xref: /freebsd/sys/kern/kern_mutex.c (revision 70fe064ad7cab6c0444b91622f60ec6a462f308a)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  * $FreeBSD$
31  */
32 
33 /*
34  * Machine independent bits of mutex implementation.
35  */
36 
37 #include "opt_ddb.h"
38 
39 #include <sys/param.h>
40 #include <sys/bus.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/resourcevar.h>
47 #include <sys/sysctl.h>
48 #include <sys/systm.h>
49 #include <sys/vmmeter.h>
50 #include <sys/ktr.h>
51 
52 #include <machine/atomic.h>
53 #include <machine/bus.h>
54 #include <machine/clock.h>
55 #include <machine/cpu.h>
56 
57 #include <ddb/ddb.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_extern.h>
61 
62 /*
63  * Internal utility macros.
64  */
65 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
66 
67 #define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
68 	: (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
69 
70 #define SET_PRIO(td, pri)	(td)->td_ksegrp->kg_pri.pri_level = (pri)
71 
72 /*
73  * Lock classes for sleep and spin mutexes.
74  */
75 struct lock_class lock_class_mtx_sleep = {
76 	"sleep mutex",
77 	LC_SLEEPLOCK | LC_RECURSABLE
78 };
79 struct lock_class lock_class_mtx_spin = {
80 	"spin mutex",
81 	LC_SPINLOCK | LC_RECURSABLE
82 };
83 
84 /*
85  * Prototypes for non-exported routines.
86  */
87 static void	propagate_priority(struct thread *);
88 
89 static void
90 propagate_priority(struct thread *td)
91 {
92 	struct ksegrp *kg = td->td_ksegrp;
93 	int pri = kg->kg_pri.pri_level;
94 	struct mtx *m = td->td_blocked;
95 
96 	mtx_assert(&sched_lock, MA_OWNED);
97 	for (;;) {
98 		struct thread *td1;
99 
100 		td = mtx_owner(m);
101 
102 		if (td == NULL) {
103 			/*
104 			 * This really isn't quite right. Really
105 			 * ought to bump priority of thread that
106 			 * next acquires the mutex.
107 			 */
108 			MPASS(m->mtx_lock == MTX_CONTESTED);
109 			return;
110 		}
111 		kg = td->td_ksegrp;
112 
113 		MPASS(td->td_proc->p_magic == P_MAGIC);
114 		KASSERT(td->td_proc->p_stat != SSLEEP, ("sleeping thread owns a mutex"));
115 		if (kg->kg_pri.pri_level <= pri) /* lower is higher priority */
116 			return;
117 
118 		/*
119 		 * Bump this thread's priority.
120 		 */
121 		SET_PRIO(td, pri);
122 
123 		/*
124 		 * If lock holder is actually running, just bump priority.
125 		 */
126 		 /* XXXKSE this test is not sufficient */
127 		if (td->td_kse && (td->td_kse->ke_oncpu != NOCPU)) {
128 			MPASS(td->td_proc->p_stat == SRUN
129 			|| td->td_proc->p_stat == SZOMB
130 			|| td->td_proc->p_stat == SSTOP);
131 			return;
132 		}
133 
134 #ifndef SMP
135 		/*
136 		 * For UP, we check to see if td is curthread (this shouldn't
137 		 * ever happen however as it would mean we are in a deadlock.)
138 		 */
139 		KASSERT(td != curthread, ("Deadlock detected"));
140 #endif
141 
142 		/*
143 		 * If on run queue move to new run queue, and quit.
144 		 * XXXKSE this gets a lot more complicated under threads
145 		 * but try anyhow.
146 		 */
147 		if (td->td_proc->p_stat == SRUN) {
148 			MPASS(td->td_blocked == NULL);
149 			remrunqueue(td);
150 			setrunqueue(td);
151 			return;
152 		}
153 
154 		/*
155 		 * If we aren't blocked on a mutex, we should be.
156 		 */
157 		KASSERT(td->td_proc->p_stat == SMTX, (
158 		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
159 		    td->td_proc->p_pid, td->td_proc->p_comm, td->td_proc->p_stat,
160 		    m->mtx_object.lo_name));
161 
162 		/*
163 		 * Pick up the mutex that td is blocked on.
164 		 */
165 		m = td->td_blocked;
166 		MPASS(m != NULL);
167 
168 		/*
169 		 * Check if the thread needs to be moved up on
170 		 * the blocked chain
171 		 */
172 		if (td == TAILQ_FIRST(&m->mtx_blocked)) {
173 			continue;
174 		}
175 
176 		td1 = TAILQ_PREV(td, threadqueue, td_blkq);
177 		if (td1->td_ksegrp->kg_pri.pri_level <= pri) {
178 			continue;
179 		}
180 
181 		/*
182 		 * Remove thread from blocked chain and determine where
183 		 * it should be moved up to.  Since we know that td1 has
184 		 * a lower priority than td, we know that at least one
185 		 * thread in the chain has a lower priority and that
186 		 * td1 will thus not be NULL after the loop.
187 		 */
188 		TAILQ_REMOVE(&m->mtx_blocked, td, td_blkq);
189 		TAILQ_FOREACH(td1, &m->mtx_blocked, td_blkq) {
190 			MPASS(td1->td_proc->p_magic == P_MAGIC);
191 			if (td1->td_ksegrp->kg_pri.pri_level > pri)
192 				break;
193 		}
194 
195 		MPASS(td1 != NULL);
196 		TAILQ_INSERT_BEFORE(td1, td, td_blkq);
197 		CTR4(KTR_LOCK,
198 		    "propagate_priority: p %p moved before %p on [%p] %s",
199 		    td, td1, m, m->mtx_object.lo_name);
200 	}
201 }
202 
203 /*
204  * Function versions of the inlined __mtx_* macros.  These are used by
205  * modules and can also be called from assembly language if needed.
206  */
207 void
208 _mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
209 {
210 
211 	MPASS(curthread != NULL);
212 	_get_sleep_lock(m, curthread, opts, file, line);
213 	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
214 	    line);
215 	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
216 }
217 
218 void
219 _mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
220 {
221 
222 	MPASS(curthread != NULL);
223 	mtx_assert(m, MA_OWNED);
224  	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
225 	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
226 	    line);
227 	_rel_sleep_lock(m, curthread, opts, file, line);
228 }
229 
230 void
231 _mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
232 {
233 
234 	MPASS(curthread != NULL);
235 	_get_spin_lock(m, curthread, opts, file, line);
236 	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
237 	    line);
238 	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
239 }
240 
241 void
242 _mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
243 {
244 
245 	MPASS(curthread != NULL);
246 	mtx_assert(m, MA_OWNED);
247  	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
248 	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
249 	    line);
250 	_rel_spin_lock(m);
251 }
252 
253 /*
254  * The important part of mtx_trylock{,_flags}()
255  * Tries to acquire lock `m.' We do NOT handle recursion here; we assume that
256  * if we're called, it's because we know we don't already own this lock.
257  */
258 int
259 _mtx_trylock(struct mtx *m, int opts, const char *file, int line)
260 {
261 	int rval;
262 
263 	MPASS(curthread != NULL);
264 
265 	rval = _obtain_lock(m, curthread);
266 
267 	LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
268 	if (rval) {
269 		/*
270 		 * We do not handle recursion in _mtx_trylock; see the
271 		 * note at the top of the routine.
272 		 */
273 		KASSERT(!mtx_recursed(m),
274 		    ("mtx_trylock() called on a recursed mutex"));
275 		WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
276 		    file, line);
277 	}
278 
279 	return (rval);
280 }
281 
282 /*
283  * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
284  *
285  * We call this if the lock is either contested (i.e. we need to go to
286  * sleep waiting for it), or if we need to recurse on it.
287  */
288 void
289 _mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
290 {
291 	struct thread *td = curthread;
292 	struct ksegrp *kg = td->td_ksegrp;
293 
294 	if ((m->mtx_lock & MTX_FLAGMASK) == (uintptr_t)td) {
295 		m->mtx_recurse++;
296 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
297 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
298 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
299 		return;
300 	}
301 
302 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
303 		CTR4(KTR_LOCK,
304 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
305 		    m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
306 
307 	while (!_obtain_lock(m, td)) {
308 		uintptr_t v;
309 		struct thread *td1;
310 
311 		mtx_lock_spin(&sched_lock);
312 		/*
313 		 * Check if the lock has been released while spinning for
314 		 * the sched_lock.
315 		 */
316 		if ((v = m->mtx_lock) == MTX_UNOWNED) {
317 			mtx_unlock_spin(&sched_lock);
318 			continue;
319 		}
320 
321 		/*
322 		 * The mutex was marked contested on release. This means that
323 		 * there are threads blocked on it.
324 		 */
325 		if (v == MTX_CONTESTED) {
326 			td1 = TAILQ_FIRST(&m->mtx_blocked);
327 			MPASS(td1 != NULL);
328 			m->mtx_lock = (uintptr_t)td | MTX_CONTESTED;
329 
330 			if (td1->td_ksegrp->kg_pri.pri_level < kg->kg_pri.pri_level)
331 				SET_PRIO(td, td1->td_ksegrp->kg_pri.pri_level);
332 			mtx_unlock_spin(&sched_lock);
333 			return;
334 		}
335 
336 		/*
337 		 * If the mutex isn't already contested and a failure occurs
338 		 * setting the contested bit, the mutex was either released
339 		 * or the state of the MTX_RECURSED bit changed.
340 		 */
341 		if ((v & MTX_CONTESTED) == 0 &&
342 		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
343 			(void *)(v | MTX_CONTESTED))) {
344 			mtx_unlock_spin(&sched_lock);
345 			continue;
346 		}
347 
348 		/*
349 		 * We deffinately must sleep for this lock.
350 		 */
351 		mtx_assert(m, MA_NOTOWNED);
352 
353 #ifdef notyet
354 		/*
355 		 * If we're borrowing an interrupted thread's VM context, we
356 		 * must clean up before going to sleep.
357 		 */
358 		if (td->td_ithd != NULL) {
359 			struct ithd *it = td->td_ithd;
360 
361 			if (it->it_interrupted) {
362 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
363 					CTR2(KTR_LOCK,
364 				    "_mtx_lock_sleep: %p interrupted %p",
365 					    it, it->it_interrupted);
366 				intr_thd_fixup(it);
367 			}
368 		}
369 #endif
370 
371 		/*
372 		 * Put us on the list of threads blocked on this mutex.
373 		 */
374 		if (TAILQ_EMPTY(&m->mtx_blocked)) {
375 			td1 = (struct thread *)(m->mtx_lock & MTX_FLAGMASK);
376 			LIST_INSERT_HEAD(&td1->td_contested, m, mtx_contested);
377 			TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_blkq);
378 		} else {
379 			TAILQ_FOREACH(td1, &m->mtx_blocked, td_blkq)
380 				if (td1->td_ksegrp->kg_pri.pri_level > kg->kg_pri.pri_level)
381 					break;
382 			if (td1)
383 				TAILQ_INSERT_BEFORE(td1, td, td_blkq);
384 			else
385 				TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_blkq);
386 		}
387 
388 		/*
389 		 * Save who we're blocked on.
390 		 */
391 		td->td_blocked = m;
392 		td->td_mtxname = m->mtx_object.lo_name;
393 		td->td_proc->p_stat = SMTX;
394 		propagate_priority(td);
395 
396 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
397 			CTR3(KTR_LOCK,
398 			    "_mtx_lock_sleep: p %p blocked on [%p] %s", td, m,
399 			    m->mtx_object.lo_name);
400 
401 		td->td_proc->p_stats->p_ru.ru_nvcsw++;
402 		mi_switch();
403 
404 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
405 			CTR3(KTR_LOCK,
406 			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
407 			  td, m, m->mtx_object.lo_name);
408 
409 		mtx_unlock_spin(&sched_lock);
410 	}
411 
412 	return;
413 }
414 
415 /*
416  * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
417  *
418  * This is only called if we need to actually spin for the lock. Recursion
419  * is handled inline.
420  */
421 void
422 _mtx_lock_spin(struct mtx *m, int opts, const char *file, int line)
423 {
424 	int i = 0;
425 
426 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
427 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
428 
429 	for (;;) {
430 		if (_obtain_lock(m, curthread))
431 			break;
432 
433 		/* Give interrupts a chance while we spin. */
434 		critical_exit();
435 		while (m->mtx_lock != MTX_UNOWNED) {
436 			if (i++ < 10000000)
437 				continue;
438 			if (i++ < 60000000)
439 				DELAY(1);
440 #ifdef DDB
441 			else if (!db_active)
442 #else
443 			else
444 #endif
445 			panic("spin lock %s held by %p for > 5 seconds",
446 			    m->mtx_object.lo_name, (void *)m->mtx_lock);
447 		}
448 		critical_enter();
449 	}
450 
451 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
452 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
453 
454 	return;
455 }
456 
457 /*
458  * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
459  *
460  * We are only called here if the lock is recursed or contested (i.e. we
461  * need to wake up a blocked thread).
462  */
463 void
464 _mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
465 {
466 	struct thread *td, *td1;
467 	struct mtx *m1;
468 	int pri;
469 	struct ksegrp *kg;
470 
471 	td = curthread;
472 	kg = td->td_ksegrp;
473 
474 	if (mtx_recursed(m)) {
475 		if (--(m->mtx_recurse) == 0)
476 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
477 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
478 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
479 		return;
480 	}
481 
482 	mtx_lock_spin(&sched_lock);
483 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
484 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
485 
486 	td1 = TAILQ_FIRST(&m->mtx_blocked);
487 	MPASS(td->td_proc->p_magic == P_MAGIC);
488 	MPASS(td1->td_proc->p_magic == P_MAGIC);
489 
490 	TAILQ_REMOVE(&m->mtx_blocked, td1, td_blkq);
491 
492 	if (TAILQ_EMPTY(&m->mtx_blocked)) {
493 		LIST_REMOVE(m, mtx_contested);
494 		_release_lock_quick(m);
495 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
496 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
497 	} else
498 		atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED);
499 
500 	pri = PRI_MAX;
501 	LIST_FOREACH(m1, &td->td_contested, mtx_contested) {
502 		int cp = TAILQ_FIRST(&m1->mtx_blocked)->td_ksegrp->kg_pri.pri_level;
503 		if (cp < pri)
504 			pri = cp;
505 	}
506 
507 	if (pri > kg->kg_pri.pri_native)
508 		pri = kg->kg_pri.pri_native;
509 	SET_PRIO(td, pri);
510 
511 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
512 		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
513 		    m, td1);
514 
515 	td1->td_blocked = NULL;
516 	td1->td_proc->p_stat = SRUN;
517 	setrunqueue(td1);
518 
519 	if (td->td_critnest == 1 && td1->td_ksegrp->kg_pri.pri_level < pri) {
520 #ifdef notyet
521 		if (td->td_ithd != NULL) {
522 			struct ithd *it = td->td_ithd;
523 
524 			if (it->it_interrupted) {
525 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
526 					CTR2(KTR_LOCK,
527 				    "_mtx_unlock_sleep: %p interrupted %p",
528 					    it, it->it_interrupted);
529 				intr_thd_fixup(it);
530 			}
531 		}
532 #endif
533 		setrunqueue(td);
534 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
535 			CTR2(KTR_LOCK,
536 			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
537 			    (void *)m->mtx_lock);
538 
539 		td->td_proc->p_stats->p_ru.ru_nivcsw++;
540 		mi_switch();
541 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
542 			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
543 			    m, (void *)m->mtx_lock);
544 	}
545 
546 	mtx_unlock_spin(&sched_lock);
547 
548 	return;
549 }
550 
551 /*
552  * All the unlocking of MTX_SPIN locks is done inline.
553  * See the _rel_spin_lock() macro for the details.
554  */
555 
556 /*
557  * The backing function for the INVARIANTS-enabled mtx_assert()
558  */
559 #ifdef INVARIANT_SUPPORT
560 void
561 _mtx_assert(struct mtx *m, int what, const char *file, int line)
562 {
563 
564 	if (panicstr != NULL)
565 		return;
566 	switch (what) {
567 	case MA_OWNED:
568 	case MA_OWNED | MA_RECURSED:
569 	case MA_OWNED | MA_NOTRECURSED:
570 		if (!mtx_owned(m))
571 			panic("mutex %s not owned at %s:%d",
572 			    m->mtx_object.lo_name, file, line);
573 		if (mtx_recursed(m)) {
574 			if ((what & MA_NOTRECURSED) != 0)
575 				panic("mutex %s recursed at %s:%d",
576 				    m->mtx_object.lo_name, file, line);
577 		} else if ((what & MA_RECURSED) != 0) {
578 			panic("mutex %s unrecursed at %s:%d",
579 			    m->mtx_object.lo_name, file, line);
580 		}
581 		break;
582 	case MA_NOTOWNED:
583 		if (mtx_owned(m))
584 			panic("mutex %s owned at %s:%d",
585 			    m->mtx_object.lo_name, file, line);
586 		break;
587 	default:
588 		panic("unknown mtx_assert at %s:%d", file, line);
589 	}
590 }
591 #endif
592 
593 /*
594  * The MUTEX_DEBUG-enabled mtx_validate()
595  *
596  * Most of these checks have been moved off into the LO_INITIALIZED flag
597  * maintained by the witness code.
598  */
599 #ifdef MUTEX_DEBUG
600 
601 void	mtx_validate __P((struct mtx *));
602 
603 void
604 mtx_validate(struct mtx *m)
605 {
606 
607 /*
608  * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
609  * we can re-enable the kernacc() checks.
610  */
611 #ifndef __alpha__
612 	/*
613 	 * Can't call kernacc() from early init386(), especially when
614 	 * initializing Giant mutex, because some stuff in kernacc()
615 	 * requires Giant itself.
616 	 */
617 	if (!cold)
618 		if (!kernacc((caddr_t)m, sizeof(m),
619 		    VM_PROT_READ | VM_PROT_WRITE))
620 			panic("Can't read and write to mutex %p", m);
621 #endif
622 }
623 #endif
624 
625 /*
626  * Mutex initialization routine; initialize lock `m' of type contained in
627  * `opts' with options contained in `opts' and description `description.'
628  */
629 void
630 mtx_init(struct mtx *m, const char *description, int opts)
631 {
632 	struct lock_object *lock;
633 
634 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
635 	    MTX_SLEEPABLE | MTX_NOWITNESS)) == 0);
636 
637 #ifdef MUTEX_DEBUG
638 	/* Diagnostic and error correction */
639 	mtx_validate(m);
640 #endif
641 
642 	lock = &m->mtx_object;
643 	KASSERT((lock->lo_flags & LO_INITIALIZED) == 0,
644 	    ("mutex %s %p already initialized", description, m));
645 	bzero(m, sizeof(*m));
646 	if (opts & MTX_SPIN)
647 		lock->lo_class = &lock_class_mtx_spin;
648 	else
649 		lock->lo_class = &lock_class_mtx_sleep;
650 	lock->lo_name = description;
651 	if (opts & MTX_QUIET)
652 		lock->lo_flags = LO_QUIET;
653 	if (opts & MTX_RECURSE)
654 		lock->lo_flags |= LO_RECURSABLE;
655 	if (opts & MTX_SLEEPABLE)
656 		lock->lo_flags |= LO_SLEEPABLE;
657 	if ((opts & MTX_NOWITNESS) == 0)
658 		lock->lo_flags |= LO_WITNESS;
659 
660 	m->mtx_lock = MTX_UNOWNED;
661 	TAILQ_INIT(&m->mtx_blocked);
662 
663 	LOCK_LOG_INIT(lock, opts);
664 
665 	WITNESS_INIT(lock);
666 }
667 
668 /*
669  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
670  * passed in as a flag here because if the corresponding mtx_init() was
671  * called with MTX_QUIET set, then it will already be set in the mutex's
672  * flags.
673  */
674 void
675 mtx_destroy(struct mtx *m)
676 {
677 
678 	LOCK_LOG_DESTROY(&m->mtx_object, 0);
679 
680 	if (!mtx_owned(m))
681 		MPASS(mtx_unowned(m));
682 	else {
683 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
684 
685 		/* Tell witness this isn't locked to make it happy. */
686 		WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
687 		    __LINE__);
688 	}
689 
690 	WITNESS_DESTROY(&m->mtx_object);
691 }
692 
693 /*
694  * Encapsulated Giant mutex routines.  These routines provide encapsulation
695  * control for the Giant mutex, allowing sysctls to be used to turn on and
696  * off Giant around certain subsystems.  The default value for the sysctls
697  * are set to what developers believe is stable and working in regards to
698  * the Giant pushdown.  Developers should not turn off Giant via these
699  * sysctls unless they know what they are doing.
700  *
701  * Callers of mtx_lock_giant() are expected to pass the return value to an
702  * accompanying mtx_unlock_giant() later on.  If multiple subsystems are
703  * effected by a Giant wrap, all related sysctl variables must be zero for
704  * the subsystem call to operate without Giant (as determined by the caller).
705  */
706 
707 SYSCTL_NODE(_kern, OID_AUTO, giant, CTLFLAG_RD, NULL, "Giant mutex manipulation");
708 
709 static int kern_giant_all = 0;
710 SYSCTL_INT(_kern_giant, OID_AUTO, all, CTLFLAG_RW, &kern_giant_all, 0, "");
711 
712 int kern_giant_proc = 1;	/* Giant around PROC locks */
713 int kern_giant_file = 1;	/* Giant around struct file & filedesc */
714 SYSCTL_INT(_kern_giant, OID_AUTO, proc, CTLFLAG_RW, &kern_giant_proc, 0, "");
715 SYSCTL_INT(_kern_giant, OID_AUTO, file, CTLFLAG_RW, &kern_giant_file, 0, "");
716 
717 int
718 mtx_lock_giant(int sysctlvar)
719 {
720 	if (sysctlvar || kern_giant_all) {
721 		mtx_lock(&Giant);
722 		return(1);
723 	}
724 	return(0);
725 }
726 
727 void
728 mtx_unlock_giant(int s)
729 {
730 	if (s)
731 		mtx_unlock(&Giant);
732 }
733 
734