*
988 	 * Initialize mutexes.
989 	 */
990 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
991 	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
992 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
993 	mtx_lock(&Giant);
994 }
995 
996 /*
997  * Encapsulated Giant mutex routines.  These routines provide encapsulation
998  * control for the Giant mutex, allowing sysctls to be used to turn on and
999  * off Giant around certain subsystems.  The default value for the sysctls
1000  * are set to what developers believe is stable and working in regards to
1001  * the Giant pushdown.  Developers should not turn off Giant via these
1002  * sysctls unless they know what they are doing.
1003  *
1004  * Callers of mtx_lock_giant() are expected to pass the return value to an
1005  * accompanying mtx_unlock_giant() later on.  If multiple subsystems are
1006  * effected by a Giant wrap, all related sysctl variables must be zero for
1007  * the subsystem call to operate without Giant (as determined by the caller).
1008  */
1009 
1010 SYSCTL_NODE(_kern, OID_AUTO, giant, CTLFLAG_RD, NULL, "Giant mutex manipulation");
1011 
1012 static int kern_giant_all = 0;
1013 SYSCTL_INT(_kern_giant, OID_AUTO, all, CTLFLAG_RW, &kern_giant_all, 0, "");
1014 
1015 int kern_giant_proc = 1;	/* Giant around PROC locks */
1016 int kern_giant_file = 1;	/* Giant around struct file & filedesc */
1017 int kern_giant_ucred = 1;	/* Giant around ucred */
1018 SYSCTL_INT(_kern_giant, OID_AUTO, proc, CTLFLAG_RW, &kern_giant_proc, 0, "");
1019 SYSCTL_INT(_kern_giant, OID_AUTO, file, CTLFLAG_RW, &kern_giant_file, 0, "");
1020 SYSCTL_INT(_kern_giant, OID_AUTO, ucred, CTLFLAG_RW, &kern_giant_ucred, 0, "");
1021 
1022 int
1023 mtx_lock_giant(int sysctlvar)
1024 {
1025 	if (sysctlvar || kern_giant_all) {
1026 		mtx_lock(&Giant);
1027 		return(1);
1028 	}
1029 	return(0);
1030 }
1031 
1032 void
1033 mtx_unlock_giant(int s)
1034 {
1035 	if (s)
1036 		mtx_unlock(&Giant);
1037 }
1038