xref: /freebsd/sys/kern/kern_mutex.c (revision 71fe318b852b8dfb3e799cb12ef184750f7f8eac)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  * $FreeBSD$
31  */
32 
33 /*
34  * Machine independent bits of mutex implementation.
35  */
36 
37 #include "opt_adaptive_mutexes.h"
38 #include "opt_ddb.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bus.h>
43 #include <sys/kernel.h>
44 #include <sys/ktr.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/sbuf.h>
52 #include <sys/stdint.h>
53 #include <sys/sysctl.h>
54 #include <sys/vmmeter.h>
55 
56 #include <machine/atomic.h>
57 #include <machine/bus.h>
58 #include <machine/clock.h>
59 #include <machine/cpu.h>
60 
61 #include <ddb/ddb.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_extern.h>
65 
66 /*
67  * Internal utility macros.
68  */
69 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
70 
71 #define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
72 	: (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
73 
74 /* XXXKSE This test will change. */
75 #define	thread_running(td)						\
76 	((td)->td_kse != NULL && (td)->td_kse->ke_oncpu != NOCPU)
77 
78 /*
79  * Lock classes for sleep and spin mutexes.
80  */
81 struct lock_class lock_class_mtx_sleep = {
82 	"sleep mutex",
83 	LC_SLEEPLOCK | LC_RECURSABLE
84 };
85 struct lock_class lock_class_mtx_spin = {
86 	"spin mutex",
87 	LC_SPINLOCK | LC_RECURSABLE
88 };
89 
90 /*
91  * System-wide mutexes
92  */
93 struct mtx sched_lock;
94 struct mtx Giant;
95 
96 /*
97  * Prototypes for non-exported routines.
98  */
99 static void	propagate_priority(struct thread *);
100 
101 static void
102 propagate_priority(struct thread *td)
103 {
104 	int pri = td->td_priority;
105 	struct mtx *m = td->td_blocked;
106 
107 	mtx_assert(&sched_lock, MA_OWNED);
108 	for (;;) {
109 		struct thread *td1;
110 
111 		td = mtx_owner(m);
112 
113 		if (td == NULL) {
114 			/*
115 			 * This really isn't quite right. Really
116 			 * ought to bump priority of thread that
117 			 * next acquires the mutex.
118 			 */
119 			MPASS(m->mtx_lock == MTX_CONTESTED);
120 			return;
121 		}
122 
123 		MPASS(td->td_proc != NULL);
124 		MPASS(td->td_proc->p_magic == P_MAGIC);
125 		KASSERT(!TD_IS_SLEEPING(td), ("sleeping thread owns a mutex"));
126 		if (td->td_priority <= pri) /* lower is higher priority */
127 			return;
128 
129 
130 		/*
131 		 * If lock holder is actually running, just bump priority.
132 		 */
133 		if (TD_IS_RUNNING(td)) {
134 			td->td_priority = pri;
135 			return;
136 		}
137 
138 #ifndef SMP
139 		/*
140 		 * For UP, we check to see if td is curthread (this shouldn't
141 		 * ever happen however as it would mean we are in a deadlock.)
142 		 */
143 		KASSERT(td != curthread, ("Deadlock detected"));
144 #endif
145 
146 		/*
147 		 * If on run queue move to new run queue, and quit.
148 		 * XXXKSE this gets a lot more complicated under threads
149 		 * but try anyhow.
150 		 */
151 		if (TD_ON_RUNQ(td)) {
152 			MPASS(td->td_blocked == NULL);
153 			sched_prio(td, pri);
154 			return;
155 		}
156 		/*
157 		 * Adjust for any other cases.
158 		 */
159 		td->td_priority = pri;
160 
161 		/*
162 		 * If we aren't blocked on a mutex, we should be.
163 		 */
164 		KASSERT(TD_ON_LOCK(td), (
165 		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
166 		    td->td_proc->p_pid, td->td_proc->p_comm, td->td_state,
167 		    m->mtx_object.lo_name));
168 
169 		/*
170 		 * Pick up the mutex that td is blocked on.
171 		 */
172 		m = td->td_blocked;
173 		MPASS(m != NULL);
174 
175 		/*
176 		 * Check if the thread needs to be moved up on
177 		 * the blocked chain
178 		 */
179 		if (td == TAILQ_FIRST(&m->mtx_blocked)) {
180 			continue;
181 		}
182 
183 		td1 = TAILQ_PREV(td, threadqueue, td_lockq);
184 		if (td1->td_priority <= pri) {
185 			continue;
186 		}
187 
188 		/*
189 		 * Remove thread from blocked chain and determine where
190 		 * it should be moved up to.  Since we know that td1 has
191 		 * a lower priority than td, we know that at least one
192 		 * thread in the chain has a lower priority and that
193 		 * td1 will thus not be NULL after the loop.
194 		 */
195 		TAILQ_REMOVE(&m->mtx_blocked, td, td_lockq);
196 		TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq) {
197 			MPASS(td1->td_proc->p_magic == P_MAGIC);
198 			if (td1->td_priority > pri)
199 				break;
200 		}
201 
202 		MPASS(td1 != NULL);
203 		TAILQ_INSERT_BEFORE(td1, td, td_lockq);
204 		CTR4(KTR_LOCK,
205 		    "propagate_priority: p %p moved before %p on [%p] %s",
206 		    td, td1, m, m->mtx_object.lo_name);
207 	}
208 }
209 
210 #ifdef MUTEX_PROFILING
211 SYSCTL_NODE(_debug, OID_AUTO, mutex, CTLFLAG_RD, NULL, "mutex debugging");
212 SYSCTL_NODE(_debug_mutex, OID_AUTO, prof, CTLFLAG_RD, NULL, "mutex profiling");
213 static int mutex_prof_enable = 0;
214 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, enable, CTLFLAG_RW,
215     &mutex_prof_enable, 0, "Enable tracing of mutex holdtime");
216 
217 struct mutex_prof {
218 	const char	*name;
219 	const char	*file;
220 	int		line;
221 	struct {
222 		uintmax_t	max;
223 		uintmax_t	tot;
224 		uintmax_t	cur;
225 	} cnt;
226 	struct mutex_prof *next;
227 };
228 
229 /*
230  * mprof_buf is a static pool of profiling records to avoid possible
231  * reentrance of the memory allocation functions.
232  *
233  * Note: NUM_MPROF_BUFFERS must be smaller than MPROF_HASH_SIZE.
234  */
235 #define	NUM_MPROF_BUFFERS	1000
236 static struct mutex_prof mprof_buf[NUM_MPROF_BUFFERS];
237 static int first_free_mprof_buf;
238 #define	MPROF_HASH_SIZE		1009
239 static struct mutex_prof *mprof_hash[MPROF_HASH_SIZE];
240 
241 static int mutex_prof_acquisitions;
242 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, acquisitions, CTLFLAG_RD,
243     &mutex_prof_acquisitions, 0, "Number of mutex acquistions recorded");
244 static int mutex_prof_records;
245 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, records, CTLFLAG_RD,
246     &mutex_prof_records, 0, "Number of profiling records");
247 static int mutex_prof_maxrecords = NUM_MPROF_BUFFERS;
248 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, maxrecords, CTLFLAG_RD,
249     &mutex_prof_maxrecords, 0, "Maximum number of profiling records");
250 static int mutex_prof_rejected;
251 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, rejected, CTLFLAG_RD,
252     &mutex_prof_rejected, 0, "Number of rejected profiling records");
253 static int mutex_prof_hashsize = MPROF_HASH_SIZE;
254 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, hashsize, CTLFLAG_RD,
255     &mutex_prof_hashsize, 0, "Hash size");
256 static int mutex_prof_collisions = 0;
257 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, collisions, CTLFLAG_RD,
258     &mutex_prof_collisions, 0, "Number of hash collisions");
259 
260 /*
261  * mprof_mtx protects the profiling buffers and the hash.
262  */
263 static struct mtx mprof_mtx;
264 MTX_SYSINIT(mprof, &mprof_mtx, "mutex profiling lock", MTX_SPIN | MTX_QUIET);
265 
266 static u_int64_t
267 nanoseconds(void)
268 {
269 	struct timespec tv;
270 
271 	nanotime(&tv);
272 	return (tv.tv_sec * (u_int64_t)1000000000 + tv.tv_nsec);
273 }
274 
275 static int
276 dump_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
277 {
278 	struct sbuf *sb;
279 	int error, i;
280 
281 	if (first_free_mprof_buf == 0)
282 		return (SYSCTL_OUT(req, "No locking recorded",
283 		    sizeof("No locking recorded")));
284 
285 	sb = sbuf_new(NULL, NULL, 1024, SBUF_AUTOEXTEND);
286 	sbuf_printf(sb, "%6s %12s %11s %5s %s\n",
287 	    "max", "total", "count", "avg", "name");
288 	/*
289 	 * XXX this spinlock seems to be by far the largest perpetrator
290 	 * of spinlock latency (1.6 msec on an Athlon1600 was recorded
291 	 * even before I pessimized it further by moving the average
292 	 * computation here).
293 	 */
294 	mtx_lock_spin(&mprof_mtx);
295 	for (i = 0; i < first_free_mprof_buf; ++i)
296 		sbuf_printf(sb, "%6ju %12ju %11ju %5ju %s:%d (%s)\n",
297 		    mprof_buf[i].cnt.max / 1000,
298 		    mprof_buf[i].cnt.tot / 1000,
299 		    mprof_buf[i].cnt.cur,
300 		    mprof_buf[i].cnt.cur == 0 ? (uintmax_t)0 :
301 			mprof_buf[i].cnt.tot / (mprof_buf[i].cnt.cur * 1000),
302 		    mprof_buf[i].file, mprof_buf[i].line, mprof_buf[i].name);
303 	mtx_unlock_spin(&mprof_mtx);
304 	sbuf_finish(sb);
305 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
306 	sbuf_delete(sb);
307 	return (error);
308 }
309 SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
310     NULL, 0, dump_mutex_prof_stats, "A", "Mutex profiling statistics");
311 #endif
312 
313 /*
314  * Function versions of the inlined __mtx_* macros.  These are used by
315  * modules and can also be called from assembly language if needed.
316  */
317 void
318 _mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
319 {
320 
321 	MPASS(curthread != NULL);
322 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
323 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
324 	    file, line));
325 	_get_sleep_lock(m, curthread, opts, file, line);
326 	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
327 	    line);
328 	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
329 #ifdef MUTEX_PROFILING
330 	/* don't reset the timer when/if recursing */
331 	if (m->mtx_acqtime == 0) {
332 		m->mtx_filename = file;
333 		m->mtx_lineno = line;
334 		m->mtx_acqtime = mutex_prof_enable ? nanoseconds() : 0;
335 		++mutex_prof_acquisitions;
336 	}
337 #endif
338 }
339 
340 void
341 _mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
342 {
343 
344 	MPASS(curthread != NULL);
345 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
346 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
347 	    file, line));
348 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
349 	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
350 	    line);
351 	mtx_assert(m, MA_OWNED);
352 #ifdef MUTEX_PROFILING
353 	if (m->mtx_acqtime != 0) {
354 		static const char *unknown = "(unknown)";
355 		struct mutex_prof *mpp;
356 		u_int64_t acqtime, now;
357 		const char *p, *q;
358 		volatile u_int hash;
359 
360 		now = nanoseconds();
361 		acqtime = m->mtx_acqtime;
362 		m->mtx_acqtime = 0;
363 		if (now <= acqtime)
364 			goto out;
365 		for (p = m->mtx_filename; strncmp(p, "../", 3) == 0; p += 3)
366 			/* nothing */ ;
367 		if (p == NULL || *p == '\0')
368 			p = unknown;
369 		for (hash = m->mtx_lineno, q = p; *q != '\0'; ++q)
370 			hash = (hash * 2 + *q) % MPROF_HASH_SIZE;
371 		mtx_lock_spin(&mprof_mtx);
372 		for (mpp = mprof_hash[hash]; mpp != NULL; mpp = mpp->next)
373 			if (mpp->line == m->mtx_lineno &&
374 			    strcmp(mpp->file, p) == 0)
375 				break;
376 		if (mpp == NULL) {
377 			/* Just exit if we cannot get a trace buffer */
378 			if (first_free_mprof_buf >= NUM_MPROF_BUFFERS) {
379 				++mutex_prof_rejected;
380 				goto unlock;
381 			}
382 			mpp = &mprof_buf[first_free_mprof_buf++];
383 			mpp->name = mtx_name(m);
384 			mpp->file = p;
385 			mpp->line = m->mtx_lineno;
386 			mpp->next = mprof_hash[hash];
387 			if (mprof_hash[hash] != NULL)
388 				++mutex_prof_collisions;
389 			mprof_hash[hash] = mpp;
390 			++mutex_prof_records;
391 		}
392 		/*
393 		 * Record if the mutex has been held longer now than ever
394 		 * before.
395 		 */
396 		if (now - acqtime > mpp->cnt.max)
397 			mpp->cnt.max = now - acqtime;
398 		mpp->cnt.tot += now - acqtime;
399 		mpp->cnt.cur++;
400 unlock:
401 		mtx_unlock_spin(&mprof_mtx);
402 	}
403 out:
404 #endif
405 	_rel_sleep_lock(m, curthread, opts, file, line);
406 }
407 
408 void
409 _mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
410 {
411 
412 	MPASS(curthread != NULL);
413 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
414 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
415 	    m->mtx_object.lo_name, file, line));
416 #if defined(SMP) || LOCK_DEBUG > 0 || 1
417 	_get_spin_lock(m, curthread, opts, file, line);
418 #else
419 	critical_enter();
420 #endif
421 	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
422 	    line);
423 	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
424 }
425 
426 void
427 _mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
428 {
429 
430 	MPASS(curthread != NULL);
431 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
432 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
433 	    m->mtx_object.lo_name, file, line));
434 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
435 	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
436 	    line);
437 	mtx_assert(m, MA_OWNED);
438 #if defined(SMP) || LOCK_DEBUG > 0 || 1
439 	_rel_spin_lock(m);
440 #else
441 	critical_exit();
442 #endif
443 }
444 
445 /*
446  * The important part of mtx_trylock{,_flags}()
447  * Tries to acquire lock `m.' We do NOT handle recursion here; we assume that
448  * if we're called, it's because we know we don't already own this lock.
449  */
450 int
451 _mtx_trylock(struct mtx *m, int opts, const char *file, int line)
452 {
453 	int rval;
454 
455 	MPASS(curthread != NULL);
456 
457 	rval = _obtain_lock(m, curthread);
458 
459 	LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
460 	if (rval) {
461 		/*
462 		 * We do not handle recursion in _mtx_trylock; see the
463 		 * note at the top of the routine.
464 		 */
465 		KASSERT(!mtx_recursed(m),
466 		    ("mtx_trylock() called on a recursed mutex"));
467 		WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
468 		    file, line);
469 	}
470 
471 	return (rval);
472 }
473 
474 /*
475  * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
476  *
477  * We call this if the lock is either contested (i.e. we need to go to
478  * sleep waiting for it), or if we need to recurse on it.
479  */
480 void
481 _mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
482 {
483 	struct thread *td = curthread;
484 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
485 	struct thread *owner;
486 #endif
487 #ifdef KTR
488 	int cont_logged = 0;
489 #endif
490 
491 	if ((m->mtx_lock & MTX_FLAGMASK) == (uintptr_t)td) {
492 		m->mtx_recurse++;
493 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
494 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
495 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
496 		return;
497 	}
498 
499 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
500 		CTR4(KTR_LOCK,
501 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
502 		    m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
503 
504 	while (!_obtain_lock(m, td)) {
505 		uintptr_t v;
506 		struct thread *td1;
507 
508 		mtx_lock_spin(&sched_lock);
509 		/*
510 		 * Check if the lock has been released while spinning for
511 		 * the sched_lock.
512 		 */
513 		if ((v = m->mtx_lock) == MTX_UNOWNED) {
514 			mtx_unlock_spin(&sched_lock);
515 #ifdef __i386__
516 			ia32_pause();
517 #endif
518 			continue;
519 		}
520 
521 		/*
522 		 * The mutex was marked contested on release. This means that
523 		 * there are threads blocked on it.
524 		 */
525 		if (v == MTX_CONTESTED) {
526 			td1 = TAILQ_FIRST(&m->mtx_blocked);
527 			MPASS(td1 != NULL);
528 			m->mtx_lock = (uintptr_t)td | MTX_CONTESTED;
529 
530 			if (td1->td_priority < td->td_priority)
531 				td->td_priority = td1->td_priority;
532 			mtx_unlock_spin(&sched_lock);
533 			return;
534 		}
535 
536 		/*
537 		 * If the mutex isn't already contested and a failure occurs
538 		 * setting the contested bit, the mutex was either released
539 		 * or the state of the MTX_RECURSED bit changed.
540 		 */
541 		if ((v & MTX_CONTESTED) == 0 &&
542 		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
543 			(void *)(v | MTX_CONTESTED))) {
544 			mtx_unlock_spin(&sched_lock);
545 #ifdef __i386__
546 			ia32_pause();
547 #endif
548 			continue;
549 		}
550 
551 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
552 		/*
553 		 * If the current owner of the lock is executing on another
554 		 * CPU, spin instead of blocking.
555 		 */
556 		owner = (struct thread *)(v & MTX_FLAGMASK);
557 		if (m != &Giant && thread_running(owner)) {
558 			mtx_unlock_spin(&sched_lock);
559 			while (mtx_owner(m) == owner && thread_running(owner)) {
560 #ifdef __i386__
561 				ia32_pause();
562 #endif
563 			}
564 			continue;
565 		}
566 #endif	/* SMP && ADAPTIVE_MUTEXES */
567 
568 		/*
569 		 * We definitely must sleep for this lock.
570 		 */
571 		mtx_assert(m, MA_NOTOWNED);
572 
573 #ifdef notyet
574 		/*
575 		 * If we're borrowing an interrupted thread's VM context, we
576 		 * must clean up before going to sleep.
577 		 */
578 		if (td->td_ithd != NULL) {
579 			struct ithd *it = td->td_ithd;
580 
581 			if (it->it_interrupted) {
582 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
583 					CTR2(KTR_LOCK,
584 				    "_mtx_lock_sleep: %p interrupted %p",
585 					    it, it->it_interrupted);
586 				intr_thd_fixup(it);
587 			}
588 		}
589 #endif
590 
591 		/*
592 		 * Put us on the list of threads blocked on this mutex.
593 		 */
594 		if (TAILQ_EMPTY(&m->mtx_blocked)) {
595 			td1 = mtx_owner(m);
596 			LIST_INSERT_HEAD(&td1->td_contested, m, mtx_contested);
597 			TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
598 		} else {
599 			TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq)
600 				if (td1->td_priority > td->td_priority)
601 					break;
602 			if (td1)
603 				TAILQ_INSERT_BEFORE(td1, td, td_lockq);
604 			else
605 				TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
606 		}
607 #ifdef KTR
608 		if (!cont_logged) {
609 			CTR6(KTR_CONTENTION,
610 			    "contention: %p at %s:%d wants %s, taken by %s:%d",
611 			    td, file, line, m->mtx_object.lo_name,
612 			    WITNESS_FILE(&m->mtx_object),
613 			    WITNESS_LINE(&m->mtx_object));
614 			cont_logged = 1;
615 		}
616 #endif
617 
618 		/*
619 		 * Save who we're blocked on.
620 		 */
621 		td->td_blocked = m;
622 		td->td_lockname = m->mtx_object.lo_name;
623 		TD_SET_LOCK(td);
624 		propagate_priority(td);
625 
626 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
627 			CTR3(KTR_LOCK,
628 			    "_mtx_lock_sleep: p %p blocked on [%p] %s", td, m,
629 			    m->mtx_object.lo_name);
630 
631 		td->td_proc->p_stats->p_ru.ru_nvcsw++;
632 		mi_switch();
633 
634 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
635 			CTR3(KTR_LOCK,
636 			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
637 			  td, m, m->mtx_object.lo_name);
638 
639 		mtx_unlock_spin(&sched_lock);
640 	}
641 
642 #ifdef KTR
643 	if (cont_logged) {
644 		CTR4(KTR_CONTENTION,
645 		    "contention end: %s acquired by %p at %s:%d",
646 		    m->mtx_object.lo_name, td, file, line);
647 	}
648 #endif
649 	return;
650 }
651 
652 /*
653  * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
654  *
655  * This is only called if we need to actually spin for the lock. Recursion
656  * is handled inline.
657  */
658 void
659 _mtx_lock_spin(struct mtx *m, int opts, const char *file, int line)
660 {
661 	int i = 0;
662 
663 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
664 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
665 
666 	for (;;) {
667 		if (_obtain_lock(m, curthread))
668 			break;
669 
670 		/* Give interrupts a chance while we spin. */
671 		critical_exit();
672 		while (m->mtx_lock != MTX_UNOWNED) {
673 			if (i++ < 10000000) {
674 #ifdef __i386__
675 				ia32_pause();
676 #endif
677 				continue;
678 			}
679 			if (i < 60000000)
680 				DELAY(1);
681 #ifdef DDB
682 			else if (!db_active)
683 #else
684 			else
685 #endif
686 				panic("spin lock %s held by %p for > 5 seconds",
687 				    m->mtx_object.lo_name, (void *)m->mtx_lock);
688 #ifdef __i386__
689 			ia32_pause();
690 #endif
691 		}
692 		critical_enter();
693 	}
694 
695 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
696 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
697 
698 	return;
699 }
700 
701 /*
702  * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
703  *
704  * We are only called here if the lock is recursed or contested (i.e. we
705  * need to wake up a blocked thread).
706  */
707 void
708 _mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
709 {
710 	struct thread *td, *td1;
711 	struct mtx *m1;
712 	int pri;
713 
714 	td = curthread;
715 
716 	if (mtx_recursed(m)) {
717 		if (--(m->mtx_recurse) == 0)
718 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
719 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
720 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
721 		return;
722 	}
723 
724 	mtx_lock_spin(&sched_lock);
725 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
726 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
727 
728 	td1 = TAILQ_FIRST(&m->mtx_blocked);
729 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
730 	if (td1 == NULL) {
731 		_release_lock_quick(m);
732 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
733 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p no sleepers", m);
734 		mtx_unlock_spin(&sched_lock);
735 		return;
736 	}
737 #endif
738 	MPASS(td->td_proc->p_magic == P_MAGIC);
739 	MPASS(td1->td_proc->p_magic == P_MAGIC);
740 
741 	TAILQ_REMOVE(&m->mtx_blocked, td1, td_lockq);
742 
743 	if (TAILQ_EMPTY(&m->mtx_blocked)) {
744 		LIST_REMOVE(m, mtx_contested);
745 		_release_lock_quick(m);
746 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
747 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
748 	} else
749 		atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED);
750 
751 	pri = PRI_MAX;
752 	LIST_FOREACH(m1, &td->td_contested, mtx_contested) {
753 		int cp = TAILQ_FIRST(&m1->mtx_blocked)->td_priority;
754 		if (cp < pri)
755 			pri = cp;
756 	}
757 
758 	if (pri > td->td_base_pri)
759 		pri = td->td_base_pri;
760 	td->td_priority = pri;
761 
762 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
763 		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
764 		    m, td1);
765 
766 	td1->td_blocked = NULL;
767 	TD_CLR_LOCK(td1);
768 	if (!TD_CAN_RUN(td1)) {
769 		mtx_unlock_spin(&sched_lock);
770 		return;
771 	}
772 	setrunqueue(td1);
773 
774 	if (td->td_critnest == 1 && td1->td_priority < pri) {
775 #ifdef notyet
776 		if (td->td_ithd != NULL) {
777 			struct ithd *it = td->td_ithd;
778 
779 			if (it->it_interrupted) {
780 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
781 					CTR2(KTR_LOCK,
782 				    "_mtx_unlock_sleep: %p interrupted %p",
783 					    it, it->it_interrupted);
784 				intr_thd_fixup(it);
785 			}
786 		}
787 #endif
788 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
789 			CTR2(KTR_LOCK,
790 			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
791 			    (void *)m->mtx_lock);
792 
793 		td->td_proc->p_stats->p_ru.ru_nivcsw++;
794 		mi_switch();
795 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
796 			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
797 			    m, (void *)m->mtx_lock);
798 	}
799 
800 	mtx_unlock_spin(&sched_lock);
801 
802 	return;
803 }
804 
805 /*
806  * All the unlocking of MTX_SPIN locks is done inline.
807  * See the _rel_spin_lock() macro for the details.
808  */
809 
810 /*
811  * The backing function for the INVARIANTS-enabled mtx_assert()
812  */
813 #ifdef INVARIANT_SUPPORT
814 void
815 _mtx_assert(struct mtx *m, int what, const char *file, int line)
816 {
817 
818 	if (panicstr != NULL)
819 		return;
820 	switch (what) {
821 	case MA_OWNED:
822 	case MA_OWNED | MA_RECURSED:
823 	case MA_OWNED | MA_NOTRECURSED:
824 		if (!mtx_owned(m))
825 			panic("mutex %s not owned at %s:%d",
826 			    m->mtx_object.lo_name, file, line);
827 		if (mtx_recursed(m)) {
828 			if ((what & MA_NOTRECURSED) != 0)
829 				panic("mutex %s recursed at %s:%d",
830 				    m->mtx_object.lo_name, file, line);
831 		} else if ((what & MA_RECURSED) != 0) {
832 			panic("mutex %s unrecursed at %s:%d",
833 			    m->mtx_object.lo_name, file, line);
834 		}
835 		break;
836 	case MA_NOTOWNED:
837 		if (mtx_owned(m))
838 			panic("mutex %s owned at %s:%d",
839 			    m->mtx_object.lo_name, file, line);
840 		break;
841 	default:
842 		panic("unknown mtx_assert at %s:%d", file, line);
843 	}
844 }
845 #endif
846 
847 /*
848  * The MUTEX_DEBUG-enabled mtx_validate()
849  *
850  * Most of these checks have been moved off into the LO_INITIALIZED flag
851  * maintained by the witness code.
852  */
853 #ifdef MUTEX_DEBUG
854 
855 void	mtx_validate(struct mtx *);
856 
857 void
858 mtx_validate(struct mtx *m)
859 {
860 
861 /*
862  * XXX: When kernacc() does not require Giant we can reenable this check
863  */
864 #ifdef notyet
865 /*
866  * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
867  * we can re-enable the kernacc() checks.
868  */
869 #ifndef __alpha__
870 	/*
871 	 * Can't call kernacc() from early init386(), especially when
872 	 * initializing Giant mutex, because some stuff in kernacc()
873 	 * requires Giant itself.
874 	 */
875 	if (!cold)
876 		if (!kernacc((caddr_t)m, sizeof(m),
877 		    VM_PROT_READ | VM_PROT_WRITE))
878 			panic("Can't read and write to mutex %p", m);
879 #endif
880 #endif
881 }
882 #endif
883 
884 /*
885  * General init routine used by the MTX_SYSINIT() macro.
886  */
887 void
888 mtx_sysinit(void *arg)
889 {
890 	struct mtx_args *margs = arg;
891 
892 	mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts);
893 }
894 
895 /*
896  * Mutex initialization routine; initialize lock `m' of type contained in
897  * `opts' with options contained in `opts' and name `name.'  The optional
898  * lock type `type' is used as a general lock category name for use with
899  * witness.
900  */
901 void
902 mtx_init(struct mtx *m, const char *name, const char *type, int opts)
903 {
904 	struct lock_object *lock;
905 
906 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
907 	    MTX_SLEEPABLE | MTX_NOWITNESS | MTX_DUPOK)) == 0);
908 
909 #ifdef MUTEX_DEBUG
910 	/* Diagnostic and error correction */
911 	mtx_validate(m);
912 #endif
913 
914 	lock = &m->mtx_object;
915 	KASSERT((lock->lo_flags & LO_INITIALIZED) == 0,
916 	    ("mutex %s %p already initialized", name, m));
917 	bzero(m, sizeof(*m));
918 	if (opts & MTX_SPIN)
919 		lock->lo_class = &lock_class_mtx_spin;
920 	else
921 		lock->lo_class = &lock_class_mtx_sleep;
922 	lock->lo_name = name;
923 	lock->lo_type = type != NULL ? type : name;
924 	if (opts & MTX_QUIET)
925 		lock->lo_flags = LO_QUIET;
926 	if (opts & MTX_RECURSE)
927 		lock->lo_flags |= LO_RECURSABLE;
928 	if (opts & MTX_SLEEPABLE)
929 		lock->lo_flags |= LO_SLEEPABLE;
930 	if ((opts & MTX_NOWITNESS) == 0)
931 		lock->lo_flags |= LO_WITNESS;
932 	if (opts & MTX_DUPOK)
933 		lock->lo_flags |= LO_DUPOK;
934 
935 	m->mtx_lock = MTX_UNOWNED;
936 	TAILQ_INIT(&m->mtx_blocked);
937 
938 	LOCK_LOG_INIT(lock, opts);
939 
940 	WITNESS_INIT(lock);
941 }
942 
943 /*
944  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
945  * passed in as a flag here because if the corresponding mtx_init() was
946  * called with MTX_QUIET set, then it will already be set in the mutex's
947  * flags.
948  */
949 void
950 mtx_destroy(struct mtx *m)
951 {
952 
953 	LOCK_LOG_DESTROY(&m->mtx_object, 0);
954 
955 	if (!mtx_owned(m))
956 		MPASS(mtx_unowned(m));
957 	else {
958 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
959 
960 		/* Tell witness this isn't locked to make it happy. */
961 		WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
962 		    __LINE__);
963 	}
964 
965 	WITNESS_DESTROY(&m->mtx_object);
966 }
967 
968 /*
969  * Intialize the mutex code and system mutexes.  This is called from the MD
970  * startup code prior to mi_startup().  The per-CPU data space needs to be
971  * setup before this is called.
972  */
973 void
974 mutex_init(void)
975 {
976 
977 	/* Setup thread0 so that mutexes work. */
978 	LIST_INIT(&thread0.td_contested);
979 
980 	/*
981 	 * Initialize mutexes.
982 	 */
983 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
984 	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
985 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
986 	mtx_lock(&Giant);
987 }
988 
989 /*
990  * Encapsulated Giant mutex routines.  These routines provide encapsulation
991  * control for the Giant mutex, allowing sysctls to be used to turn on and
992  * off Giant around certain subsystems.  The default value for the sysctls
993  * are set to what developers believe is stable and working in regards to
994  * the Giant pushdown.  Developers should not turn off Giant via these
995  * sysctls unless they know what they are doing.
996  *
997  * Callers of mtx_lock_giant() are expected to pass the return value to an
998  * accompanying mtx_unlock_giant() later on.  If multiple subsystems are
999  * effected by a Giant wrap, all related sysctl variables must be zero for
1000  * the subsystem call to operate without Giant (as determined by the caller).
1001  */
1002 
1003 SYSCTL_NODE(_kern, OID_AUTO, giant, CTLFLAG_RD, NULL, "Giant mutex manipulation");
1004 
1005 static int kern_giant_all = 0;
1006 SYSCTL_INT(_kern_giant, OID_AUTO, all, CTLFLAG_RW, &kern_giant_all, 0, "");
1007 
1008 int kern_giant_proc = 1;	/* Giant around PROC locks */
1009 int kern_giant_file = 1;	/* Giant around struct file & filedesc */
1010 int kern_giant_ucred = 1;	/* Giant around ucred */
1011 SYSCTL_INT(_kern_giant, OID_AUTO, proc, CTLFLAG_RW, &kern_giant_proc, 0, "");
1012 SYSCTL_INT(_kern_giant, OID_AUTO, file, CTLFLAG_RW, &kern_giant_file, 0, "");
1013 SYSCTL_INT(_kern_giant, OID_AUTO, ucred, CTLFLAG_RW, &kern_giant_ucred, 0, "");
1014 
1015 int
1016 mtx_lock_giant(int sysctlvar)
1017 {
1018 	if (sysctlvar || kern_giant_all) {
1019 		mtx_lock(&Giant);
1020 		return(1);
1021 	}
1022 	return(0);
1023 }
1024 
1025 void
1026 mtx_unlock_giant(int s)
1027 {
1028 	if (s)
1029 		mtx_unlock(&Giant);
1030 }
1031