xref: /freebsd/sys/kern/kern_mutex.c (revision 5bf5ca772c6de2d53344a78cf461447cc322ccea)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Berkeley Software Design Inc's name may not be used to endorse or
15  *    promote products derived from this software without specific prior
16  *    written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32  */
33 
34 /*
35  * Machine independent bits of mutex implementation.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_adaptive_mutexes.h"
42 #include "opt_ddb.h"
43 #include "opt_hwpmc_hooks.h"
44 #include "opt_sched.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bus.h>
49 #include <sys/conf.h>
50 #include <sys/kdb.h>
51 #include <sys/kernel.h>
52 #include <sys/ktr.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mutex.h>
56 #include <sys/proc.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/sbuf.h>
60 #include <sys/smp.h>
61 #include <sys/sysctl.h>
62 #include <sys/turnstile.h>
63 #include <sys/vmmeter.h>
64 #include <sys/lock_profile.h>
65 
66 #include <machine/atomic.h>
67 #include <machine/bus.h>
68 #include <machine/cpu.h>
69 
70 #include <ddb/ddb.h>
71 
72 #include <fs/devfs/devfs_int.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 
77 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
78 #define	ADAPTIVE_MUTEXES
79 #endif
80 
81 #ifdef HWPMC_HOOKS
82 #include <sys/pmckern.h>
83 PMC_SOFT_DEFINE( , , lock, failed);
84 #endif
85 
86 /*
87  * Return the mutex address when the lock cookie address is provided.
88  * This functionality assumes that struct mtx* have a member named mtx_lock.
89  */
90 #define	mtxlock2mtx(c)	(__containerof(c, struct mtx, mtx_lock))
91 
92 /*
93  * Internal utility macros.
94  */
95 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
96 
97 #define	mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
98 
99 static void	assert_mtx(const struct lock_object *lock, int what);
100 #ifdef DDB
101 static void	db_show_mtx(const struct lock_object *lock);
102 #endif
103 static void	lock_mtx(struct lock_object *lock, uintptr_t how);
104 static void	lock_spin(struct lock_object *lock, uintptr_t how);
105 #ifdef KDTRACE_HOOKS
106 static int	owner_mtx(const struct lock_object *lock,
107 		    struct thread **owner);
108 #endif
109 static uintptr_t unlock_mtx(struct lock_object *lock);
110 static uintptr_t unlock_spin(struct lock_object *lock);
111 
112 /*
113  * Lock classes for sleep and spin mutexes.
114  */
115 struct lock_class lock_class_mtx_sleep = {
116 	.lc_name = "sleep mutex",
117 	.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
118 	.lc_assert = assert_mtx,
119 #ifdef DDB
120 	.lc_ddb_show = db_show_mtx,
121 #endif
122 	.lc_lock = lock_mtx,
123 	.lc_unlock = unlock_mtx,
124 #ifdef KDTRACE_HOOKS
125 	.lc_owner = owner_mtx,
126 #endif
127 };
128 struct lock_class lock_class_mtx_spin = {
129 	.lc_name = "spin mutex",
130 	.lc_flags = LC_SPINLOCK | LC_RECURSABLE,
131 	.lc_assert = assert_mtx,
132 #ifdef DDB
133 	.lc_ddb_show = db_show_mtx,
134 #endif
135 	.lc_lock = lock_spin,
136 	.lc_unlock = unlock_spin,
137 #ifdef KDTRACE_HOOKS
138 	.lc_owner = owner_mtx,
139 #endif
140 };
141 
142 #ifdef ADAPTIVE_MUTEXES
143 static SYSCTL_NODE(_debug, OID_AUTO, mtx, CTLFLAG_RD, NULL, "mtx debugging");
144 
145 static struct lock_delay_config __read_frequently mtx_delay;
146 
147 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_delay.base,
148     0, "");
149 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_delay.max,
150     0, "");
151 
152 LOCK_DELAY_SYSINIT_DEFAULT(mtx_delay);
153 #endif
154 
155 static SYSCTL_NODE(_debug, OID_AUTO, mtx_spin, CTLFLAG_RD, NULL,
156     "mtx spin debugging");
157 
158 static struct lock_delay_config __read_frequently mtx_spin_delay;
159 
160 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_base, CTLFLAG_RW,
161     &mtx_spin_delay.base, 0, "");
162 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_max, CTLFLAG_RW,
163     &mtx_spin_delay.max, 0, "");
164 
165 LOCK_DELAY_SYSINIT_DEFAULT(mtx_spin_delay);
166 
167 /*
168  * System-wide mutexes
169  */
170 struct mtx blocked_lock;
171 struct mtx __exclusive_cache_line Giant;
172 
173 static void _mtx_lock_indefinite_check(struct mtx *, struct lock_delay_arg *);
174 
175 void
176 assert_mtx(const struct lock_object *lock, int what)
177 {
178 
179 	mtx_assert((const struct mtx *)lock, what);
180 }
181 
182 void
183 lock_mtx(struct lock_object *lock, uintptr_t how)
184 {
185 
186 	mtx_lock((struct mtx *)lock);
187 }
188 
189 void
190 lock_spin(struct lock_object *lock, uintptr_t how)
191 {
192 
193 	panic("spin locks can only use msleep_spin");
194 }
195 
196 uintptr_t
197 unlock_mtx(struct lock_object *lock)
198 {
199 	struct mtx *m;
200 
201 	m = (struct mtx *)lock;
202 	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
203 	mtx_unlock(m);
204 	return (0);
205 }
206 
207 uintptr_t
208 unlock_spin(struct lock_object *lock)
209 {
210 
211 	panic("spin locks can only use msleep_spin");
212 }
213 
214 #ifdef KDTRACE_HOOKS
215 int
216 owner_mtx(const struct lock_object *lock, struct thread **owner)
217 {
218 	const struct mtx *m;
219 	uintptr_t x;
220 
221 	m = (const struct mtx *)lock;
222 	x = m->mtx_lock;
223 	*owner = (struct thread *)(x & ~MTX_FLAGMASK);
224 	return (*owner != NULL);
225 }
226 #endif
227 
228 /*
229  * Function versions of the inlined __mtx_* macros.  These are used by
230  * modules and can also be called from assembly language if needed.
231  */
232 void
233 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
234 {
235 	struct mtx *m;
236 	uintptr_t tid, v;
237 
238 	m = mtxlock2mtx(c);
239 
240 	KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
241 	    !TD_IS_IDLETHREAD(curthread),
242 	    ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
243 	    curthread, m->lock_object.lo_name, file, line));
244 	KASSERT(m->mtx_lock != MTX_DESTROYED,
245 	    ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
246 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
247 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
248 	    file, line));
249 	WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
250 	    LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
251 
252 	tid = (uintptr_t)curthread;
253 	v = MTX_UNOWNED;
254 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
255 		_mtx_lock_sleep(m, v, opts, file, line);
256 	else
257 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
258 		    m, 0, 0, file, line);
259 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
260 	    line);
261 	WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
262 	    file, line);
263 	TD_LOCKS_INC(curthread);
264 }
265 
266 void
267 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
268 {
269 	struct mtx *m;
270 
271 	m = mtxlock2mtx(c);
272 
273 	KASSERT(m->mtx_lock != MTX_DESTROYED,
274 	    ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
275 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
276 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
277 	    file, line));
278 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
279 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
280 	    line);
281 	mtx_assert(m, MA_OWNED);
282 
283 #ifdef LOCK_PROFILING
284 	__mtx_unlock_sleep(c, (uintptr_t)curthread, opts, file, line);
285 #else
286 	__mtx_unlock(m, curthread, opts, file, line);
287 #endif
288 	TD_LOCKS_DEC(curthread);
289 }
290 
291 void
292 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
293     int line)
294 {
295 	struct mtx *m;
296 #ifdef SMP
297 	uintptr_t tid, v;
298 #endif
299 
300 	m = mtxlock2mtx(c);
301 
302 	KASSERT(m->mtx_lock != MTX_DESTROYED,
303 	    ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
304 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
305 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
306 	    m->lock_object.lo_name, file, line));
307 	if (mtx_owned(m))
308 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
309 		    (opts & MTX_RECURSE) != 0,
310 	    ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
311 		    m->lock_object.lo_name, file, line));
312 	opts &= ~MTX_RECURSE;
313 	WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
314 	    file, line, NULL);
315 #ifdef SMP
316 	spinlock_enter();
317 	tid = (uintptr_t)curthread;
318 	v = MTX_UNOWNED;
319 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
320 		_mtx_lock_spin(m, v, opts, file, line);
321 	else
322 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire,
323 		    m, 0, 0, file, line);
324 #else
325 	__mtx_lock_spin(m, curthread, opts, file, line);
326 #endif
327 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
328 	    line);
329 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
330 }
331 
332 int
333 __mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
334     int line)
335 {
336 	struct mtx *m;
337 
338 	if (SCHEDULER_STOPPED())
339 		return (1);
340 
341 	m = mtxlock2mtx(c);
342 
343 	KASSERT(m->mtx_lock != MTX_DESTROYED,
344 	    ("mtx_trylock_spin() of destroyed mutex @ %s:%d", file, line));
345 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
346 	    ("mtx_trylock_spin() of sleep mutex %s @ %s:%d",
347 	    m->lock_object.lo_name, file, line));
348 	KASSERT((opts & MTX_RECURSE) == 0,
349 	    ("mtx_trylock_spin: unsupp. opt MTX_RECURSE on mutex %s @ %s:%d\n",
350 	    m->lock_object.lo_name, file, line));
351 	if (__mtx_trylock_spin(m, curthread, opts, file, line)) {
352 		LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 1, file, line);
353 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
354 		return (1);
355 	}
356 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 0, file, line);
357 	return (0);
358 }
359 
360 void
361 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
362     int line)
363 {
364 	struct mtx *m;
365 
366 	m = mtxlock2mtx(c);
367 
368 	KASSERT(m->mtx_lock != MTX_DESTROYED,
369 	    ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
370 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
371 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
372 	    m->lock_object.lo_name, file, line));
373 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
374 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
375 	    line);
376 	mtx_assert(m, MA_OWNED);
377 
378 	__mtx_unlock_spin(m);
379 }
380 
381 /*
382  * The important part of mtx_trylock{,_flags}()
383  * Tries to acquire lock `m.'  If this function is called on a mutex that
384  * is already owned, it will recursively acquire the lock.
385  */
386 int
387 _mtx_trylock_flags_int(struct mtx *m, int opts LOCK_FILE_LINE_ARG_DEF)
388 {
389 	struct thread *td;
390 	uintptr_t tid, v;
391 #ifdef LOCK_PROFILING
392 	uint64_t waittime = 0;
393 	int contested = 0;
394 #endif
395 	int rval;
396 	bool recursed;
397 
398 	td = curthread;
399 	tid = (uintptr_t)td;
400 	if (SCHEDULER_STOPPED_TD(td))
401 		return (1);
402 
403 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td),
404 	    ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
405 	    curthread, m->lock_object.lo_name, file, line));
406 	KASSERT(m->mtx_lock != MTX_DESTROYED,
407 	    ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
408 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
409 	    ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
410 	    file, line));
411 
412 	rval = 1;
413 	recursed = false;
414 	v = MTX_UNOWNED;
415 	for (;;) {
416 		if (_mtx_obtain_lock_fetch(m, &v, tid))
417 			break;
418 		if (v == MTX_UNOWNED)
419 			continue;
420 		if (v == tid &&
421 		    ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
422 		    (opts & MTX_RECURSE) != 0)) {
423 			m->mtx_recurse++;
424 			atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
425 			recursed = true;
426 			break;
427 		}
428 		rval = 0;
429 		break;
430 	}
431 
432 	opts &= ~MTX_RECURSE;
433 
434 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
435 	if (rval) {
436 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
437 		    file, line);
438 		TD_LOCKS_INC(curthread);
439 		if (!recursed)
440 			LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
441 			    m, contested, waittime, file, line);
442 	}
443 
444 	return (rval);
445 }
446 
447 int
448 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
449 {
450 	struct mtx *m;
451 
452 	m = mtxlock2mtx(c);
453 	return (_mtx_trylock_flags_int(m, opts LOCK_FILE_LINE_ARG));
454 }
455 
456 /*
457  * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
458  *
459  * We call this if the lock is either contested (i.e. we need to go to
460  * sleep waiting for it), or if we need to recurse on it.
461  */
462 #if LOCK_DEBUG > 0
463 void
464 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file,
465     int line)
466 #else
467 void
468 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v)
469 #endif
470 {
471 	struct thread *td;
472 	struct mtx *m;
473 	struct turnstile *ts;
474 	uintptr_t tid;
475 	struct thread *owner;
476 #ifdef KTR
477 	int cont_logged = 0;
478 #endif
479 #ifdef LOCK_PROFILING
480 	int contested = 0;
481 	uint64_t waittime = 0;
482 #endif
483 #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS)
484 	struct lock_delay_arg lda;
485 #endif
486 #ifdef KDTRACE_HOOKS
487 	u_int sleep_cnt = 0;
488 	int64_t sleep_time = 0;
489 	int64_t all_time = 0;
490 #endif
491 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
492 	int doing_lockprof;
493 #endif
494 	td = curthread;
495 	tid = (uintptr_t)td;
496 	if (SCHEDULER_STOPPED_TD(td))
497 		return;
498 
499 #if defined(ADAPTIVE_MUTEXES)
500 	lock_delay_arg_init(&lda, &mtx_delay);
501 #elif defined(KDTRACE_HOOKS)
502 	lock_delay_arg_init(&lda, NULL);
503 #endif
504 	m = mtxlock2mtx(c);
505 	if (__predict_false(v == MTX_UNOWNED))
506 		v = MTX_READ_VALUE(m);
507 
508 	if (__predict_false(lv_mtx_owner(v) == td)) {
509 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
510 		    (opts & MTX_RECURSE) != 0,
511 	    ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
512 		    m->lock_object.lo_name, file, line));
513 #if LOCK_DEBUG > 0
514 		opts &= ~MTX_RECURSE;
515 #endif
516 		m->mtx_recurse++;
517 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
518 		if (LOCK_LOG_TEST(&m->lock_object, opts))
519 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
520 		return;
521 	}
522 #if LOCK_DEBUG > 0
523 	opts &= ~MTX_RECURSE;
524 #endif
525 
526 #ifdef HWPMC_HOOKS
527 	PMC_SOFT_CALL( , , lock, failed);
528 #endif
529 	lock_profile_obtain_lock_failed(&m->lock_object,
530 		    &contested, &waittime);
531 	if (LOCK_LOG_TEST(&m->lock_object, opts))
532 		CTR4(KTR_LOCK,
533 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
534 		    m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
535 #ifdef LOCK_PROFILING
536 	doing_lockprof = 1;
537 #elif defined(KDTRACE_HOOKS)
538 	doing_lockprof = lockstat_enabled;
539 	if (__predict_false(doing_lockprof))
540 		all_time -= lockstat_nsecs(&m->lock_object);
541 #endif
542 
543 	for (;;) {
544 		if (v == MTX_UNOWNED) {
545 			if (_mtx_obtain_lock_fetch(m, &v, tid))
546 				break;
547 			continue;
548 		}
549 #ifdef KDTRACE_HOOKS
550 		lda.spin_cnt++;
551 #endif
552 #ifdef ADAPTIVE_MUTEXES
553 		/*
554 		 * If the owner is running on another CPU, spin until the
555 		 * owner stops running or the state of the lock changes.
556 		 */
557 		owner = lv_mtx_owner(v);
558 		if (TD_IS_RUNNING(owner)) {
559 			if (LOCK_LOG_TEST(&m->lock_object, 0))
560 				CTR3(KTR_LOCK,
561 				    "%s: spinning on %p held by %p",
562 				    __func__, m, owner);
563 			KTR_STATE1(KTR_SCHED, "thread",
564 			    sched_tdname((struct thread *)tid),
565 			    "spinning", "lockname:\"%s\"",
566 			    m->lock_object.lo_name);
567 			do {
568 				lock_delay(&lda);
569 				v = MTX_READ_VALUE(m);
570 				owner = lv_mtx_owner(v);
571 			} while (v != MTX_UNOWNED && TD_IS_RUNNING(owner));
572 			KTR_STATE0(KTR_SCHED, "thread",
573 			    sched_tdname((struct thread *)tid),
574 			    "running");
575 			continue;
576 		}
577 #endif
578 
579 		ts = turnstile_trywait(&m->lock_object);
580 		v = MTX_READ_VALUE(m);
581 retry_turnstile:
582 
583 		/*
584 		 * Check if the lock has been released while spinning for
585 		 * the turnstile chain lock.
586 		 */
587 		if (v == MTX_UNOWNED) {
588 			turnstile_cancel(ts);
589 			continue;
590 		}
591 
592 #ifdef ADAPTIVE_MUTEXES
593 		/*
594 		 * The current lock owner might have started executing
595 		 * on another CPU (or the lock could have changed
596 		 * owners) while we were waiting on the turnstile
597 		 * chain lock.  If so, drop the turnstile lock and try
598 		 * again.
599 		 */
600 		owner = lv_mtx_owner(v);
601 		if (TD_IS_RUNNING(owner)) {
602 			turnstile_cancel(ts);
603 			continue;
604 		}
605 #endif
606 
607 		/*
608 		 * If the mutex isn't already contested and a failure occurs
609 		 * setting the contested bit, the mutex was either released
610 		 * or the state of the MTX_RECURSED bit changed.
611 		 */
612 		if ((v & MTX_CONTESTED) == 0 &&
613 		    !atomic_fcmpset_ptr(&m->mtx_lock, &v, v | MTX_CONTESTED)) {
614 			goto retry_turnstile;
615 		}
616 
617 		/*
618 		 * We definitely must sleep for this lock.
619 		 */
620 		mtx_assert(m, MA_NOTOWNED);
621 
622 #ifdef KTR
623 		if (!cont_logged) {
624 			CTR6(KTR_CONTENTION,
625 			    "contention: %p at %s:%d wants %s, taken by %s:%d",
626 			    (void *)tid, file, line, m->lock_object.lo_name,
627 			    WITNESS_FILE(&m->lock_object),
628 			    WITNESS_LINE(&m->lock_object));
629 			cont_logged = 1;
630 		}
631 #endif
632 
633 		/*
634 		 * Block on the turnstile.
635 		 */
636 #ifdef KDTRACE_HOOKS
637 		sleep_time -= lockstat_nsecs(&m->lock_object);
638 #endif
639 #ifndef ADAPTIVE_MUTEXES
640 		owner = mtx_owner(m);
641 #endif
642 		MPASS(owner == mtx_owner(m));
643 		turnstile_wait(ts, owner, TS_EXCLUSIVE_QUEUE);
644 #ifdef KDTRACE_HOOKS
645 		sleep_time += lockstat_nsecs(&m->lock_object);
646 		sleep_cnt++;
647 #endif
648 		v = MTX_READ_VALUE(m);
649 	}
650 #ifdef KTR
651 	if (cont_logged) {
652 		CTR4(KTR_CONTENTION,
653 		    "contention end: %s acquired by %p at %s:%d",
654 		    m->lock_object.lo_name, (void *)tid, file, line);
655 	}
656 #endif
657 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
658 	if (__predict_true(!doing_lockprof))
659 		return;
660 #endif
661 #ifdef KDTRACE_HOOKS
662 	all_time += lockstat_nsecs(&m->lock_object);
663 #endif
664 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested,
665 	    waittime, file, line);
666 #ifdef KDTRACE_HOOKS
667 	if (sleep_time)
668 		LOCKSTAT_RECORD1(adaptive__block, m, sleep_time);
669 
670 	/*
671 	 * Only record the loops spinning and not sleeping.
672 	 */
673 	if (lda.spin_cnt > sleep_cnt)
674 		LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time);
675 #endif
676 }
677 
678 #ifdef SMP
679 /*
680  * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
681  *
682  * This is only called if we need to actually spin for the lock. Recursion
683  * is handled inline.
684  */
685 #if LOCK_DEBUG > 0
686 void
687 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v, int opts,
688     const char *file, int line)
689 #else
690 void
691 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v)
692 #endif
693 {
694 	struct mtx *m;
695 	struct lock_delay_arg lda;
696 	uintptr_t tid;
697 #ifdef LOCK_PROFILING
698 	int contested = 0;
699 	uint64_t waittime = 0;
700 #endif
701 #ifdef KDTRACE_HOOKS
702 	int64_t spin_time = 0;
703 #endif
704 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
705 	int doing_lockprof;
706 #endif
707 
708 	tid = (uintptr_t)curthread;
709 	m = mtxlock2mtx(c);
710 
711 	if (__predict_false(v == MTX_UNOWNED))
712 		v = MTX_READ_VALUE(m);
713 
714 	if (__predict_false(v == tid)) {
715 		m->mtx_recurse++;
716 		return;
717 	}
718 
719 	if (SCHEDULER_STOPPED())
720 		return;
721 
722 	lock_delay_arg_init(&lda, &mtx_spin_delay);
723 
724 	if (LOCK_LOG_TEST(&m->lock_object, opts))
725 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
726 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
727 	    "spinning", "lockname:\"%s\"", m->lock_object.lo_name);
728 
729 #ifdef HWPMC_HOOKS
730 	PMC_SOFT_CALL( , , lock, failed);
731 #endif
732 	lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime);
733 #ifdef LOCK_PROFILING
734 	doing_lockprof = 1;
735 #elif defined(KDTRACE_HOOKS)
736 	doing_lockprof = lockstat_enabled;
737 	if (__predict_false(doing_lockprof))
738 		spin_time -= lockstat_nsecs(&m->lock_object);
739 #endif
740 	for (;;) {
741 		if (v == MTX_UNOWNED) {
742 			if (_mtx_obtain_lock_fetch(m, &v, tid))
743 				break;
744 			continue;
745 		}
746 		/* Give interrupts a chance while we spin. */
747 		spinlock_exit();
748 		do {
749 			if (__predict_true(lda.spin_cnt < 10000000)) {
750 				lock_delay(&lda);
751 			} else {
752 				_mtx_lock_indefinite_check(m, &lda);
753 			}
754 			v = MTX_READ_VALUE(m);
755 		} while (v != MTX_UNOWNED);
756 		spinlock_enter();
757 	}
758 
759 	if (LOCK_LOG_TEST(&m->lock_object, opts))
760 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
761 	KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
762 	    "running");
763 
764 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
765 	if (__predict_true(!doing_lockprof))
766 		return;
767 #endif
768 #ifdef KDTRACE_HOOKS
769 	spin_time += lockstat_nsecs(&m->lock_object);
770 #endif
771 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
772 	    contested, waittime, file, line);
773 #ifdef KDTRACE_HOOKS
774 	if (lda.spin_cnt != 0)
775 		LOCKSTAT_RECORD1(spin__spin, m, spin_time);
776 #endif
777 }
778 #endif /* SMP */
779 
780 #ifdef INVARIANTS
781 static void
782 thread_lock_validate(struct mtx *m, int opts, const char *file, int line)
783 {
784 
785 	KASSERT(m->mtx_lock != MTX_DESTROYED,
786 	    ("thread_lock() of destroyed mutex @ %s:%d", file, line));
787 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
788 	    ("thread_lock() of sleep mutex %s @ %s:%d",
789 	    m->lock_object.lo_name, file, line));
790 	if (mtx_owned(m))
791 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
792 		    ("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n",
793 		    m->lock_object.lo_name, file, line));
794 	WITNESS_CHECKORDER(&m->lock_object,
795 	    opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
796 }
797 #else
798 #define thread_lock_validate(m, opts, file, line) do { } while (0)
799 #endif
800 
801 #ifndef LOCK_PROFILING
802 #if LOCK_DEBUG > 0
803 void
804 _thread_lock(struct thread *td, int opts, const char *file, int line)
805 #else
806 void
807 _thread_lock(struct thread *td)
808 #endif
809 {
810 	struct mtx *m;
811 	uintptr_t tid, v;
812 
813 	tid = (uintptr_t)curthread;
814 
815 	if (__predict_false(LOCKSTAT_PROFILE_ENABLED(spin__acquire)))
816 		goto slowpath_noirq;
817 	spinlock_enter();
818 	m = td->td_lock;
819 	thread_lock_validate(m, 0, file, line);
820 	v = MTX_READ_VALUE(m);
821 	if (__predict_true(v == MTX_UNOWNED)) {
822 		if (__predict_false(!_mtx_obtain_lock(m, tid)))
823 			goto slowpath_unlocked;
824 	} else if (v == tid) {
825 		m->mtx_recurse++;
826 	} else
827 		goto slowpath_unlocked;
828 	if (__predict_true(m == td->td_lock)) {
829 		WITNESS_LOCK(&m->lock_object, LOP_EXCLUSIVE, file, line);
830 		return;
831 	}
832 	MPASS(m->mtx_recurse == 0);
833 	_mtx_release_lock_quick(m);
834 slowpath_unlocked:
835 	spinlock_exit();
836 slowpath_noirq:
837 #if LOCK_DEBUG > 0
838 	thread_lock_flags_(td, opts, file, line);
839 #else
840 	thread_lock_flags_(td, 0, 0, 0);
841 #endif
842 }
843 #endif
844 
845 void
846 thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
847 {
848 	struct mtx *m;
849 	uintptr_t tid, v;
850 	struct lock_delay_arg lda;
851 #ifdef LOCK_PROFILING
852 	int contested = 0;
853 	uint64_t waittime = 0;
854 #endif
855 #ifdef KDTRACE_HOOKS
856 	int64_t spin_time = 0;
857 #endif
858 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
859 	int doing_lockprof = 1;
860 #endif
861 
862 	tid = (uintptr_t)curthread;
863 
864 	if (SCHEDULER_STOPPED()) {
865 		/*
866 		 * Ensure that spinlock sections are balanced even when the
867 		 * scheduler is stopped, since we may otherwise inadvertently
868 		 * re-enable interrupts while dumping core.
869 		 */
870 		spinlock_enter();
871 		return;
872 	}
873 
874 	lock_delay_arg_init(&lda, &mtx_spin_delay);
875 
876 #ifdef HWPMC_HOOKS
877 	PMC_SOFT_CALL( , , lock, failed);
878 #endif
879 
880 #ifdef LOCK_PROFILING
881 	doing_lockprof = 1;
882 #elif defined(KDTRACE_HOOKS)
883 	doing_lockprof = lockstat_enabled;
884 	if (__predict_false(doing_lockprof))
885 		spin_time -= lockstat_nsecs(&td->td_lock->lock_object);
886 #endif
887 	spinlock_enter();
888 
889 	for (;;) {
890 retry:
891 		m = td->td_lock;
892 		thread_lock_validate(m, opts, file, line);
893 		v = MTX_READ_VALUE(m);
894 		for (;;) {
895 			if (v == MTX_UNOWNED) {
896 				if (_mtx_obtain_lock_fetch(m, &v, tid))
897 					break;
898 				continue;
899 			}
900 			if (v == tid) {
901 				m->mtx_recurse++;
902 				MPASS(m == td->td_lock);
903 				break;
904 			}
905 			lock_profile_obtain_lock_failed(&m->lock_object,
906 			    &contested, &waittime);
907 			/* Give interrupts a chance while we spin. */
908 			spinlock_exit();
909 			do {
910 				if (__predict_true(lda.spin_cnt < 10000000)) {
911 					lock_delay(&lda);
912 				} else {
913 					_mtx_lock_indefinite_check(m, &lda);
914 				}
915 				if (m != td->td_lock) {
916 					spinlock_enter();
917 					goto retry;
918 				}
919 				v = MTX_READ_VALUE(m);
920 			} while (v != MTX_UNOWNED);
921 			spinlock_enter();
922 		}
923 		if (m == td->td_lock)
924 			break;
925 		MPASS(m->mtx_recurse == 0);
926 		_mtx_release_lock_quick(m);
927 	}
928 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
929 	    line);
930 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
931 
932 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
933 	if (__predict_true(!doing_lockprof))
934 		return;
935 #endif
936 #ifdef KDTRACE_HOOKS
937 	spin_time += lockstat_nsecs(&m->lock_object);
938 #endif
939 	if (m->mtx_recurse == 0)
940 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
941 		    contested, waittime, file, line);
942 #ifdef KDTRACE_HOOKS
943 	if (lda.spin_cnt != 0)
944 		LOCKSTAT_RECORD1(thread__spin, m, spin_time);
945 #endif
946 }
947 
948 struct mtx *
949 thread_lock_block(struct thread *td)
950 {
951 	struct mtx *lock;
952 
953 	THREAD_LOCK_ASSERT(td, MA_OWNED);
954 	lock = td->td_lock;
955 	td->td_lock = &blocked_lock;
956 	mtx_unlock_spin(lock);
957 
958 	return (lock);
959 }
960 
961 void
962 thread_lock_unblock(struct thread *td, struct mtx *new)
963 {
964 	mtx_assert(new, MA_OWNED);
965 	MPASS(td->td_lock == &blocked_lock);
966 	atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
967 }
968 
969 void
970 thread_lock_set(struct thread *td, struct mtx *new)
971 {
972 	struct mtx *lock;
973 
974 	mtx_assert(new, MA_OWNED);
975 	THREAD_LOCK_ASSERT(td, MA_OWNED);
976 	lock = td->td_lock;
977 	td->td_lock = new;
978 	mtx_unlock_spin(lock);
979 }
980 
981 /*
982  * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
983  *
984  * We are only called here if the lock is recursed, contested (i.e. we
985  * need to wake up a blocked thread) or lockstat probe is active.
986  */
987 #if LOCK_DEBUG > 0
988 void
989 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v, int opts,
990     const char *file, int line)
991 #else
992 void
993 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v)
994 #endif
995 {
996 	struct mtx *m;
997 	struct turnstile *ts;
998 	uintptr_t tid;
999 
1000 	if (SCHEDULER_STOPPED())
1001 		return;
1002 
1003 	tid = (uintptr_t)curthread;
1004 	m = mtxlock2mtx(c);
1005 
1006 	if (__predict_false(v == tid))
1007 		v = MTX_READ_VALUE(m);
1008 
1009 	if (__predict_false(v & MTX_RECURSED)) {
1010 		if (--(m->mtx_recurse) == 0)
1011 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
1012 		if (LOCK_LOG_TEST(&m->lock_object, opts))
1013 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
1014 		return;
1015 	}
1016 
1017 	LOCKSTAT_PROFILE_RELEASE_LOCK(adaptive__release, m);
1018 	if (v == tid && _mtx_release_lock(m, tid))
1019 		return;
1020 
1021 	/*
1022 	 * We have to lock the chain before the turnstile so this turnstile
1023 	 * can be removed from the hash list if it is empty.
1024 	 */
1025 	turnstile_chain_lock(&m->lock_object);
1026 	_mtx_release_lock_quick(m);
1027 	ts = turnstile_lookup(&m->lock_object);
1028 	MPASS(ts != NULL);
1029 	if (LOCK_LOG_TEST(&m->lock_object, opts))
1030 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
1031 	turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
1032 
1033 	/*
1034 	 * This turnstile is now no longer associated with the mutex.  We can
1035 	 * unlock the chain lock so a new turnstile may take it's place.
1036 	 */
1037 	turnstile_unpend(ts, TS_EXCLUSIVE_LOCK);
1038 	turnstile_chain_unlock(&m->lock_object);
1039 }
1040 
1041 /*
1042  * All the unlocking of MTX_SPIN locks is done inline.
1043  * See the __mtx_unlock_spin() macro for the details.
1044  */
1045 
1046 /*
1047  * The backing function for the INVARIANTS-enabled mtx_assert()
1048  */
1049 #ifdef INVARIANT_SUPPORT
1050 void
1051 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
1052 {
1053 	const struct mtx *m;
1054 
1055 	if (panicstr != NULL || dumping || SCHEDULER_STOPPED())
1056 		return;
1057 
1058 	m = mtxlock2mtx(c);
1059 
1060 	switch (what) {
1061 	case MA_OWNED:
1062 	case MA_OWNED | MA_RECURSED:
1063 	case MA_OWNED | MA_NOTRECURSED:
1064 		if (!mtx_owned(m))
1065 			panic("mutex %s not owned at %s:%d",
1066 			    m->lock_object.lo_name, file, line);
1067 		if (mtx_recursed(m)) {
1068 			if ((what & MA_NOTRECURSED) != 0)
1069 				panic("mutex %s recursed at %s:%d",
1070 				    m->lock_object.lo_name, file, line);
1071 		} else if ((what & MA_RECURSED) != 0) {
1072 			panic("mutex %s unrecursed at %s:%d",
1073 			    m->lock_object.lo_name, file, line);
1074 		}
1075 		break;
1076 	case MA_NOTOWNED:
1077 		if (mtx_owned(m))
1078 			panic("mutex %s owned at %s:%d",
1079 			    m->lock_object.lo_name, file, line);
1080 		break;
1081 	default:
1082 		panic("unknown mtx_assert at %s:%d", file, line);
1083 	}
1084 }
1085 #endif
1086 
1087 /*
1088  * General init routine used by the MTX_SYSINIT() macro.
1089  */
1090 void
1091 mtx_sysinit(void *arg)
1092 {
1093 	struct mtx_args *margs = arg;
1094 
1095 	mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
1096 	    margs->ma_opts);
1097 }
1098 
1099 /*
1100  * Mutex initialization routine; initialize lock `m' of type contained in
1101  * `opts' with options contained in `opts' and name `name.'  The optional
1102  * lock type `type' is used as a general lock category name for use with
1103  * witness.
1104  */
1105 void
1106 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
1107 {
1108 	struct mtx *m;
1109 	struct lock_class *class;
1110 	int flags;
1111 
1112 	m = mtxlock2mtx(c);
1113 
1114 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
1115 	    MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0);
1116 	ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
1117 	    ("%s: mtx_lock not aligned for %s: %p", __func__, name,
1118 	    &m->mtx_lock));
1119 
1120 	/* Determine lock class and lock flags. */
1121 	if (opts & MTX_SPIN)
1122 		class = &lock_class_mtx_spin;
1123 	else
1124 		class = &lock_class_mtx_sleep;
1125 	flags = 0;
1126 	if (opts & MTX_QUIET)
1127 		flags |= LO_QUIET;
1128 	if (opts & MTX_RECURSE)
1129 		flags |= LO_RECURSABLE;
1130 	if ((opts & MTX_NOWITNESS) == 0)
1131 		flags |= LO_WITNESS;
1132 	if (opts & MTX_DUPOK)
1133 		flags |= LO_DUPOK;
1134 	if (opts & MTX_NOPROFILE)
1135 		flags |= LO_NOPROFILE;
1136 	if (opts & MTX_NEW)
1137 		flags |= LO_NEW;
1138 
1139 	/* Initialize mutex. */
1140 	lock_init(&m->lock_object, class, name, type, flags);
1141 
1142 	m->mtx_lock = MTX_UNOWNED;
1143 	m->mtx_recurse = 0;
1144 }
1145 
1146 /*
1147  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
1148  * passed in as a flag here because if the corresponding mtx_init() was
1149  * called with MTX_QUIET set, then it will already be set in the mutex's
1150  * flags.
1151  */
1152 void
1153 _mtx_destroy(volatile uintptr_t *c)
1154 {
1155 	struct mtx *m;
1156 
1157 	m = mtxlock2mtx(c);
1158 
1159 	if (!mtx_owned(m))
1160 		MPASS(mtx_unowned(m));
1161 	else {
1162 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
1163 
1164 		/* Perform the non-mtx related part of mtx_unlock_spin(). */
1165 		if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin)
1166 			spinlock_exit();
1167 		else
1168 			TD_LOCKS_DEC(curthread);
1169 
1170 		lock_profile_release_lock(&m->lock_object);
1171 		/* Tell witness this isn't locked to make it happy. */
1172 		WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
1173 		    __LINE__);
1174 	}
1175 
1176 	m->mtx_lock = MTX_DESTROYED;
1177 	lock_destroy(&m->lock_object);
1178 }
1179 
1180 /*
1181  * Intialize the mutex code and system mutexes.  This is called from the MD
1182  * startup code prior to mi_startup().  The per-CPU data space needs to be
1183  * setup before this is called.
1184  */
1185 void
1186 mutex_init(void)
1187 {
1188 
1189 	/* Setup turnstiles so that sleep mutexes work. */
1190 	init_turnstiles();
1191 
1192 	/*
1193 	 * Initialize mutexes.
1194 	 */
1195 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
1196 	mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
1197 	blocked_lock.mtx_lock = 0xdeadc0de;	/* Always blocked. */
1198 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
1199 	mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN);
1200 	mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN);
1201 	mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN);
1202 	mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN);
1203 	mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
1204 	mtx_lock(&Giant);
1205 }
1206 
1207 static void __noinline
1208 _mtx_lock_indefinite_check(struct mtx *m, struct lock_delay_arg *ldap)
1209 {
1210 	struct thread *td;
1211 
1212 	ldap->spin_cnt++;
1213 	if (ldap->spin_cnt < 60000000 || kdb_active || panicstr != NULL)
1214 		DELAY(1);
1215 	else {
1216 		td = mtx_owner(m);
1217 
1218 		/* If the mutex is unlocked, try again. */
1219 		if (td == NULL)
1220 			return;
1221 
1222 		printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
1223 		    m, m->lock_object.lo_name, td, td->td_tid);
1224 #ifdef WITNESS
1225 		witness_display_spinlock(&m->lock_object, td, printf);
1226 #endif
1227 		panic("spin lock held too long");
1228 	}
1229 	cpu_spinwait();
1230 }
1231 
1232 void
1233 mtx_spin_wait_unlocked(struct mtx *m)
1234 {
1235 	struct lock_delay_arg lda;
1236 
1237 	KASSERT(m->mtx_lock != MTX_DESTROYED,
1238 	    ("%s() of destroyed mutex %p", __func__, m));
1239 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
1240 	    ("%s() of sleep mutex %p (%s)", __func__, m,
1241 	    m->lock_object.lo_name));
1242 	KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m,
1243 	    m->lock_object.lo_name));
1244 
1245 	lda.spin_cnt = 0;
1246 
1247 	while (atomic_load_acq_ptr(&m->mtx_lock) != MTX_UNOWNED) {
1248 		if (__predict_true(lda.spin_cnt < 10000000)) {
1249 			cpu_spinwait();
1250 			lda.spin_cnt++;
1251 		} else {
1252 			_mtx_lock_indefinite_check(m, &lda);
1253 		}
1254 	}
1255 }
1256 
1257 #ifdef DDB
1258 void
1259 db_show_mtx(const struct lock_object *lock)
1260 {
1261 	struct thread *td;
1262 	const struct mtx *m;
1263 
1264 	m = (const struct mtx *)lock;
1265 
1266 	db_printf(" flags: {");
1267 	if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
1268 		db_printf("SPIN");
1269 	else
1270 		db_printf("DEF");
1271 	if (m->lock_object.lo_flags & LO_RECURSABLE)
1272 		db_printf(", RECURSE");
1273 	if (m->lock_object.lo_flags & LO_DUPOK)
1274 		db_printf(", DUPOK");
1275 	db_printf("}\n");
1276 	db_printf(" state: {");
1277 	if (mtx_unowned(m))
1278 		db_printf("UNOWNED");
1279 	else if (mtx_destroyed(m))
1280 		db_printf("DESTROYED");
1281 	else {
1282 		db_printf("OWNED");
1283 		if (m->mtx_lock & MTX_CONTESTED)
1284 			db_printf(", CONTESTED");
1285 		if (m->mtx_lock & MTX_RECURSED)
1286 			db_printf(", RECURSED");
1287 	}
1288 	db_printf("}\n");
1289 	if (!mtx_unowned(m) && !mtx_destroyed(m)) {
1290 		td = mtx_owner(m);
1291 		db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
1292 		    td->td_tid, td->td_proc->p_pid, td->td_name);
1293 		if (mtx_recursed(m))
1294 			db_printf(" recursed: %d\n", m->mtx_recurse);
1295 	}
1296 }
1297 #endif
1298