xref: /freebsd/sys/kern/kern_mutex.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Machine independent bits of mutex implementation.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_adaptive_mutexes.h"
40 #include "opt_ddb.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bus.h>
45 #include <sys/kernel.h>
46 #include <sys/ktr.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/sched.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysctl.h>
55 #include <sys/vmmeter.h>
56 
57 #include <machine/atomic.h>
58 #include <machine/bus.h>
59 #include <machine/clock.h>
60 #include <machine/cpu.h>
61 
62 #include <ddb/ddb.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_extern.h>
66 
67 /*
68  * Internal utility macros.
69  */
70 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
71 
72 #define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
73 	: (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
74 
75 /*
76  * Lock classes for sleep and spin mutexes.
77  */
78 struct lock_class lock_class_mtx_sleep = {
79 	"sleep mutex",
80 	LC_SLEEPLOCK | LC_RECURSABLE
81 };
82 struct lock_class lock_class_mtx_spin = {
83 	"spin mutex",
84 	LC_SPINLOCK | LC_RECURSABLE
85 };
86 
87 /*
88  * System-wide mutexes
89  */
90 struct mtx sched_lock;
91 struct mtx Giant;
92 
93 /*
94  * Prototypes for non-exported routines.
95  */
96 static void	propagate_priority(struct thread *);
97 
98 static void
99 propagate_priority(struct thread *td)
100 {
101 	int pri = td->td_priority;
102 	struct mtx *m = td->td_blocked;
103 
104 	mtx_assert(&sched_lock, MA_OWNED);
105 	for (;;) {
106 		struct thread *td1;
107 
108 		td = mtx_owner(m);
109 
110 		if (td == NULL) {
111 			/*
112 			 * This really isn't quite right. Really
113 			 * ought to bump priority of thread that
114 			 * next acquires the mutex.
115 			 */
116 			MPASS(m->mtx_lock == MTX_CONTESTED);
117 			return;
118 		}
119 
120 		MPASS(td->td_proc != NULL);
121 		MPASS(td->td_proc->p_magic == P_MAGIC);
122 		KASSERT(!TD_IS_SLEEPING(td), (
123 		    "sleeping thread (pid %d) owns a mutex",
124 		    td->td_proc->p_pid));
125 		if (td->td_priority <= pri) /* lower is higher priority */
126 			return;
127 
128 
129 		/*
130 		 * If lock holder is actually running, just bump priority.
131 		 */
132 		if (TD_IS_RUNNING(td)) {
133 			td->td_priority = pri;
134 			return;
135 		}
136 
137 #ifndef SMP
138 		/*
139 		 * For UP, we check to see if td is curthread (this shouldn't
140 		 * ever happen however as it would mean we are in a deadlock.)
141 		 */
142 		KASSERT(td != curthread, ("Deadlock detected"));
143 #endif
144 
145 		/*
146 		 * If on run queue move to new run queue, and quit.
147 		 * XXXKSE this gets a lot more complicated under threads
148 		 * but try anyhow.
149 		 */
150 		if (TD_ON_RUNQ(td)) {
151 			MPASS(td->td_blocked == NULL);
152 			sched_prio(td, pri);
153 			return;
154 		}
155 		/*
156 		 * Adjust for any other cases.
157 		 */
158 		td->td_priority = pri;
159 
160 		/*
161 		 * If we aren't blocked on a mutex, we should be.
162 		 */
163 		KASSERT(TD_ON_LOCK(td), (
164 		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
165 		    td->td_proc->p_pid, td->td_proc->p_comm, td->td_state,
166 		    m->mtx_object.lo_name));
167 
168 		/*
169 		 * Pick up the mutex that td is blocked on.
170 		 */
171 		m = td->td_blocked;
172 		MPASS(m != NULL);
173 
174 		/*
175 		 * Check if the thread needs to be moved up on
176 		 * the blocked chain
177 		 */
178 		if (td == TAILQ_FIRST(&m->mtx_blocked)) {
179 			continue;
180 		}
181 
182 		td1 = TAILQ_PREV(td, threadqueue, td_lockq);
183 		if (td1->td_priority <= pri) {
184 			continue;
185 		}
186 
187 		/*
188 		 * Remove thread from blocked chain and determine where
189 		 * it should be moved up to.  Since we know that td1 has
190 		 * a lower priority than td, we know that at least one
191 		 * thread in the chain has a lower priority and that
192 		 * td1 will thus not be NULL after the loop.
193 		 */
194 		TAILQ_REMOVE(&m->mtx_blocked, td, td_lockq);
195 		TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq) {
196 			MPASS(td1->td_proc->p_magic == P_MAGIC);
197 			if (td1->td_priority > pri)
198 				break;
199 		}
200 
201 		MPASS(td1 != NULL);
202 		TAILQ_INSERT_BEFORE(td1, td, td_lockq);
203 		CTR4(KTR_LOCK,
204 		    "propagate_priority: p %p moved before %p on [%p] %s",
205 		    td, td1, m, m->mtx_object.lo_name);
206 	}
207 }
208 
209 #ifdef MUTEX_PROFILING
210 SYSCTL_NODE(_debug, OID_AUTO, mutex, CTLFLAG_RD, NULL, "mutex debugging");
211 SYSCTL_NODE(_debug_mutex, OID_AUTO, prof, CTLFLAG_RD, NULL, "mutex profiling");
212 static int mutex_prof_enable = 0;
213 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, enable, CTLFLAG_RW,
214     &mutex_prof_enable, 0, "Enable tracing of mutex holdtime");
215 
216 struct mutex_prof {
217 	const char	*name;
218 	const char	*file;
219 	int		line;
220 	uintmax_t	cnt_max;
221 	uintmax_t	cnt_tot;
222 	uintmax_t	cnt_cur;
223 	struct mutex_prof *next;
224 };
225 
226 /*
227  * mprof_buf is a static pool of profiling records to avoid possible
228  * reentrance of the memory allocation functions.
229  *
230  * Note: NUM_MPROF_BUFFERS must be smaller than MPROF_HASH_SIZE.
231  */
232 #define	NUM_MPROF_BUFFERS	1000
233 static struct mutex_prof mprof_buf[NUM_MPROF_BUFFERS];
234 static int first_free_mprof_buf;
235 #define	MPROF_HASH_SIZE		1009
236 static struct mutex_prof *mprof_hash[MPROF_HASH_SIZE];
237 /* SWAG: sbuf size = avg stat. line size * number of locks */
238 #define MPROF_SBUF_SIZE		256 * 400
239 
240 static int mutex_prof_acquisitions;
241 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, acquisitions, CTLFLAG_RD,
242     &mutex_prof_acquisitions, 0, "Number of mutex acquistions recorded");
243 static int mutex_prof_records;
244 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, records, CTLFLAG_RD,
245     &mutex_prof_records, 0, "Number of profiling records");
246 static int mutex_prof_maxrecords = NUM_MPROF_BUFFERS;
247 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, maxrecords, CTLFLAG_RD,
248     &mutex_prof_maxrecords, 0, "Maximum number of profiling records");
249 static int mutex_prof_rejected;
250 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, rejected, CTLFLAG_RD,
251     &mutex_prof_rejected, 0, "Number of rejected profiling records");
252 static int mutex_prof_hashsize = MPROF_HASH_SIZE;
253 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, hashsize, CTLFLAG_RD,
254     &mutex_prof_hashsize, 0, "Hash size");
255 static int mutex_prof_collisions = 0;
256 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, collisions, CTLFLAG_RD,
257     &mutex_prof_collisions, 0, "Number of hash collisions");
258 
259 /*
260  * mprof_mtx protects the profiling buffers and the hash.
261  */
262 static struct mtx mprof_mtx;
263 MTX_SYSINIT(mprof, &mprof_mtx, "mutex profiling lock", MTX_SPIN | MTX_QUIET);
264 
265 static u_int64_t
266 nanoseconds(void)
267 {
268 	struct timespec tv;
269 
270 	nanotime(&tv);
271 	return (tv.tv_sec * (u_int64_t)1000000000 + tv.tv_nsec);
272 }
273 
274 static int
275 dump_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
276 {
277 	struct sbuf *sb;
278 	int error, i;
279 	static int multiplier = 1;
280 
281 	if (first_free_mprof_buf == 0)
282 		return (SYSCTL_OUT(req, "No locking recorded",
283 		    sizeof("No locking recorded")));
284 
285 retry_sbufops:
286 	sb = sbuf_new(NULL, NULL, MPROF_SBUF_SIZE * multiplier, SBUF_FIXEDLEN);
287 	sbuf_printf(sb, "%6s %12s %11s %5s %s\n",
288 	    "max", "total", "count", "avg", "name");
289 	/*
290 	 * XXX this spinlock seems to be by far the largest perpetrator
291 	 * of spinlock latency (1.6 msec on an Athlon1600 was recorded
292 	 * even before I pessimized it further by moving the average
293 	 * computation here).
294 	 */
295 	mtx_lock_spin(&mprof_mtx);
296 	for (i = 0; i < first_free_mprof_buf; ++i) {
297 		sbuf_printf(sb, "%6ju %12ju %11ju %5ju %s:%d (%s)\n",
298 		    mprof_buf[i].cnt_max / 1000,
299 		    mprof_buf[i].cnt_tot / 1000,
300 		    mprof_buf[i].cnt_cur,
301 		    mprof_buf[i].cnt_cur == 0 ? (uintmax_t)0 :
302 			mprof_buf[i].cnt_tot / (mprof_buf[i].cnt_cur * 1000),
303 		    mprof_buf[i].file, mprof_buf[i].line, mprof_buf[i].name);
304 		if (sbuf_overflowed(sb)) {
305 			mtx_unlock_spin(&mprof_mtx);
306 			sbuf_delete(sb);
307 			multiplier++;
308 			goto retry_sbufops;
309 		}
310 	}
311 	mtx_unlock_spin(&mprof_mtx);
312 	sbuf_finish(sb);
313 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
314 	sbuf_delete(sb);
315 	return (error);
316 }
317 SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
318     NULL, 0, dump_mutex_prof_stats, "A", "Mutex profiling statistics");
319 #endif
320 
321 /*
322  * Function versions of the inlined __mtx_* macros.  These are used by
323  * modules and can also be called from assembly language if needed.
324  */
325 void
326 _mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
327 {
328 
329 	MPASS(curthread != NULL);
330 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
331 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
332 	    file, line));
333 	_get_sleep_lock(m, curthread, opts, file, line);
334 	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
335 	    line);
336 	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
337 #ifdef MUTEX_PROFILING
338 	/* don't reset the timer when/if recursing */
339 	if (m->mtx_acqtime == 0) {
340 		m->mtx_filename = file;
341 		m->mtx_lineno = line;
342 		m->mtx_acqtime = mutex_prof_enable ? nanoseconds() : 0;
343 		++mutex_prof_acquisitions;
344 	}
345 #endif
346 }
347 
348 void
349 _mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
350 {
351 
352 	MPASS(curthread != NULL);
353 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
354 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
355 	    file, line));
356 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
357 	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
358 	    line);
359 	mtx_assert(m, MA_OWNED);
360 #ifdef MUTEX_PROFILING
361 	if (m->mtx_acqtime != 0) {
362 		static const char *unknown = "(unknown)";
363 		struct mutex_prof *mpp;
364 		u_int64_t acqtime, now;
365 		const char *p, *q;
366 		volatile u_int hash;
367 
368 		now = nanoseconds();
369 		acqtime = m->mtx_acqtime;
370 		m->mtx_acqtime = 0;
371 		if (now <= acqtime)
372 			goto out;
373 		for (p = m->mtx_filename;
374 		    p != NULL && strncmp(p, "../", 3) == 0; p += 3)
375 			/* nothing */ ;
376 		if (p == NULL || *p == '\0')
377 			p = unknown;
378 		for (hash = m->mtx_lineno, q = p; *q != '\0'; ++q)
379 			hash = (hash * 2 + *q) % MPROF_HASH_SIZE;
380 		mtx_lock_spin(&mprof_mtx);
381 		for (mpp = mprof_hash[hash]; mpp != NULL; mpp = mpp->next)
382 			if (mpp->line == m->mtx_lineno &&
383 			    strcmp(mpp->file, p) == 0)
384 				break;
385 		if (mpp == NULL) {
386 			/* Just exit if we cannot get a trace buffer */
387 			if (first_free_mprof_buf >= NUM_MPROF_BUFFERS) {
388 				++mutex_prof_rejected;
389 				goto unlock;
390 			}
391 			mpp = &mprof_buf[first_free_mprof_buf++];
392 			mpp->name = mtx_name(m);
393 			mpp->file = p;
394 			mpp->line = m->mtx_lineno;
395 			mpp->next = mprof_hash[hash];
396 			if (mprof_hash[hash] != NULL)
397 				++mutex_prof_collisions;
398 			mprof_hash[hash] = mpp;
399 			++mutex_prof_records;
400 		}
401 		/*
402 		 * Record if the mutex has been held longer now than ever
403 		 * before.
404 		 */
405 		if (now - acqtime > mpp->cnt_max)
406 			mpp->cnt_max = now - acqtime;
407 		mpp->cnt_tot += now - acqtime;
408 		mpp->cnt_cur++;
409 unlock:
410 		mtx_unlock_spin(&mprof_mtx);
411 	}
412 out:
413 #endif
414 	_rel_sleep_lock(m, curthread, opts, file, line);
415 }
416 
417 void
418 _mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
419 {
420 
421 	MPASS(curthread != NULL);
422 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
423 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
424 	    m->mtx_object.lo_name, file, line));
425 #if defined(SMP) || LOCK_DEBUG > 0 || 1
426 	_get_spin_lock(m, curthread, opts, file, line);
427 #else
428 	critical_enter();
429 #endif
430 	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
431 	    line);
432 	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
433 }
434 
435 void
436 _mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
437 {
438 
439 	MPASS(curthread != NULL);
440 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
441 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
442 	    m->mtx_object.lo_name, file, line));
443 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
444 	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
445 	    line);
446 	mtx_assert(m, MA_OWNED);
447 #if defined(SMP) || LOCK_DEBUG > 0 || 1
448 	_rel_spin_lock(m);
449 #else
450 	critical_exit();
451 #endif
452 }
453 
454 /*
455  * The important part of mtx_trylock{,_flags}()
456  * Tries to acquire lock `m.' We do NOT handle recursion here.  If this
457  * function is called on a recursed mutex, it will return failure and
458  * will not recursively acquire the lock.  You are expected to know what
459  * you are doing.
460  */
461 int
462 _mtx_trylock(struct mtx *m, int opts, const char *file, int line)
463 {
464 	int rval;
465 
466 	MPASS(curthread != NULL);
467 
468 	rval = _obtain_lock(m, curthread);
469 
470 	LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
471 	if (rval)
472 		WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
473 		    file, line);
474 
475 	return (rval);
476 }
477 
478 /*
479  * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
480  *
481  * We call this if the lock is either contested (i.e. we need to go to
482  * sleep waiting for it), or if we need to recurse on it.
483  */
484 void
485 _mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
486 {
487 	struct thread *td = curthread;
488 	struct thread *td1;
489 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
490 	struct thread *owner;
491 #endif
492 	uintptr_t v;
493 #ifdef KTR
494 	int cont_logged = 0;
495 #endif
496 
497 	if (mtx_owned(m)) {
498 		m->mtx_recurse++;
499 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
500 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
501 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
502 		return;
503 	}
504 
505 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
506 		CTR4(KTR_LOCK,
507 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
508 		    m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
509 
510 	while (!_obtain_lock(m, td)) {
511 
512 		mtx_lock_spin(&sched_lock);
513 		v = m->mtx_lock;
514 
515 		/*
516 		 * Check if the lock has been released while spinning for
517 		 * the sched_lock.
518 		 */
519 		if (v == MTX_UNOWNED) {
520 			mtx_unlock_spin(&sched_lock);
521 #ifdef __i386__
522 			ia32_pause();
523 #endif
524 			continue;
525 		}
526 
527 		/*
528 		 * The mutex was marked contested on release. This means that
529 		 * there are other threads blocked on it.  Grab ownership of
530 		 * it and propagate its priority to the current thread if
531 		 * necessary.
532 		 */
533 		if (v == MTX_CONTESTED) {
534 			td1 = TAILQ_FIRST(&m->mtx_blocked);
535 			MPASS(td1 != NULL);
536 			m->mtx_lock = (uintptr_t)td | MTX_CONTESTED;
537 			LIST_INSERT_HEAD(&td->td_contested, m, mtx_contested);
538 
539 			if (td1->td_priority < td->td_priority)
540 				td->td_priority = td1->td_priority;
541 			mtx_unlock_spin(&sched_lock);
542 			return;
543 		}
544 
545 		/*
546 		 * If the mutex isn't already contested and a failure occurs
547 		 * setting the contested bit, the mutex was either released
548 		 * or the state of the MTX_RECURSED bit changed.
549 		 */
550 		if ((v & MTX_CONTESTED) == 0 &&
551 		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
552 			(void *)(v | MTX_CONTESTED))) {
553 			mtx_unlock_spin(&sched_lock);
554 #ifdef __i386__
555 			ia32_pause();
556 #endif
557 			continue;
558 		}
559 
560 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
561 		/*
562 		 * If the current owner of the lock is executing on another
563 		 * CPU, spin instead of blocking.
564 		 */
565 		owner = (struct thread *)(v & MTX_FLAGMASK);
566 		if (m != &Giant && TD_IS_RUNNING(owner)) {
567 			mtx_unlock_spin(&sched_lock);
568 			while (mtx_owner(m) == owner && TD_IS_RUNNING(owner)) {
569 #ifdef __i386__
570 				ia32_pause();
571 #endif
572 			}
573 			continue;
574 		}
575 #endif	/* SMP && ADAPTIVE_MUTEXES */
576 
577 		/*
578 		 * We definitely must sleep for this lock.
579 		 */
580 		mtx_assert(m, MA_NOTOWNED);
581 
582 #ifdef notyet
583 		/*
584 		 * If we're borrowing an interrupted thread's VM context, we
585 		 * must clean up before going to sleep.
586 		 */
587 		if (td->td_ithd != NULL) {
588 			struct ithd *it = td->td_ithd;
589 
590 			if (it->it_interrupted) {
591 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
592 					CTR2(KTR_LOCK,
593 				    "_mtx_lock_sleep: %p interrupted %p",
594 					    it, it->it_interrupted);
595 				intr_thd_fixup(it);
596 			}
597 		}
598 #endif
599 
600 		/*
601 		 * Put us on the list of threads blocked on this mutex
602 		 * and add this mutex to the owning thread's list of
603 		 * contested mutexes if needed.
604 		 */
605 		if (TAILQ_EMPTY(&m->mtx_blocked)) {
606 			td1 = mtx_owner(m);
607 			LIST_INSERT_HEAD(&td1->td_contested, m, mtx_contested);
608 			TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
609 		} else {
610 			TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq)
611 				if (td1->td_priority > td->td_priority)
612 					break;
613 			if (td1)
614 				TAILQ_INSERT_BEFORE(td1, td, td_lockq);
615 			else
616 				TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
617 		}
618 #ifdef KTR
619 		if (!cont_logged) {
620 			CTR6(KTR_CONTENTION,
621 			    "contention: %p at %s:%d wants %s, taken by %s:%d",
622 			    td, file, line, m->mtx_object.lo_name,
623 			    WITNESS_FILE(&m->mtx_object),
624 			    WITNESS_LINE(&m->mtx_object));
625 			cont_logged = 1;
626 		}
627 #endif
628 
629 		/*
630 		 * Save who we're blocked on.
631 		 */
632 		td->td_blocked = m;
633 		td->td_lockname = m->mtx_object.lo_name;
634 		TD_SET_LOCK(td);
635 		propagate_priority(td);
636 
637 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
638 			CTR3(KTR_LOCK,
639 			    "_mtx_lock_sleep: p %p blocked on [%p] %s", td, m,
640 			    m->mtx_object.lo_name);
641 
642 		td->td_proc->p_stats->p_ru.ru_nvcsw++;
643 		mi_switch();
644 
645 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
646 			CTR3(KTR_LOCK,
647 			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
648 			  td, m, m->mtx_object.lo_name);
649 
650 		mtx_unlock_spin(&sched_lock);
651 	}
652 
653 #ifdef KTR
654 	if (cont_logged) {
655 		CTR4(KTR_CONTENTION,
656 		    "contention end: %s acquired by %p at %s:%d",
657 		    m->mtx_object.lo_name, td, file, line);
658 	}
659 #endif
660 	return;
661 }
662 
663 /*
664  * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
665  *
666  * This is only called if we need to actually spin for the lock. Recursion
667  * is handled inline.
668  */
669 void
670 _mtx_lock_spin(struct mtx *m, int opts, const char *file, int line)
671 {
672 	int i = 0;
673 
674 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
675 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
676 
677 	for (;;) {
678 		if (_obtain_lock(m, curthread))
679 			break;
680 
681 		/* Give interrupts a chance while we spin. */
682 		critical_exit();
683 		while (m->mtx_lock != MTX_UNOWNED) {
684 			if (i++ < 10000000) {
685 #ifdef __i386__
686 				ia32_pause();
687 #endif
688 				continue;
689 			}
690 			if (i < 60000000)
691 				DELAY(1);
692 #ifdef DDB
693 			else if (!db_active) {
694 #else
695 			else {
696 #endif
697 				printf("spin lock %s held by %p for > 5 seconds\n",
698 				    m->mtx_object.lo_name, (void *)m->mtx_lock);
699 #ifdef WITNESS
700 				witness_display_spinlock(&m->mtx_object,
701 				    mtx_owner(m));
702 #endif
703 				panic("spin lock held too long");
704 			}
705 #ifdef __i386__
706 			ia32_pause();
707 #endif
708 		}
709 		critical_enter();
710 	}
711 
712 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
713 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
714 
715 	return;
716 }
717 
718 /*
719  * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
720  *
721  * We are only called here if the lock is recursed or contested (i.e. we
722  * need to wake up a blocked thread).
723  */
724 void
725 _mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
726 {
727 	struct thread *td, *td1;
728 	struct mtx *m1;
729 	int pri;
730 
731 	td = curthread;
732 
733 	if (mtx_recursed(m)) {
734 		if (--(m->mtx_recurse) == 0)
735 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
736 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
737 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
738 		return;
739 	}
740 
741 	mtx_lock_spin(&sched_lock);
742 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
743 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
744 
745 	td1 = TAILQ_FIRST(&m->mtx_blocked);
746 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
747 	if (td1 == NULL) {
748 		_release_lock_quick(m);
749 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
750 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p no sleepers", m);
751 		mtx_unlock_spin(&sched_lock);
752 		return;
753 	}
754 #endif
755 	MPASS(td->td_proc->p_magic == P_MAGIC);
756 	MPASS(td1->td_proc->p_magic == P_MAGIC);
757 
758 	TAILQ_REMOVE(&m->mtx_blocked, td1, td_lockq);
759 
760 	LIST_REMOVE(m, mtx_contested);
761 	if (TAILQ_EMPTY(&m->mtx_blocked)) {
762 		_release_lock_quick(m);
763 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
764 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
765 	} else
766 		m->mtx_lock = MTX_CONTESTED;
767 
768 	pri = PRI_MAX;
769 	LIST_FOREACH(m1, &td->td_contested, mtx_contested) {
770 		int cp = TAILQ_FIRST(&m1->mtx_blocked)->td_priority;
771 		if (cp < pri)
772 			pri = cp;
773 	}
774 
775 	if (pri > td->td_base_pri)
776 		pri = td->td_base_pri;
777 	td->td_priority = pri;
778 
779 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
780 		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
781 		    m, td1);
782 
783 	td1->td_blocked = NULL;
784 	TD_CLR_LOCK(td1);
785 	if (!TD_CAN_RUN(td1)) {
786 		mtx_unlock_spin(&sched_lock);
787 		return;
788 	}
789 	setrunqueue(td1);
790 
791 	if (td->td_critnest == 1 && td1->td_priority < pri) {
792 #ifdef notyet
793 		if (td->td_ithd != NULL) {
794 			struct ithd *it = td->td_ithd;
795 
796 			if (it->it_interrupted) {
797 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
798 					CTR2(KTR_LOCK,
799 				    "_mtx_unlock_sleep: %p interrupted %p",
800 					    it, it->it_interrupted);
801 				intr_thd_fixup(it);
802 			}
803 		}
804 #endif
805 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
806 			CTR2(KTR_LOCK,
807 			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
808 			    (void *)m->mtx_lock);
809 
810 		td->td_proc->p_stats->p_ru.ru_nivcsw++;
811 		mi_switch();
812 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
813 			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
814 			    m, (void *)m->mtx_lock);
815 	}
816 
817 	mtx_unlock_spin(&sched_lock);
818 
819 	return;
820 }
821 
822 /*
823  * All the unlocking of MTX_SPIN locks is done inline.
824  * See the _rel_spin_lock() macro for the details.
825  */
826 
827 /*
828  * The backing function for the INVARIANTS-enabled mtx_assert()
829  */
830 #ifdef INVARIANT_SUPPORT
831 void
832 _mtx_assert(struct mtx *m, int what, const char *file, int line)
833 {
834 
835 	if (panicstr != NULL)
836 		return;
837 	switch (what) {
838 	case MA_OWNED:
839 	case MA_OWNED | MA_RECURSED:
840 	case MA_OWNED | MA_NOTRECURSED:
841 		if (!mtx_owned(m))
842 			panic("mutex %s not owned at %s:%d",
843 			    m->mtx_object.lo_name, file, line);
844 		if (mtx_recursed(m)) {
845 			if ((what & MA_NOTRECURSED) != 0)
846 				panic("mutex %s recursed at %s:%d",
847 				    m->mtx_object.lo_name, file, line);
848 		} else if ((what & MA_RECURSED) != 0) {
849 			panic("mutex %s unrecursed at %s:%d",
850 			    m->mtx_object.lo_name, file, line);
851 		}
852 		break;
853 	case MA_NOTOWNED:
854 		if (mtx_owned(m))
855 			panic("mutex %s owned at %s:%d",
856 			    m->mtx_object.lo_name, file, line);
857 		break;
858 	default:
859 		panic("unknown mtx_assert at %s:%d", file, line);
860 	}
861 }
862 #endif
863 
864 /*
865  * The MUTEX_DEBUG-enabled mtx_validate()
866  *
867  * Most of these checks have been moved off into the LO_INITIALIZED flag
868  * maintained by the witness code.
869  */
870 #ifdef MUTEX_DEBUG
871 
872 void	mtx_validate(struct mtx *);
873 
874 void
875 mtx_validate(struct mtx *m)
876 {
877 
878 /*
879  * XXX: When kernacc() does not require Giant we can reenable this check
880  */
881 #ifdef notyet
882 /*
883  * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
884  * we can re-enable the kernacc() checks.
885  */
886 #ifndef __alpha__
887 	/*
888 	 * Can't call kernacc() from early init386(), especially when
889 	 * initializing Giant mutex, because some stuff in kernacc()
890 	 * requires Giant itself.
891 	 */
892 	if (!cold)
893 		if (!kernacc((caddr_t)m, sizeof(m),
894 		    VM_PROT_READ | VM_PROT_WRITE))
895 			panic("Can't read and write to mutex %p", m);
896 #endif
897 #endif
898 }
899 #endif
900 
901 /*
902  * General init routine used by the MTX_SYSINIT() macro.
903  */
904 void
905 mtx_sysinit(void *arg)
906 {
907 	struct mtx_args *margs = arg;
908 
909 	mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts);
910 }
911 
912 /*
913  * Mutex initialization routine; initialize lock `m' of type contained in
914  * `opts' with options contained in `opts' and name `name.'  The optional
915  * lock type `type' is used as a general lock category name for use with
916  * witness.
917  */
918 void
919 mtx_init(struct mtx *m, const char *name, const char *type, int opts)
920 {
921 	struct lock_object *lock;
922 
923 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
924 	    MTX_NOWITNESS | MTX_DUPOK)) == 0);
925 
926 #ifdef MUTEX_DEBUG
927 	/* Diagnostic and error correction */
928 	mtx_validate(m);
929 #endif
930 
931 	lock = &m->mtx_object;
932 	KASSERT((lock->lo_flags & LO_INITIALIZED) == 0,
933 	    ("mutex \"%s\" %p already initialized", name, m));
934 	bzero(m, sizeof(*m));
935 	if (opts & MTX_SPIN)
936 		lock->lo_class = &lock_class_mtx_spin;
937 	else
938 		lock->lo_class = &lock_class_mtx_sleep;
939 	lock->lo_name = name;
940 	lock->lo_type = type != NULL ? type : name;
941 	if (opts & MTX_QUIET)
942 		lock->lo_flags = LO_QUIET;
943 	if (opts & MTX_RECURSE)
944 		lock->lo_flags |= LO_RECURSABLE;
945 	if ((opts & MTX_NOWITNESS) == 0)
946 		lock->lo_flags |= LO_WITNESS;
947 	if (opts & MTX_DUPOK)
948 		lock->lo_flags |= LO_DUPOK;
949 
950 	m->mtx_lock = MTX_UNOWNED;
951 	TAILQ_INIT(&m->mtx_blocked);
952 
953 	LOCK_LOG_INIT(lock, opts);
954 
955 	WITNESS_INIT(lock);
956 }
957 
958 /*
959  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
960  * passed in as a flag here because if the corresponding mtx_init() was
961  * called with MTX_QUIET set, then it will already be set in the mutex's
962  * flags.
963  */
964 void
965 mtx_destroy(struct mtx *m)
966 {
967 
968 	LOCK_LOG_DESTROY(&m->mtx_object, 0);
969 
970 	if (!mtx_owned(m))
971 		MPASS(mtx_unowned(m));
972 	else {
973 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
974 
975 		/* Tell witness this isn't locked to make it happy. */
976 		WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
977 		    __LINE__);
978 	}
979 
980 	WITNESS_DESTROY(&m->mtx_object);
981 }
982 
983 /*
984  * Intialize the mutex code and system mutexes.  This is called from the MD
985  * startup code prior to mi_startup().  The per-CPU data space needs to be
986  * setup before this is called.
987  */
988 void
989 mutex_init(void)
990 {
991 
992 	/* Setup thread0 so that mutexes work. */
993 	LIST_INIT(&thread0.td_contested);
994 
995 	/*
996 	 * Initialize mutexes.
997 	 */
998 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
999 	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
1000 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
1001 	mtx_lock(&Giant);
1002 }
1003