xref: /freebsd/sys/kern/kern_mutex.c (revision 4b2eaea43fec8e8792be611dea204071a10b655a)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  * $FreeBSD$
31  */
32 
33 /*
34  * Machine independent bits of mutex implementation.
35  */
36 
37 #include "opt_adaptive_mutexes.h"
38 #include "opt_ddb.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bus.h>
43 #include <sys/kernel.h>
44 #include <sys/ktr.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/sbuf.h>
52 #include <sys/stdint.h>
53 #include <sys/sysctl.h>
54 #include <sys/vmmeter.h>
55 
56 #include <machine/atomic.h>
57 #include <machine/bus.h>
58 #include <machine/clock.h>
59 #include <machine/cpu.h>
60 
61 #include <ddb/ddb.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_extern.h>
65 
66 /*
67  * Internal utility macros.
68  */
69 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
70 
71 #define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
72 	: (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
73 
74 /* XXXKSE This test will change. */
75 #define	thread_running(td)						\
76 	((td)->td_kse != NULL && (td)->td_kse->ke_oncpu != NOCPU)
77 
78 /*
79  * Lock classes for sleep and spin mutexes.
80  */
81 struct lock_class lock_class_mtx_sleep = {
82 	"sleep mutex",
83 	LC_SLEEPLOCK | LC_RECURSABLE
84 };
85 struct lock_class lock_class_mtx_spin = {
86 	"spin mutex",
87 	LC_SPINLOCK | LC_RECURSABLE
88 };
89 
90 /*
91  * System-wide mutexes
92  */
93 struct mtx sched_lock;
94 struct mtx Giant;
95 
96 /*
97  * Prototypes for non-exported routines.
98  */
99 static void	propagate_priority(struct thread *);
100 
101 static void
102 propagate_priority(struct thread *td)
103 {
104 	int pri = td->td_priority;
105 	struct mtx *m = td->td_blocked;
106 
107 	mtx_assert(&sched_lock, MA_OWNED);
108 	for (;;) {
109 		struct thread *td1;
110 
111 		td = mtx_owner(m);
112 
113 		if (td == NULL) {
114 			/*
115 			 * This really isn't quite right. Really
116 			 * ought to bump priority of thread that
117 			 * next acquires the mutex.
118 			 */
119 			MPASS(m->mtx_lock == MTX_CONTESTED);
120 			return;
121 		}
122 
123 		MPASS(td->td_proc != NULL);
124 		MPASS(td->td_proc->p_magic == P_MAGIC);
125 		KASSERT(!TD_IS_SLEEPING(td), ("sleeping thread owns a mutex"));
126 		if (td->td_priority <= pri) /* lower is higher priority */
127 			return;
128 
129 
130 		/*
131 		 * If lock holder is actually running, just bump priority.
132 		 */
133 		if (TD_IS_RUNNING(td)) {
134 			td->td_priority = pri;
135 			return;
136 		}
137 
138 #ifndef SMP
139 		/*
140 		 * For UP, we check to see if td is curthread (this shouldn't
141 		 * ever happen however as it would mean we are in a deadlock.)
142 		 */
143 		KASSERT(td != curthread, ("Deadlock detected"));
144 #endif
145 
146 		/*
147 		 * If on run queue move to new run queue, and quit.
148 		 * XXXKSE this gets a lot more complicated under threads
149 		 * but try anyhow.
150 		 */
151 		if (TD_ON_RUNQ(td)) {
152 			MPASS(td->td_blocked == NULL);
153 			sched_prio(td, pri);
154 			return;
155 		}
156 		/*
157 		 * Adjust for any other cases.
158 		 */
159 		td->td_priority = pri;
160 
161 		/*
162 		 * If we aren't blocked on a mutex, we should be.
163 		 */
164 		KASSERT(TD_ON_LOCK(td), (
165 		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
166 		    td->td_proc->p_pid, td->td_proc->p_comm, td->td_state,
167 		    m->mtx_object.lo_name));
168 
169 		/*
170 		 * Pick up the mutex that td is blocked on.
171 		 */
172 		m = td->td_blocked;
173 		MPASS(m != NULL);
174 
175 		/*
176 		 * Check if the thread needs to be moved up on
177 		 * the blocked chain
178 		 */
179 		if (td == TAILQ_FIRST(&m->mtx_blocked)) {
180 			continue;
181 		}
182 
183 		td1 = TAILQ_PREV(td, threadqueue, td_lockq);
184 		if (td1->td_priority <= pri) {
185 			continue;
186 		}
187 
188 		/*
189 		 * Remove thread from blocked chain and determine where
190 		 * it should be moved up to.  Since we know that td1 has
191 		 * a lower priority than td, we know that at least one
192 		 * thread in the chain has a lower priority and that
193 		 * td1 will thus not be NULL after the loop.
194 		 */
195 		TAILQ_REMOVE(&m->mtx_blocked, td, td_lockq);
196 		TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq) {
197 			MPASS(td1->td_proc->p_magic == P_MAGIC);
198 			if (td1->td_priority > pri)
199 				break;
200 		}
201 
202 		MPASS(td1 != NULL);
203 		TAILQ_INSERT_BEFORE(td1, td, td_lockq);
204 		CTR4(KTR_LOCK,
205 		    "propagate_priority: p %p moved before %p on [%p] %s",
206 		    td, td1, m, m->mtx_object.lo_name);
207 	}
208 }
209 
210 #ifdef MUTEX_PROFILING
211 SYSCTL_NODE(_debug, OID_AUTO, mutex, CTLFLAG_RD, NULL, "mutex debugging");
212 SYSCTL_NODE(_debug_mutex, OID_AUTO, prof, CTLFLAG_RD, NULL, "mutex profiling");
213 static int mutex_prof_enable = 0;
214 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, enable, CTLFLAG_RW,
215     &mutex_prof_enable, 0, "Enable tracing of mutex holdtime");
216 
217 struct mutex_prof {
218 	const char	*name;
219 	const char	*file;
220 	int		line;
221 	uintmax_t	cnt_max;
222 	uintmax_t	cnt_tot;
223 	uintmax_t	cnt_cur;
224 	struct mutex_prof *next;
225 };
226 
227 /*
228  * mprof_buf is a static pool of profiling records to avoid possible
229  * reentrance of the memory allocation functions.
230  *
231  * Note: NUM_MPROF_BUFFERS must be smaller than MPROF_HASH_SIZE.
232  */
233 #define	NUM_MPROF_BUFFERS	1000
234 static struct mutex_prof mprof_buf[NUM_MPROF_BUFFERS];
235 static int first_free_mprof_buf;
236 #define	MPROF_HASH_SIZE		1009
237 static struct mutex_prof *mprof_hash[MPROF_HASH_SIZE];
238 
239 static int mutex_prof_acquisitions;
240 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, acquisitions, CTLFLAG_RD,
241     &mutex_prof_acquisitions, 0, "Number of mutex acquistions recorded");
242 static int mutex_prof_records;
243 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, records, CTLFLAG_RD,
244     &mutex_prof_records, 0, "Number of profiling records");
245 static int mutex_prof_maxrecords = NUM_MPROF_BUFFERS;
246 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, maxrecords, CTLFLAG_RD,
247     &mutex_prof_maxrecords, 0, "Maximum number of profiling records");
248 static int mutex_prof_rejected;
249 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, rejected, CTLFLAG_RD,
250     &mutex_prof_rejected, 0, "Number of rejected profiling records");
251 static int mutex_prof_hashsize = MPROF_HASH_SIZE;
252 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, hashsize, CTLFLAG_RD,
253     &mutex_prof_hashsize, 0, "Hash size");
254 static int mutex_prof_collisions = 0;
255 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, collisions, CTLFLAG_RD,
256     &mutex_prof_collisions, 0, "Number of hash collisions");
257 
258 /*
259  * mprof_mtx protects the profiling buffers and the hash.
260  */
261 static struct mtx mprof_mtx;
262 MTX_SYSINIT(mprof, &mprof_mtx, "mutex profiling lock", MTX_SPIN | MTX_QUIET);
263 
264 static u_int64_t
265 nanoseconds(void)
266 {
267 	struct timespec tv;
268 
269 	nanotime(&tv);
270 	return (tv.tv_sec * (u_int64_t)1000000000 + tv.tv_nsec);
271 }
272 
273 static int
274 dump_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
275 {
276 	struct sbuf *sb;
277 	int error, i;
278 
279 	if (first_free_mprof_buf == 0)
280 		return (SYSCTL_OUT(req, "No locking recorded",
281 		    sizeof("No locking recorded")));
282 
283 	sb = sbuf_new(NULL, NULL, 1024, SBUF_AUTOEXTEND);
284 	sbuf_printf(sb, "%6s %12s %11s %5s %s\n",
285 	    "max", "total", "count", "avg", "name");
286 	/*
287 	 * XXX this spinlock seems to be by far the largest perpetrator
288 	 * of spinlock latency (1.6 msec on an Athlon1600 was recorded
289 	 * even before I pessimized it further by moving the average
290 	 * computation here).
291 	 */
292 	mtx_lock_spin(&mprof_mtx);
293 	for (i = 0; i < first_free_mprof_buf; ++i)
294 		sbuf_printf(sb, "%6ju %12ju %11ju %5ju %s:%d (%s)\n",
295 		    mprof_buf[i].cnt_max / 1000,
296 		    mprof_buf[i].cnt_tot / 1000,
297 		    mprof_buf[i].cnt_cur,
298 		    mprof_buf[i].cnt_cur == 0 ? (uintmax_t)0 :
299 			mprof_buf[i].cnt_tot / (mprof_buf[i].cnt_cur * 1000),
300 		    mprof_buf[i].file, mprof_buf[i].line, mprof_buf[i].name);
301 	mtx_unlock_spin(&mprof_mtx);
302 	sbuf_finish(sb);
303 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
304 	sbuf_delete(sb);
305 	return (error);
306 }
307 SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
308     NULL, 0, dump_mutex_prof_stats, "A", "Mutex profiling statistics");
309 #endif
310 
311 /*
312  * Function versions of the inlined __mtx_* macros.  These are used by
313  * modules and can also be called from assembly language if needed.
314  */
315 void
316 _mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
317 {
318 
319 	MPASS(curthread != NULL);
320 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
321 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
322 	    file, line));
323 	_get_sleep_lock(m, curthread, opts, file, line);
324 	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
325 	    line);
326 	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
327 #ifdef MUTEX_PROFILING
328 	/* don't reset the timer when/if recursing */
329 	if (m->mtx_acqtime == 0) {
330 		m->mtx_filename = file;
331 		m->mtx_lineno = line;
332 		m->mtx_acqtime = mutex_prof_enable ? nanoseconds() : 0;
333 		++mutex_prof_acquisitions;
334 	}
335 #endif
336 }
337 
338 void
339 _mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
340 {
341 
342 	MPASS(curthread != NULL);
343 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
344 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
345 	    file, line));
346 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
347 	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
348 	    line);
349 	mtx_assert(m, MA_OWNED);
350 #ifdef MUTEX_PROFILING
351 	if (m->mtx_acqtime != 0) {
352 		static const char *unknown = "(unknown)";
353 		struct mutex_prof *mpp;
354 		u_int64_t acqtime, now;
355 		const char *p, *q;
356 		volatile u_int hash;
357 
358 		now = nanoseconds();
359 		acqtime = m->mtx_acqtime;
360 		m->mtx_acqtime = 0;
361 		if (now <= acqtime)
362 			goto out;
363 		for (p = m->mtx_filename; strncmp(p, "../", 3) == 0; p += 3)
364 			/* nothing */ ;
365 		if (p == NULL || *p == '\0')
366 			p = unknown;
367 		for (hash = m->mtx_lineno, q = p; *q != '\0'; ++q)
368 			hash = (hash * 2 + *q) % MPROF_HASH_SIZE;
369 		mtx_lock_spin(&mprof_mtx);
370 		for (mpp = mprof_hash[hash]; mpp != NULL; mpp = mpp->next)
371 			if (mpp->line == m->mtx_lineno &&
372 			    strcmp(mpp->file, p) == 0)
373 				break;
374 		if (mpp == NULL) {
375 			/* Just exit if we cannot get a trace buffer */
376 			if (first_free_mprof_buf >= NUM_MPROF_BUFFERS) {
377 				++mutex_prof_rejected;
378 				goto unlock;
379 			}
380 			mpp = &mprof_buf[first_free_mprof_buf++];
381 			mpp->name = mtx_name(m);
382 			mpp->file = p;
383 			mpp->line = m->mtx_lineno;
384 			mpp->next = mprof_hash[hash];
385 			if (mprof_hash[hash] != NULL)
386 				++mutex_prof_collisions;
387 			mprof_hash[hash] = mpp;
388 			++mutex_prof_records;
389 		}
390 		/*
391 		 * Record if the mutex has been held longer now than ever
392 		 * before.
393 		 */
394 		if (now - acqtime > mpp->cnt_max)
395 			mpp->cnt_max = now - acqtime;
396 		mpp->cnt_tot += now - acqtime;
397 		mpp->cnt_cur++;
398 unlock:
399 		mtx_unlock_spin(&mprof_mtx);
400 	}
401 out:
402 #endif
403 	_rel_sleep_lock(m, curthread, opts, file, line);
404 }
405 
406 void
407 _mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
408 {
409 
410 	MPASS(curthread != NULL);
411 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
412 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
413 	    m->mtx_object.lo_name, file, line));
414 #if defined(SMP) || LOCK_DEBUG > 0 || 1
415 	_get_spin_lock(m, curthread, opts, file, line);
416 #else
417 	critical_enter();
418 #endif
419 	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
420 	    line);
421 	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
422 }
423 
424 void
425 _mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
426 {
427 
428 	MPASS(curthread != NULL);
429 	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
430 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
431 	    m->mtx_object.lo_name, file, line));
432 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
433 	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
434 	    line);
435 	mtx_assert(m, MA_OWNED);
436 #if defined(SMP) || LOCK_DEBUG > 0 || 1
437 	_rel_spin_lock(m);
438 #else
439 	critical_exit();
440 #endif
441 }
442 
443 /*
444  * The important part of mtx_trylock{,_flags}()
445  * Tries to acquire lock `m.' We do NOT handle recursion here; we assume that
446  * if we're called, it's because we know we don't already own this lock.
447  */
448 int
449 _mtx_trylock(struct mtx *m, int opts, const char *file, int line)
450 {
451 	int rval;
452 
453 	MPASS(curthread != NULL);
454 
455 	rval = _obtain_lock(m, curthread);
456 
457 	LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
458 	if (rval) {
459 		/*
460 		 * We do not handle recursion in _mtx_trylock; see the
461 		 * note at the top of the routine.
462 		 */
463 		KASSERT(!mtx_recursed(m),
464 		    ("mtx_trylock() called on a recursed mutex"));
465 		WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
466 		    file, line);
467 	}
468 
469 	return (rval);
470 }
471 
472 /*
473  * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
474  *
475  * We call this if the lock is either contested (i.e. we need to go to
476  * sleep waiting for it), or if we need to recurse on it.
477  */
478 void
479 _mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
480 {
481 	struct thread *td = curthread;
482 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
483 	struct thread *owner;
484 #endif
485 #ifdef KTR
486 	int cont_logged = 0;
487 #endif
488 
489 	if ((m->mtx_lock & MTX_FLAGMASK) == (uintptr_t)td) {
490 		m->mtx_recurse++;
491 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
492 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
493 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
494 		return;
495 	}
496 
497 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
498 		CTR4(KTR_LOCK,
499 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
500 		    m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
501 
502 	while (!_obtain_lock(m, td)) {
503 		uintptr_t v;
504 		struct thread *td1;
505 
506 		mtx_lock_spin(&sched_lock);
507 		/*
508 		 * Check if the lock has been released while spinning for
509 		 * the sched_lock.
510 		 */
511 		if ((v = m->mtx_lock) == MTX_UNOWNED) {
512 			mtx_unlock_spin(&sched_lock);
513 #ifdef __i386__
514 			ia32_pause();
515 #endif
516 			continue;
517 		}
518 
519 		/*
520 		 * The mutex was marked contested on release. This means that
521 		 * there are threads blocked on it.
522 		 */
523 		if (v == MTX_CONTESTED) {
524 			td1 = TAILQ_FIRST(&m->mtx_blocked);
525 			MPASS(td1 != NULL);
526 			m->mtx_lock = (uintptr_t)td | MTX_CONTESTED;
527 
528 			if (td1->td_priority < td->td_priority)
529 				td->td_priority = td1->td_priority;
530 			mtx_unlock_spin(&sched_lock);
531 			return;
532 		}
533 
534 		/*
535 		 * If the mutex isn't already contested and a failure occurs
536 		 * setting the contested bit, the mutex was either released
537 		 * or the state of the MTX_RECURSED bit changed.
538 		 */
539 		if ((v & MTX_CONTESTED) == 0 &&
540 		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
541 			(void *)(v | MTX_CONTESTED))) {
542 			mtx_unlock_spin(&sched_lock);
543 #ifdef __i386__
544 			ia32_pause();
545 #endif
546 			continue;
547 		}
548 
549 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
550 		/*
551 		 * If the current owner of the lock is executing on another
552 		 * CPU, spin instead of blocking.
553 		 */
554 		owner = (struct thread *)(v & MTX_FLAGMASK);
555 		if (m != &Giant && thread_running(owner)) {
556 			mtx_unlock_spin(&sched_lock);
557 			while (mtx_owner(m) == owner && thread_running(owner)) {
558 #ifdef __i386__
559 				ia32_pause();
560 #endif
561 			}
562 			continue;
563 		}
564 #endif	/* SMP && ADAPTIVE_MUTEXES */
565 
566 		/*
567 		 * We definitely must sleep for this lock.
568 		 */
569 		mtx_assert(m, MA_NOTOWNED);
570 
571 #ifdef notyet
572 		/*
573 		 * If we're borrowing an interrupted thread's VM context, we
574 		 * must clean up before going to sleep.
575 		 */
576 		if (td->td_ithd != NULL) {
577 			struct ithd *it = td->td_ithd;
578 
579 			if (it->it_interrupted) {
580 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
581 					CTR2(KTR_LOCK,
582 				    "_mtx_lock_sleep: %p interrupted %p",
583 					    it, it->it_interrupted);
584 				intr_thd_fixup(it);
585 			}
586 		}
587 #endif
588 
589 		/*
590 		 * Put us on the list of threads blocked on this mutex.
591 		 */
592 		if (TAILQ_EMPTY(&m->mtx_blocked)) {
593 			td1 = mtx_owner(m);
594 			LIST_INSERT_HEAD(&td1->td_contested, m, mtx_contested);
595 			TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
596 		} else {
597 			TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq)
598 				if (td1->td_priority > td->td_priority)
599 					break;
600 			if (td1)
601 				TAILQ_INSERT_BEFORE(td1, td, td_lockq);
602 			else
603 				TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
604 		}
605 #ifdef KTR
606 		if (!cont_logged) {
607 			CTR6(KTR_CONTENTION,
608 			    "contention: %p at %s:%d wants %s, taken by %s:%d",
609 			    td, file, line, m->mtx_object.lo_name,
610 			    WITNESS_FILE(&m->mtx_object),
611 			    WITNESS_LINE(&m->mtx_object));
612 			cont_logged = 1;
613 		}
614 #endif
615 
616 		/*
617 		 * Save who we're blocked on.
618 		 */
619 		td->td_blocked = m;
620 		td->td_lockname = m->mtx_object.lo_name;
621 		TD_SET_LOCK(td);
622 		propagate_priority(td);
623 
624 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
625 			CTR3(KTR_LOCK,
626 			    "_mtx_lock_sleep: p %p blocked on [%p] %s", td, m,
627 			    m->mtx_object.lo_name);
628 
629 		td->td_proc->p_stats->p_ru.ru_nvcsw++;
630 		mi_switch();
631 
632 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
633 			CTR3(KTR_LOCK,
634 			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
635 			  td, m, m->mtx_object.lo_name);
636 
637 		mtx_unlock_spin(&sched_lock);
638 	}
639 
640 #ifdef KTR
641 	if (cont_logged) {
642 		CTR4(KTR_CONTENTION,
643 		    "contention end: %s acquired by %p at %s:%d",
644 		    m->mtx_object.lo_name, td, file, line);
645 	}
646 #endif
647 	return;
648 }
649 
650 /*
651  * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
652  *
653  * This is only called if we need to actually spin for the lock. Recursion
654  * is handled inline.
655  */
656 void
657 _mtx_lock_spin(struct mtx *m, int opts, const char *file, int line)
658 {
659 	int i = 0;
660 
661 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
662 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
663 
664 	for (;;) {
665 		if (_obtain_lock(m, curthread))
666 			break;
667 
668 		/* Give interrupts a chance while we spin. */
669 		critical_exit();
670 		while (m->mtx_lock != MTX_UNOWNED) {
671 			if (i++ < 10000000) {
672 #ifdef __i386__
673 				ia32_pause();
674 #endif
675 				continue;
676 			}
677 			if (i < 60000000)
678 				DELAY(1);
679 #ifdef DDB
680 			else if (!db_active)
681 #else
682 			else
683 #endif
684 				panic("spin lock %s held by %p for > 5 seconds",
685 				    m->mtx_object.lo_name, (void *)m->mtx_lock);
686 #ifdef __i386__
687 			ia32_pause();
688 #endif
689 		}
690 		critical_enter();
691 	}
692 
693 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
694 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
695 
696 	return;
697 }
698 
699 /*
700  * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
701  *
702  * We are only called here if the lock is recursed or contested (i.e. we
703  * need to wake up a blocked thread).
704  */
705 void
706 _mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
707 {
708 	struct thread *td, *td1;
709 	struct mtx *m1;
710 	int pri;
711 
712 	td = curthread;
713 
714 	if (mtx_recursed(m)) {
715 		if (--(m->mtx_recurse) == 0)
716 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
717 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
718 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
719 		return;
720 	}
721 
722 	mtx_lock_spin(&sched_lock);
723 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
724 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
725 
726 	td1 = TAILQ_FIRST(&m->mtx_blocked);
727 #if defined(SMP) && defined(ADAPTIVE_MUTEXES)
728 	if (td1 == NULL) {
729 		_release_lock_quick(m);
730 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
731 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p no sleepers", m);
732 		mtx_unlock_spin(&sched_lock);
733 		return;
734 	}
735 #endif
736 	MPASS(td->td_proc->p_magic == P_MAGIC);
737 	MPASS(td1->td_proc->p_magic == P_MAGIC);
738 
739 	TAILQ_REMOVE(&m->mtx_blocked, td1, td_lockq);
740 
741 	if (TAILQ_EMPTY(&m->mtx_blocked)) {
742 		LIST_REMOVE(m, mtx_contested);
743 		_release_lock_quick(m);
744 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
745 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
746 	} else
747 		atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED);
748 
749 	pri = PRI_MAX;
750 	LIST_FOREACH(m1, &td->td_contested, mtx_contested) {
751 		int cp = TAILQ_FIRST(&m1->mtx_blocked)->td_priority;
752 		if (cp < pri)
753 			pri = cp;
754 	}
755 
756 	if (pri > td->td_base_pri)
757 		pri = td->td_base_pri;
758 	td->td_priority = pri;
759 
760 	if (LOCK_LOG_TEST(&m->mtx_object, opts))
761 		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
762 		    m, td1);
763 
764 	td1->td_blocked = NULL;
765 	TD_CLR_LOCK(td1);
766 	if (!TD_CAN_RUN(td1)) {
767 		mtx_unlock_spin(&sched_lock);
768 		return;
769 	}
770 	setrunqueue(td1);
771 
772 	if (td->td_critnest == 1 && td1->td_priority < pri) {
773 #ifdef notyet
774 		if (td->td_ithd != NULL) {
775 			struct ithd *it = td->td_ithd;
776 
777 			if (it->it_interrupted) {
778 				if (LOCK_LOG_TEST(&m->mtx_object, opts))
779 					CTR2(KTR_LOCK,
780 				    "_mtx_unlock_sleep: %p interrupted %p",
781 					    it, it->it_interrupted);
782 				intr_thd_fixup(it);
783 			}
784 		}
785 #endif
786 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
787 			CTR2(KTR_LOCK,
788 			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
789 			    (void *)m->mtx_lock);
790 
791 		td->td_proc->p_stats->p_ru.ru_nivcsw++;
792 		mi_switch();
793 		if (LOCK_LOG_TEST(&m->mtx_object, opts))
794 			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
795 			    m, (void *)m->mtx_lock);
796 	}
797 
798 	mtx_unlock_spin(&sched_lock);
799 
800 	return;
801 }
802 
803 /*
804  * All the unlocking of MTX_SPIN locks is done inline.
805  * See the _rel_spin_lock() macro for the details.
806  */
807 
808 /*
809  * The backing function for the INVARIANTS-enabled mtx_assert()
810  */
811 #ifdef INVARIANT_SUPPORT
812 void
813 _mtx_assert(struct mtx *m, int what, const char *file, int line)
814 {
815 
816 	if (panicstr != NULL)
817 		return;
818 	switch (what) {
819 	case MA_OWNED:
820 	case MA_OWNED | MA_RECURSED:
821 	case MA_OWNED | MA_NOTRECURSED:
822 		if (!mtx_owned(m))
823 			panic("mutex %s not owned at %s:%d",
824 			    m->mtx_object.lo_name, file, line);
825 		if (mtx_recursed(m)) {
826 			if ((what & MA_NOTRECURSED) != 0)
827 				panic("mutex %s recursed at %s:%d",
828 				    m->mtx_object.lo_name, file, line);
829 		} else if ((what & MA_RECURSED) != 0) {
830 			panic("mutex %s unrecursed at %s:%d",
831 			    m->mtx_object.lo_name, file, line);
832 		}
833 		break;
834 	case MA_NOTOWNED:
835 		if (mtx_owned(m))
836 			panic("mutex %s owned at %s:%d",
837 			    m->mtx_object.lo_name, file, line);
838 		break;
839 	default:
840 		panic("unknown mtx_assert at %s:%d", file, line);
841 	}
842 }
843 #endif
844 
845 /*
846  * The MUTEX_DEBUG-enabled mtx_validate()
847  *
848  * Most of these checks have been moved off into the LO_INITIALIZED flag
849  * maintained by the witness code.
850  */
851 #ifdef MUTEX_DEBUG
852 
853 void	mtx_validate(struct mtx *);
854 
855 void
856 mtx_validate(struct mtx *m)
857 {
858 
859 /*
860  * XXX: When kernacc() does not require Giant we can reenable this check
861  */
862 #ifdef notyet
863 /*
864  * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
865  * we can re-enable the kernacc() checks.
866  */
867 #ifndef __alpha__
868 	/*
869 	 * Can't call kernacc() from early init386(), especially when
870 	 * initializing Giant mutex, because some stuff in kernacc()
871 	 * requires Giant itself.
872 	 */
873 	if (!cold)
874 		if (!kernacc((caddr_t)m, sizeof(m),
875 		    VM_PROT_READ | VM_PROT_WRITE))
876 			panic("Can't read and write to mutex %p", m);
877 #endif
878 #endif
879 }
880 #endif
881 
882 /*
883  * General init routine used by the MTX_SYSINIT() macro.
884  */
885 void
886 mtx_sysinit(void *arg)
887 {
888 	struct mtx_args *margs = arg;
889 
890 	mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts);
891 }
892 
893 /*
894  * Mutex initialization routine; initialize lock `m' of type contained in
895  * `opts' with options contained in `opts' and name `name.'  The optional
896  * lock type `type' is used as a general lock category name for use with
897  * witness.
898  */
899 void
900 mtx_init(struct mtx *m, const char *name, const char *type, int opts)
901 {
902 	struct lock_object *lock;
903 
904 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
905 	    MTX_SLEEPABLE | MTX_NOWITNESS | MTX_DUPOK)) == 0);
906 
907 #ifdef MUTEX_DEBUG
908 	/* Diagnostic and error correction */
909 	mtx_validate(m);
910 #endif
911 
912 	lock = &m->mtx_object;
913 	KASSERT((lock->lo_flags & LO_INITIALIZED) == 0,
914 	    ("mutex %s %p already initialized", name, m));
915 	bzero(m, sizeof(*m));
916 	if (opts & MTX_SPIN)
917 		lock->lo_class = &lock_class_mtx_spin;
918 	else
919 		lock->lo_class = &lock_class_mtx_sleep;
920 	lock->lo_name = name;
921 	lock->lo_type = type != NULL ? type : name;
922 	if (opts & MTX_QUIET)
923 		lock->lo_flags = LO_QUIET;
924 	if (opts & MTX_RECURSE)
925 		lock->lo_flags |= LO_RECURSABLE;
926 	if (opts & MTX_SLEEPABLE)
927 		lock->lo_flags |= LO_SLEEPABLE;
928 	if ((opts & MTX_NOWITNESS) == 0)
929 		lock->lo_flags |= LO_WITNESS;
930 	if (opts & MTX_DUPOK)
931 		lock->lo_flags |= LO_DUPOK;
932 
933 	m->mtx_lock = MTX_UNOWNED;
934 	TAILQ_INIT(&m->mtx_blocked);
935 
936 	LOCK_LOG_INIT(lock, opts);
937 
938 	WITNESS_INIT(lock);
939 }
940 
941 /*
942  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
943  * passed in as a flag here because if the corresponding mtx_init() was
944  * called with MTX_QUIET set, then it will already be set in the mutex's
945  * flags.
946  */
947 void
948 mtx_destroy(struct mtx *m)
949 {
950 
951 	LOCK_LOG_DESTROY(&m->mtx_object, 0);
952 
953 	if (!mtx_owned(m))
954 		MPASS(mtx_unowned(m));
955 	else {
956 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
957 
958 		/* Tell witness this isn't locked to make it happy. */
959 		WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
960 		    __LINE__);
961 	}
962 
963 	WITNESS_DESTROY(&m->mtx_object);
964 }
965 
966 /*
967  * Intialize the mutex code and system mutexes.  This is called from the MD
968  * startup code prior to mi_startup().  The per-CPU data space needs to be
969  * setup before this is called.
970  */
971 void
972 mutex_init(void)
973 {
974 
975 	/* Setup thread0 so that mutexes work. */
976 	LIST_INIT(&thread0.td_contested);
977 
978 	/*
979 	 * Initialize mutexes.
980 	 */
981 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
982 	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
983 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
984 	mtx_lock(&Giant);
985 }
986 
987 /*
988  * Encapsulated Giant mutex routines.  These routines provide encapsulation
989  * control for the Giant mutex, allowing sysctls to be used to turn on and
990  * off Giant around certain subsystems.  The default value for the sysctls
991  * are set to what developers believe is stable and working in regards to
992  * the Giant pushdown.  Developers should not turn off Giant via these
993  * sysctls unless they know what they are doing.
994  *
995  * Callers of mtx_lock_giant() are expected to pass the return value to an
996  * accompanying mtx_unlock_giant() later on.  If multiple subsystems are
997  * effected by a Giant wrap, all related sysctl variables must be zero for
998  * the subsystem call to operate without Giant (as determined by the caller).
999  */
1000 
1001 SYSCTL_NODE(_kern, OID_AUTO, giant, CTLFLAG_RD, NULL, "Giant mutex manipulation");
1002 
1003 static int kern_giant_all = 0;
1004 SYSCTL_INT(_kern_giant, OID_AUTO, all, CTLFLAG_RW, &kern_giant_all, 0, "");
1005 
1006 int kern_giant_proc = 1;	/* Giant around PROC locks */
1007 int kern_giant_file = 1;	/* Giant around struct file & filedesc */
1008 int kern_giant_ucred = 1;	/* Giant around ucred */
1009 SYSCTL_INT(_kern_giant, OID_AUTO, proc, CTLFLAG_RW, &kern_giant_proc, 0, "");
1010 SYSCTL_INT(_kern_giant, OID_AUTO, file, CTLFLAG_RW, &kern_giant_file, 0, "");
1011 SYSCTL_INT(_kern_giant, OID_AUTO, ucred, CTLFLAG_RW, &kern_giant_ucred, 0, "");
1012 
1013 int
1014 mtx_lock_giant(int sysctlvar)
1015 {
1016 	if (sysctlvar || kern_giant_all) {
1017 		mtx_lock(&Giant);
1018 		return(1);
1019 	}
1020 	return(0);
1021 }
1022 
1023 void
1024 mtx_unlock_giant(int s)
1025 {
1026 	if (s)
1027 		mtx_unlock(&Giant);
1028 }
1029