xref: /freebsd/sys/kern/kern_mutex.c (revision 729362425c09cf6b362366aabc6fb547eee8035a)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  * $FreeBSD$
31  */
32 
33 /*
34  * Machine independent bits of mutex implementation.
35  */
36 
37 #include "opt_adaptive_mutexes.h"
38 #include "opt_ddb.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bus.h>
43 #include <sys/kernel.h>
44 #include <sys/ktr.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysctl.h>
53 #include <sys/vmmeter.h>
54 
55 #include <machine/atomic.h>
56 #include <machine/bus.h>
57 #include <machine/clock.h>
58 #include <machine/cpu.h>
59 
60 #include <ddb/ddb.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_extern.h>
64 
65 /*
66  * Internal utility macros.
67  */
68 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
69 
70 #define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
71 	: (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
72 
73 /* XXXKSE This test will change. */
74 #define	thread_running(td)						\
75 	((td)->td_kse != NULL && (td)->td_kse->ke_oncpu != NOCPU)
76 
77 /*
78  * Lock classes for sleep and spin mutexes.
79  */
80 struct lock_class lock_class_mtx_sleep = {
81 	"sleep mutex",
82 	LC_SLEEPLOCK | LC_RECURSABLE
83 };
84 struct lock_class lock_class_mtx_spin = {
85 	"spin mutex",
86 	LC_SPINLOCK | LC_RECURSABLE
87 };
88 
89 /*
90  * System-wide mutexes
91  */
92 struct mtx sched_lock;
93 struct mtx Giant;
94 
95 /*
96  * Prototypes for non-exported routines.
97  */
98 static void	propagate_priority(struct thread *);
99 
100 static void
101 propagate_priority(struct thread *td)
102 {
103 	int pri = td->td_priority;
104 	struct mtx *m = td->td_blocked;
105 
106 	mtx_assert(&sched_lock, MA_OWNED);
107 	for (;;) {
108 		struct thread *td1;
109 
110 		td = mtx_owner(m);
111 
112 		if (td == NULL) {
113 			/*
114 			 * This really isn't quite right. Really
115 			 * ought to bump priority of thread that
116 			 * next acquires the mutex.
117 			 */
118 			MPASS(m->mtx_lock == MTX_CONTESTED);
119 			return;
120 		}
121 
122 		MPASS(td->td_proc != NULL);
123 		MPASS(td->td_proc->p_magic == P_MAGIC);
124 		KASSERT(!TD_IS_SLEEPING(td), ("sleeping thread owns a mutex"));
125 		if (td->td_priority <= pri) /* lower is higher priority */
126 			return;
127 
128 
129 		/*
130 		 * If lock holder is actually running, just bump priority.
131 		 */
132 		if (TD_IS_RUNNING(td)) {
133 			td->td_priority = pri;
134 			return;
135 		}
136 
137 #ifndef SMP
138 		/*
139 		 * For UP, we check to see if td is curthread (this shouldn't
140 		 * ever happen however as it would mean we are in a deadlock.)
141 		 */
142 		KASSERT(td != curthread, ("Deadlock detected"));
143 #endif
144 
145 		/*
146 		 * If on run queue move to new run queue, and quit.
147 		 * XXXKSE this gets a lot more complicated under threads
148 		 * but try anyhow.
149 		 */
150 		if (TD_ON_RUNQ(td)) {
151 			MPASS(td->td_blocked == NULL);
152 			sched_prio(td, pri);
153 			return;
154 		}
155 		/*
156 		 * Adjust for any other cases.
157 		 */
158 		td->td_priority = pri;
159 
160 		/*
161 		 * If we aren't blocked on a mutex, we should be.
162 		 */
163 		KASSERT(TD_ON_LOCK(td), (
164 		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
165 		    td->td_proc->p_pid, td->td_proc->p_comm, td->td_state,
166 		    m->mtx_object.lo_name));
167 
168 		/*
169 		 * Pick up the mutex that td is blocked on.
170 		 */
171 		m = td->td_blocked;
172 		MPASS(m != NULL);
173 
174 		/*
175 		 * Check if the thread needs to be moved up on
176 		 * the blocked chain
177 		 */
178 		if (td == TAILQ_FIRST(&m->mtx_blocked)) {
179 			continue;
180 		}
181 
182 		td1 = TAILQ_PREV(td, threadqueue, td_lockq);
183 		if (td1->td_priority <= pri) {
184 			continue;
185 		}
186 
187 		/*
188 		 * Remove thread from blocked chain and determine where
189 		 * it should be moved up to.  Since we know that td1 has
190 		 * a lower priority than td, we know that at least one
191 		 * thread in the chain has a lower priority and that
192 		 * td1 will thus not be NULL after the loop.
193 		 */
194 		TAILQ_REMOVE(&m->mtx_blocked, td, td_lockq);
195 		TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq) {
196 			MPASS(td1->td_proc->p_magic == P_MAGIC);
197 			if (td1->td_priority > pri)
198 				break;
199 		}
200 
201 		MPASS(td1 != NULL);
202 		TAILQ_INSERT_BEFORE(td1, td, td_lockq);
203 		CTR4(KTR_LOCK,
204 		    "propagate_priority: p %p moved before %p on [%p] %s",
205 		    td, td1, m, m->mtx_object.lo_name);
206 	}
207 }
208 
209 #ifdef MUTEX_PROFILING
210 SYSCTL_NODE(_debug, OID_AUTO, mutex, CTLFLAG_RD, NULL, "mutex debugging");
211 SYSCTL_NODE(_debug_mutex, OID_AUTO, prof, CTLFLAG_RD, NULL, "mutex profiling");
212 static int mutex_prof_enable = 0;
213 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, enable, CTLFLAG_RW,
214     &mutex_prof_enable, 0, "Enable tracing of mutex holdtime");
215 
216 struct mutex_prof {
217 	const char	*name;
218 	const char	*file;
219 	int		line;
220 	uintmax_t	cnt_max;
221 	uintmax_t	cnt_tot;
222 	uintmax_t	cnt_cur;
223 	struct mutex_prof *next;
224 };
225 
226 /*
227  * mprof_buf is a static pool of profiling records to avoid possible
228  * reentrance of the memory allocation functions.
229  *
230  * Note: NUM_MPROF_BUFFERS must be smaller than MPROF_HASH_SIZE.
231  */
232 #define	NUM_MPROF_BUFFERS	1000
233 static struct mutex_prof mprof_buf[NUM_MPROF_BUFFERS];
234 static int first_free_mprof_buf;
235 #define	MPROF_HASH_SIZE		1009
236 static struct mutex_prof *mprof_hash[MPROF_HASH_SIZE];
237 /* SWAG: sbuf size = avg stat. line size * number of locks */
238 #define MPROF_SBUF_SIZE		256 * 400
239 
240 static int mutex_prof_acquisitions;
241 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, acquisitions, CTLFLAG_RD,
242     &mutex_prof_acquisitions, 0, "Number of mutex acquistions recorded");
243 static int mutex_prof_records;
244 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, records, CTLFLAG_RD,
245     &mutex_prof_records, 0, "Number of profiling records");
246 static int mutex_prof_maxrecords = NUM_MPROF_BUFFERS;
247 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, maxrecords, CTLFLAG_RD,
248     &mutex_prof_maxrecords, 0, "Maximum number of profiling records");
249 static int mutex_prof_rejected;
250 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, rejected, CTLFLAG_RD,
251     &mutex_prof_rejected, 0, "Number of rejected profiling records");
252 static int mutex_prof_hashsize = MPROF_HASH_SIZE;
253 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, hashsize, CTLFLAG_RD,
254     &mutex_prof_hashsize, 0, "Hash size");
255 static int mutex_prof_collisions = 0;
256 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, collisions, CTLFLAG_RD,
257     &mutex_prof_collisions, 0, "Number of hash collisions");
258 
259 /*
260  * mprof_mtx protects the profiling buffers and the hash.
261  */
262 static struct mtx mprof_mtx;
263 MTX_SYSINIT(mprof, &mprof_mtx, "mutex profiling lock", MTX_SPIN | MTX_QUIET);
264 
265 static u_int64_t
266 nanoseconds(void)
267 {
268 	struct timespec tv;
269 
270 	nanotime(&tv);
271 	return (tv.tv_sec * (u_int64_t)1000000000 + tv.tv_nsec);
272 }
273 
274 static int
275 dump_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
276 {
277 	struct sbuf *sb;
278 	int error, i;
279 	static int multiplier = 1;
280 
281 	if (first_free_mprof_buf == 0)
282 		return (SYSCTL_OUT(req, "No locking recorded",
283 		    sizeof("No locking recorded")));
284 
285 retry_sbufops:
286 	sb = sbuf_new(NULL, NULL, MPROF_SBUF_SIZE * multiplier, SBUF_FIXEDLEN);
287 	sbuf_printf(sb, "%6s %12s %11s %5s %s\n",
288 	    "max", "total", "count", "avg", "name");
289 	/*
290 	 * XXX this spinlock seems to be by far the largest perpetrator
291 	 * of spinlock latency (1.6 msec on an Athlon1600 was recorded
292 	 * even before I pessimized it further by moving the average
293 	 * computation here).
294 	 */
295 	mtx_lock_spin(&mprof_mtx);
296 	for (i = 0; i < first_free_mprof_buf; ++i) {
297 		sbuf_printf(sb, "%6ju %12ju %11ju %5ju %s:%d (%s)\n",
298 		    mprof_buf[i].cnt_max / 1000,
299 		    mprof_buf[i].cnt_tot / 1000,
300 		    mprof_buf[i].cnt_cur,
301 		    mprof_buf[i].cnt_cur == 0 ? (uintmax_t)0 :
302 			mprof_buf[i].cnt_tot / (mprof_buf[i].cnt_cur * 1000),
303 		    mprof_buf[i].file, mprof_buf[i].line, mprof_buf[i].name);
304 		if (sbuf_overflowed(sb)) {
305 			mtx_unlock_spin(&mprof_mtx);
306 			sbuf_delete(sb);
307 			multiplier++;
308 			goto retry_sbufops;
309 		}
310 	}
311 	mtx_unlock_spin(&mprof_mtx);
312 	sbuf_finish(sb);
313 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
314 	sbuf_delete(sb);
315 	return (error);
316 }
317 SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
318     NULL, 0, dump_mutex_prof_stats, "A", "Mutex profiling statistics");
319 #endif
320 
321 /*
322  * Function versions of the inlined __mtx_* macros.  These are used by
323  * modules and can also be called from assembly language if needed.
324  */
325 void
326 _mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
327 {
328 
329 	MPASS(curthread != NULL);
330 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
331 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
332 	    file, line));
333 	_get_sleep_lock(m, curthread, opts, file, line);
334 	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
335 	    line);
336 	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
337 #ifdef MUTEX_PROFILING
338 	/* don't reset the timer when/if recursing */
339 	if (m->mtx_acqtime == 0) {
340 		m->mtx_filename = file;
341 		m->mtx_lineno = line;
342 		m->mtx_acqtime = mutex_prof_enable ? nanoseconds() : 0;
343 		++mutex_prof_acquisitions;
344 	}
345 #endif
346 }
347 
348 void
349 _mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
350 {
351 
352 	MPASS(curthread != NULL);
353 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
354 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
355 	    file, line));
356 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
357 	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
358 	    line);
359 	mtx_assert(m, MA_OWNED);
360 #ifdef MUTEX_PROFILING
361 	if (m->mtx_acqtime != 0) {
362 		static const char *unknown = "(unknown)";
363 		struct mutex_prof *mpp;
364 		u_int64_t acqtime, now;
365 		const char *p, *q;
366 		volatile u_int hash;
367 
368 		now = nanoseconds();
369 		acqtime = m->mtx_acqtime;
370 		m->mtx_acqtime = 0;
371 		if (now <= acqtime)
372 			goto out;
373 		for (p = m->mtx_filename;
374 		    p != NULL && strncmp(p, "../", 3) == 0; p += 3)
375 			/* nothing */ ;
376 		if (p == NULL || *p == '\0')
377 			p = unknown;
378 		for (hash = m->mtx_lineno, q = p; *q != '\0'; ++q)
379 			hash = (hash * 2 + *q) % MPROF_HASH_SIZE;
380 		mtx_lock_spin(&mprof_mtx);
381 		for (mpp = mprof_hash[hash]; mpp != NULL; mpp = mpp->next)
382 			if (mpp->line == m->mtx_lineno &&
383 			    strcmp(mpp->file, p) == 0)
384 				break;
385 		if (mpp == NULL) {
386 			/* Just exit if we cannot get a trace buffer */
387 			if (first_free_mprof_buf >= NUM_MPROF_BUFFERS) {
388 				++mutex_prof_rejected;
389 				goto unlock;
390 			}
391 			mpp = &mprof_buf[first_free_mprof_buf++];
392 			mpp->name = mtx_name(m);
393 			mpp->file = p;
394 			mpp->line = m->mtx_lineno;
395 			mpp->next = mprof_hash[hash];
396 			if (mprof_hash[hash] != NULL)
397 				++mutex_prof_collisions;
398 			mprof_hash[hash] = mpp;
399 			++mutex_prof_records;
400 		}
401 		/*
402 		 * Record if the mutex has been held longer now than ever
403 		 * before.
404 		 */
405 		if (now - acqtime > mpp->cnt_max)
406 			mpp->cnt_max = now - acqtime;
407 		mpp->cnt_tot += now - acqtime;
408 		mpp->cnt_cur++;
409 unlock:
410 		mtx_unlock_spin(&mprof_mtx);
411 	}
412 out:
413 #endif
414 	_rel_sleep_lock(m, curthread, opts, file, line);
415 }
416 
417 void
418 _mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
419 {
420 
421 	MPASS(curthread != NULL);
422 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
423 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
424 	    m->mtx_object.lo_name, file, line));
425 #if defined(SMP) || LOCK_DEBUG > 0 || 1
426 	_get_spin_lock(m, curthread, opts, file, line);
427 #else
428 	critical_enter();
429 #endif
430 	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
431 	    line);
432 	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
433 }
434 
435 void
436 _mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
437 {
438 
439 	MPASS(curthread != NULL);
440 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
441 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
442 	    m->mtx_object.lo_name, file, line));
443 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
444 	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
445 	    line);
446 	mtx_assert(m, MA_OWNED);
447 #if defined(SMP) || LOCK_DEBUG > 0 || 1
448 	_rel_spin_lock(m);
449 #else
450 	critical_exit();
451 #endif
452 }
453 
454 /*
455  * The important part of mtx_trylock{,_flags}()
456  * Tries to acquire lock `m.' We do NOT handle recursion here.  If this
457  * function is called on a recursed mutex, it will return failure and
458  * will not recursively acquire the lock.  You are expected to know what
459  * you are doing.
460  */
461 int
462 _mtx_trylock(struct mtx *m, int opts, const char *file, int line)
463 {
464 	int rval;
465 
466 	MPASS(curthread != NULL);
467 
468 	rval = _obtain_lock(m, curthread);
469 
470 	LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
471 	if (rval)
472 		WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
473 		    file, line);
474 
475 	return (rval);
476 }
477 
478 /*
479  * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
480  *
481  * We call this if the lock is either contested (i.e. we need to go to
482  * sleep waiting for it), or if we need to recurse on it.
483  */
484 void
485 _mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
486 {
487 	struct thread *td = curthread;
488 	struct thread *td1;
489 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
490 	struct thread *owner;
491 #endif
492 	uintptr_t v;
493 #ifdef KTR
494 	int cont_logged = 0;
495 #endif
496 
497 	if (mtx_owned(m)) {
498 		m->mtx_recurse++;
499 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
500 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
501 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
502 		return;
503 	}
504 
505 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
506 		CTR4(KTR_LOCK,
507 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
508 		    m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
509 
510 	while (!_obtain_lock(m, td)) {
511 
512 		mtx_lock_spin(&sched_lock);
513 		v = m->mtx_lock;
514 
515 		/*
516 		 * Check if the lock has been released while spinning for
517 		 * the sched_lock.
518 		 */
519 		if (v == MTX_UNOWNED) {
520 			mtx_unlock_spin(&sched_lock);
521 #ifdef __i386__
522 			ia32_pause();
523 #endif
524 			continue;
525 		}
526 
527 		/*
528 		 * The mutex was marked contested on release. This means that
529 		 * there are threads blocked on it.
530 		 */
531 		if (v == MTX_CONTESTED) {
532 			td1 = TAILQ_FIRST(&m->mtx_blocked);
533 			MPASS(td1 != NULL);
534 			m->mtx_lock = (uintptr_t)td | MTX_CONTESTED;
535 
536 			if (td1->td_priority < td->td_priority)
537 				td->td_priority = td1->td_priority;
538 			mtx_unlock_spin(&sched_lock);
539 			return;
540 		}
541 
542 		/*
543 		 * If the mutex isn't already contested and a failure occurs
544 		 * setting the contested bit, the mutex was either released
545 		 * or the state of the MTX_RECURSED bit changed.
546 		 */
547 		if ((v & MTX_CONTESTED) == 0 &&
548 		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
549 			(void *)(v | MTX_CONTESTED))) {
550 			mtx_unlock_spin(&sched_lock);
551 #ifdef __i386__
552 			ia32_pause();
553 #endif
554 			continue;
555 		}
556 
557 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
558 		/*
559 		 * If the current owner of the lock is executing on another
560 		 * CPU, spin instead of blocking.
561 		 */
562 		owner = (struct thread *)(v & MTX_FLAGMASK);
563 		if (m != &Giant && thread_running(owner)) {
564 			mtx_unlock_spin(&sched_lock);
565 			while (mtx_owner(m) == owner && thread_running(owner)) {
566 #ifdef __i386__
567 				ia32_pause();
568 #endif
569 			}
570 			continue;
571 		}
572 #endif	/* SMP && ADAPTIVE_MUTEXES */
573 
574 		/*
575 		 * We definitely must sleep for this lock.
576 		 */
577 		mtx_assert(m, MA_NOTOWNED);
578 
579 #ifdef notyet
580 		/*
581 		 * If we're borrowing an interrupted thread's VM context, we
582 		 * must clean up before going to sleep.
583 		 */
584 		if (td->td_ithd != NULL) {
585 			struct ithd *it = td->td_ithd;
586 
587 			if (it->it_interrupted) {
588 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
589 					CTR2(KTR_LOCK,
590 				    "_mtx_lock_sleep: %p interrupted %p",
591 					    it, it->it_interrupted);
592 				intr_thd_fixup(it);
593 			}
594 		}
595 #endif
596 
597 		/*
598 		 * Put us on the list of threads blocked on this mutex.
599 		 */
600 		if (TAILQ_EMPTY(&m->mtx_blocked)) {
601 			td1 = mtx_owner(m);
602 			LIST_INSERT_HEAD(&td1->td_contested, m, mtx_contested);
603 			TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
604 		} else {
605 			TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq)
606 				if (td1->td_priority > td->td_priority)
607 					break;
608 			if (td1)
609 				TAILQ_INSERT_BEFORE(td1, td, td_lockq);
610 			else
611 				TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
612 		}
613 #ifdef KTR
614 		if (!cont_logged) {
615 			CTR6(KTR_CONTENTION,
616 			    "contention: %p at %s:%d wants %s, taken by %s:%d",
617 			    td, file, line, m->mtx_object.lo_name,
618 			    WITNESS_FILE(&m->mtx_object),
619 			    WITNESS_LINE(&m->mtx_object));
620 			cont_logged = 1;
621 		}
622 #endif
623 
624 		/*
625 		 * Save who we're blocked on.
626 		 */
627 		td->td_blocked = m;
628 		td->td_lockname = m->mtx_object.lo_name;
629 		TD_SET_LOCK(td);
630 		propagate_priority(td);
631 
632 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
633 			CTR3(KTR_LOCK,
634 			    "_mtx_lock_sleep: p %p blocked on [%p] %s", td, m,
635 			    m->mtx_object.lo_name);
636 
637 		td->td_proc->p_stats->p_ru.ru_nvcsw++;
638 		mi_switch();
639 
640 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
641 			CTR3(KTR_LOCK,
642 			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
643 			  td, m, m->mtx_object.lo_name);
644 
645 		mtx_unlock_spin(&sched_lock);
646 	}
647 
648 #ifdef KTR
649 	if (cont_logged) {
650 		CTR4(KTR_CONTENTION,
651 		    "contention end: %s acquired by %p at %s:%d",
652 		    m->mtx_object.lo_name, td, file, line);
653 	}
654 #endif
655 	return;
656 }
657 
658 /*
659  * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
660  *
661  * This is only called if we need to actually spin for the lock. Recursion
662  * is handled inline.
663  */
664 void
665 _mtx_lock_spin(struct mtx *m, int opts, const char *file, int line)
666 {
667 	int i = 0;
668 
669 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
670 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
671 
672 	for (;;) {
673 		if (_obtain_lock(m, curthread))
674 			break;
675 
676 		/* Give interrupts a chance while we spin. */
677 		critical_exit();
678 		while (m->mtx_lock != MTX_UNOWNED) {
679 			if (i++ < 10000000) {
680 #ifdef __i386__
681 				ia32_pause();
682 #endif
683 				continue;
684 			}
685 			if (i < 60000000)
686 				DELAY(1);
687 #ifdef DDB
688 			else if (!db_active)
689 #else
690 			else
691 #endif
692 				panic("spin lock %s held by %p for > 5 seconds",
693 				    m->mtx_object.lo_name, (void *)m->mtx_lock);
694 #ifdef __i386__
695 			ia32_pause();
696 #endif
697 		}
698 		critical_enter();
699 	}
700 
701 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
702 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
703 
704 	return;
705 }
706 
707 /*
708  * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
709  *
710  * We are only called here if the lock is recursed or contested (i.e. we
711  * need to wake up a blocked thread).
712  */
713 void
714 _mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
715 {
716 	struct thread *td, *td1;
717 	struct mtx *m1;
718 	int pri;
719 
720 	td = curthread;
721 
722 	if (mtx_recursed(m)) {
723 		if (--(m->mtx_recurse) == 0)
724 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
725 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
726 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
727 		return;
728 	}
729 
730 	mtx_lock_spin(&sched_lock);
731 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
732 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
733 
734 	td1 = TAILQ_FIRST(&m->mtx_blocked);
735 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
736 	if (td1 == NULL) {
737 		_release_lock_quick(m);
738 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
739 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p no sleepers", m);
740 		mtx_unlock_spin(&sched_lock);
741 		return;
742 	}
743 #endif
744 	MPASS(td->td_proc->p_magic == P_MAGIC);
745 	MPASS(td1->td_proc->p_magic == P_MAGIC);
746 
747 	TAILQ_REMOVE(&m->mtx_blocked, td1, td_lockq);
748 
749 	if (TAILQ_EMPTY(&m->mtx_blocked)) {
750 		LIST_REMOVE(m, mtx_contested);
751 		_release_lock_quick(m);
752 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
753 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
754 	} else
755 		atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED);
756 
757 	pri = PRI_MAX;
758 	LIST_FOREACH(m1, &td->td_contested, mtx_contested) {
759 		int cp = TAILQ_FIRST(&m1->mtx_blocked)->td_priority;
760 		if (cp < pri)
761 			pri = cp;
762 	}
763 
764 	if (pri > td->td_base_pri)
765 		pri = td->td_base_pri;
766 	td->td_priority = pri;
767 
768 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
769 		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
770 		    m, td1);
771 
772 	td1->td_blocked = NULL;
773 	TD_CLR_LOCK(td1);
774 	if (!TD_CAN_RUN(td1)) {
775 		mtx_unlock_spin(&sched_lock);
776 		return;
777 	}
778 	setrunqueue(td1);
779 
780 	if (td->td_critnest == 1 && td1->td_priority < pri) {
781 #ifdef notyet
782 		if (td->td_ithd != NULL) {
783 			struct ithd *it = td->td_ithd;
784 
785 			if (it->it_interrupted) {
786 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
787 					CTR2(KTR_LOCK,
788 				    "_mtx_unlock_sleep: %p interrupted %p",
789 					    it, it->it_interrupted);
790 				intr_thd_fixup(it);
791 			}
792 		}
793 #endif
794 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
795 			CTR2(KTR_LOCK,
796 			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
797 			    (void *)m->mtx_lock);
798 
799 		td->td_proc->p_stats->p_ru.ru_nivcsw++;
800 		mi_switch();
801 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
802 			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
803 			    m, (void *)m->mtx_lock);
804 	}
805 
806 	mtx_unlock_spin(&sched_lock);
807 
808 	return;
809 }
810 
811 /*
812  * All the unlocking of MTX_SPIN locks is done inline.
813  * See the _rel_spin_lock() macro for the details.
814  */
815 
816 /*
817  * The backing function for the INVARIANTS-enabled mtx_assert()
818  */
819 #ifdef INVARIANT_SUPPORT
820 void
821 _mtx_assert(struct mtx *m, int what, const char *file, int line)
822 {
823 
824 	if (panicstr != NULL)
825 		return;
826 	switch (what) {
827 	case MA_OWNED:
828 	case MA_OWNED | MA_RECURSED:
829 	case MA_OWNED | MA_NOTRECURSED:
830 		if (!mtx_owned(m))
831 			panic("mutex %s not owned at %s:%d",
832 			    m->mtx_object.lo_name, file, line);
833 		if (mtx_recursed(m)) {
834 			if ((what & MA_NOTRECURSED) != 0)
835 				panic("mutex %s recursed at %s:%d",
836 				    m->mtx_object.lo_name, file, line);
837 		} else if ((what & MA_RECURSED) != 0) {
838 			panic("mutex %s unrecursed at %s:%d",
839 			    m->mtx_object.lo_name, file, line);
840 		}
841 		break;
842 	case MA_NOTOWNED:
843 		if (mtx_owned(m))
844 			panic("mutex %s owned at %s:%d",
845 			    m->mtx_object.lo_name, file, line);
846 		break;
847 	default:
848 		panic("unknown mtx_assert at %s:%d", file, line);
849 	}
850 }
851 #endif
852 
853 /*
854  * The MUTEX_DEBUG-enabled mtx_validate()
855  *
856  * Most of these checks have been moved off into the LO_INITIALIZED flag
857  * maintained by the witness code.
858  */
859 #ifdef MUTEX_DEBUG
860 
861 void	mtx_validate(struct mtx *);
862 
863 void
864 mtx_validate(struct mtx *m)
865 {
866 
867 /*
868  * XXX: When kernacc() does not require Giant we can reenable this check
869  */
870 #ifdef notyet
871 /*
872  * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
873  * we can re-enable the kernacc() checks.
874  */
875 #ifndef __alpha__
876 	/*
877 	 * Can't call kernacc() from early init386(), especially when
878 	 * initializing Giant mutex, because some stuff in kernacc()
879 	 * requires Giant itself.
880 	 */
881 	if (!cold)
882 		if (!kernacc((caddr_t)m, sizeof(m),
883 		    VM_PROT_READ | VM_PROT_WRITE))
884 			panic("Can't read and write to mutex %p", m);
885 #endif
886 #endif
887 }
888 #endif
889 
890 /*
891  * General init routine used by the MTX_SYSINIT() macro.
892  */
893 void
894 mtx_sysinit(void *arg)
895 {
896 	struct mtx_args *margs = arg;
897 
898 	mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts);
899 }
900 
901 /*
902  * Mutex initialization routine; initialize lock `m' of type contained in
903  * `opts' with options contained in `opts' and name `name.'  The optional
904  * lock type `type' is used as a general lock category name for use with
905  * witness.
906  */
907 void
908 mtx_init(struct mtx *m, const char *name, const char *type, int opts)
909 {
910 	struct lock_object *lock;
911 
912 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
913 	    MTX_NOWITNESS | MTX_DUPOK)) == 0);
914 
915 #ifdef MUTEX_DEBUG
916 	/* Diagnostic and error correction */
917 	mtx_validate(m);
918 #endif
919 
920 	lock = &m->mtx_object;
921 	KASSERT((lock->lo_flags & LO_INITIALIZED) == 0,
922 	    ("mutex %s %p already initialized", name, m));
923 	bzero(m, sizeof(*m));
924 	if (opts & MTX_SPIN)
925 		lock->lo_class = &lock_class_mtx_spin;
926 	else
927 		lock->lo_class = &lock_class_mtx_sleep;
928 	lock->lo_name = name;
929 	lock->lo_type = type != NULL ? type : name;
930 	if (opts & MTX_QUIET)
931 		lock->lo_flags = LO_QUIET;
932 	if (opts & MTX_RECURSE)
933 		lock->lo_flags |= LO_RECURSABLE;
934 	if ((opts & MTX_NOWITNESS) == 0)
935 		lock->lo_flags |= LO_WITNESS;
936 	if (opts & MTX_DUPOK)
937 		lock->lo_flags |= LO_DUPOK;
938 
939 	m->mtx_lock = MTX_UNOWNED;
940 	TAILQ_INIT(&m->mtx_blocked);
941 
942 	LOCK_LOG_INIT(lock, opts);
943 
944 	WITNESS_INIT(lock);
945 }
946 
947 /*
948  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
949  * passed in as a flag here because if the corresponding mtx_init() was
950  * called with MTX_QUIET set, then it will already be set in the mutex's
951  * flags.
952  */
953 void
954 mtx_destroy(struct mtx *m)
955 {
956 
957 	LOCK_LOG_DESTROY(&m->mtx_object, 0);
958 
959 	if (!mtx_owned(m))
960 		MPASS(mtx_unowned(m));
961 	else {
962 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
963 
964 		/* Tell witness this isn't locked to make it happy. */
965 		WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
966 		    __LINE__);
967 	}
968 
969 	WITNESS_DESTROY(&m->mtx_object);
970 }
971 
972 /*
973  * Intialize the mutex code and system mutexes.  This is called from the MD
974  * startup code prior to mi_startup().  The per-CPU data space needs to be
975  * setup before this is called.
976  */
977 void
978 mutex_init(void)
979 {
980 
981 	/* Setup thread0 so that mutexes work. */
982 	LIST_INIT(&thread0.td_contested);
983 
984 	/*
985 	 * Initialize mutexes.
986 	 */
987 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
988 	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
989 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
990 	mtx_lock(&Giant);
991 }
992