1 /*- 2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. Berkeley Software Design Inc's name may not be used to endorse or 13 * promote products derived from this software without specific prior 14 * written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 29 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 30 */ 31 32 /* 33 * Machine independent bits of mutex implementation. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_adaptive_mutexes.h" 40 #include "opt_ddb.h" 41 #include "opt_global.h" 42 #include "opt_hwpmc_hooks.h" 43 #include "opt_sched.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bus.h> 48 #include <sys/conf.h> 49 #include <sys/kdb.h> 50 #include <sys/kernel.h> 51 #include <sys/ktr.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/mutex.h> 55 #include <sys/proc.h> 56 #include <sys/resourcevar.h> 57 #include <sys/sched.h> 58 #include <sys/sbuf.h> 59 #include <sys/sysctl.h> 60 #include <sys/turnstile.h> 61 #include <sys/vmmeter.h> 62 #include <sys/lock_profile.h> 63 64 #include <machine/atomic.h> 65 #include <machine/bus.h> 66 #include <machine/cpu.h> 67 68 #include <ddb/ddb.h> 69 70 #include <fs/devfs/devfs_int.h> 71 72 #include <vm/vm.h> 73 #include <vm/vm_extern.h> 74 75 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES) 76 #define ADAPTIVE_MUTEXES 77 #endif 78 79 #ifdef HWPMC_HOOKS 80 #include <sys/pmckern.h> 81 PMC_SOFT_DEFINE( , , lock, failed); 82 #endif 83 84 /* 85 * Return the mutex address when the lock cookie address is provided. 86 * This functionality assumes that struct mtx* have a member named mtx_lock. 87 */ 88 #define mtxlock2mtx(c) (__containerof(c, struct mtx, mtx_lock)) 89 90 /* 91 * Internal utility macros. 92 */ 93 #define mtx_unowned(m) ((m)->mtx_lock == MTX_UNOWNED) 94 95 #define mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED) 96 97 #define mtx_owner(m) ((struct thread *)((m)->mtx_lock & ~MTX_FLAGMASK)) 98 99 static void assert_mtx(const struct lock_object *lock, int what); 100 #ifdef DDB 101 static void db_show_mtx(const struct lock_object *lock); 102 #endif 103 static void lock_mtx(struct lock_object *lock, uintptr_t how); 104 static void lock_spin(struct lock_object *lock, uintptr_t how); 105 #ifdef KDTRACE_HOOKS 106 static int owner_mtx(const struct lock_object *lock, 107 struct thread **owner); 108 #endif 109 static uintptr_t unlock_mtx(struct lock_object *lock); 110 static uintptr_t unlock_spin(struct lock_object *lock); 111 112 /* 113 * Lock classes for sleep and spin mutexes. 114 */ 115 struct lock_class lock_class_mtx_sleep = { 116 .lc_name = "sleep mutex", 117 .lc_flags = LC_SLEEPLOCK | LC_RECURSABLE, 118 .lc_assert = assert_mtx, 119 #ifdef DDB 120 .lc_ddb_show = db_show_mtx, 121 #endif 122 .lc_lock = lock_mtx, 123 .lc_unlock = unlock_mtx, 124 #ifdef KDTRACE_HOOKS 125 .lc_owner = owner_mtx, 126 #endif 127 }; 128 struct lock_class lock_class_mtx_spin = { 129 .lc_name = "spin mutex", 130 .lc_flags = LC_SPINLOCK | LC_RECURSABLE, 131 .lc_assert = assert_mtx, 132 #ifdef DDB 133 .lc_ddb_show = db_show_mtx, 134 #endif 135 .lc_lock = lock_spin, 136 .lc_unlock = unlock_spin, 137 #ifdef KDTRACE_HOOKS 138 .lc_owner = owner_mtx, 139 #endif 140 }; 141 142 /* 143 * System-wide mutexes 144 */ 145 struct mtx blocked_lock; 146 struct mtx Giant; 147 148 void 149 assert_mtx(const struct lock_object *lock, int what) 150 { 151 152 mtx_assert((const struct mtx *)lock, what); 153 } 154 155 void 156 lock_mtx(struct lock_object *lock, uintptr_t how) 157 { 158 159 mtx_lock((struct mtx *)lock); 160 } 161 162 void 163 lock_spin(struct lock_object *lock, uintptr_t how) 164 { 165 166 panic("spin locks can only use msleep_spin"); 167 } 168 169 uintptr_t 170 unlock_mtx(struct lock_object *lock) 171 { 172 struct mtx *m; 173 174 m = (struct mtx *)lock; 175 mtx_assert(m, MA_OWNED | MA_NOTRECURSED); 176 mtx_unlock(m); 177 return (0); 178 } 179 180 uintptr_t 181 unlock_spin(struct lock_object *lock) 182 { 183 184 panic("spin locks can only use msleep_spin"); 185 } 186 187 #ifdef KDTRACE_HOOKS 188 int 189 owner_mtx(const struct lock_object *lock, struct thread **owner) 190 { 191 const struct mtx *m = (const struct mtx *)lock; 192 193 *owner = mtx_owner(m); 194 return (mtx_unowned(m) == 0); 195 } 196 #endif 197 198 /* 199 * Function versions of the inlined __mtx_* macros. These are used by 200 * modules and can also be called from assembly language if needed. 201 */ 202 void 203 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line) 204 { 205 struct mtx *m; 206 207 if (SCHEDULER_STOPPED()) 208 return; 209 210 m = mtxlock2mtx(c); 211 212 KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread), 213 ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d", 214 curthread, m->lock_object.lo_name, file, line)); 215 KASSERT(m->mtx_lock != MTX_DESTROYED, 216 ("mtx_lock() of destroyed mutex @ %s:%d", file, line)); 217 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep, 218 ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name, 219 file, line)); 220 WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) | 221 LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL); 222 223 __mtx_lock(m, curthread, opts, file, line); 224 LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file, 225 line); 226 WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE, 227 file, line); 228 curthread->td_locks++; 229 } 230 231 void 232 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line) 233 { 234 struct mtx *m; 235 236 if (SCHEDULER_STOPPED()) 237 return; 238 239 m = mtxlock2mtx(c); 240 241 KASSERT(m->mtx_lock != MTX_DESTROYED, 242 ("mtx_unlock() of destroyed mutex @ %s:%d", file, line)); 243 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep, 244 ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name, 245 file, line)); 246 WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); 247 LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file, 248 line); 249 mtx_assert(m, MA_OWNED); 250 251 __mtx_unlock(m, curthread, opts, file, line); 252 curthread->td_locks--; 253 } 254 255 void 256 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file, 257 int line) 258 { 259 struct mtx *m; 260 261 if (SCHEDULER_STOPPED()) 262 return; 263 264 m = mtxlock2mtx(c); 265 266 KASSERT(m->mtx_lock != MTX_DESTROYED, 267 ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line)); 268 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin, 269 ("mtx_lock_spin() of sleep mutex %s @ %s:%d", 270 m->lock_object.lo_name, file, line)); 271 if (mtx_owned(m)) 272 KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 || 273 (opts & MTX_RECURSE) != 0, 274 ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n", 275 m->lock_object.lo_name, file, line)); 276 opts &= ~MTX_RECURSE; 277 WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE, 278 file, line, NULL); 279 __mtx_lock_spin(m, curthread, opts, file, line); 280 LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file, 281 line); 282 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); 283 } 284 285 void 286 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file, 287 int line) 288 { 289 struct mtx *m; 290 291 if (SCHEDULER_STOPPED()) 292 return; 293 294 m = mtxlock2mtx(c); 295 296 KASSERT(m->mtx_lock != MTX_DESTROYED, 297 ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line)); 298 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin, 299 ("mtx_unlock_spin() of sleep mutex %s @ %s:%d", 300 m->lock_object.lo_name, file, line)); 301 WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); 302 LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file, 303 line); 304 mtx_assert(m, MA_OWNED); 305 306 __mtx_unlock_spin(m); 307 } 308 309 /* 310 * The important part of mtx_trylock{,_flags}() 311 * Tries to acquire lock `m.' If this function is called on a mutex that 312 * is already owned, it will recursively acquire the lock. 313 */ 314 int 315 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line) 316 { 317 struct mtx *m; 318 #ifdef LOCK_PROFILING 319 uint64_t waittime = 0; 320 int contested = 0; 321 #endif 322 int rval; 323 324 if (SCHEDULER_STOPPED()) 325 return (1); 326 327 m = mtxlock2mtx(c); 328 329 KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread), 330 ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d", 331 curthread, m->lock_object.lo_name, file, line)); 332 KASSERT(m->mtx_lock != MTX_DESTROYED, 333 ("mtx_trylock() of destroyed mutex @ %s:%d", file, line)); 334 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep, 335 ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name, 336 file, line)); 337 338 if (mtx_owned(m) && ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 || 339 (opts & MTX_RECURSE) != 0)) { 340 m->mtx_recurse++; 341 atomic_set_ptr(&m->mtx_lock, MTX_RECURSED); 342 rval = 1; 343 } else 344 rval = _mtx_obtain_lock(m, (uintptr_t)curthread); 345 opts &= ~MTX_RECURSE; 346 347 LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line); 348 if (rval) { 349 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK, 350 file, line); 351 curthread->td_locks++; 352 if (m->mtx_recurse == 0) 353 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_LOCK_ACQUIRE, 354 m, contested, waittime, file, line); 355 356 } 357 358 return (rval); 359 } 360 361 /* 362 * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock. 363 * 364 * We call this if the lock is either contested (i.e. we need to go to 365 * sleep waiting for it), or if we need to recurse on it. 366 */ 367 void 368 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t tid, int opts, 369 const char *file, int line) 370 { 371 struct mtx *m; 372 struct turnstile *ts; 373 uintptr_t v; 374 #ifdef ADAPTIVE_MUTEXES 375 volatile struct thread *owner; 376 #endif 377 #ifdef KTR 378 int cont_logged = 0; 379 #endif 380 #ifdef LOCK_PROFILING 381 int contested = 0; 382 uint64_t waittime = 0; 383 #endif 384 #ifdef KDTRACE_HOOKS 385 uint64_t spin_cnt = 0; 386 uint64_t sleep_cnt = 0; 387 int64_t sleep_time = 0; 388 #endif 389 390 if (SCHEDULER_STOPPED()) 391 return; 392 393 m = mtxlock2mtx(c); 394 395 if (mtx_owned(m)) { 396 KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 || 397 (opts & MTX_RECURSE) != 0, 398 ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n", 399 m->lock_object.lo_name, file, line)); 400 opts &= ~MTX_RECURSE; 401 m->mtx_recurse++; 402 atomic_set_ptr(&m->mtx_lock, MTX_RECURSED); 403 if (LOCK_LOG_TEST(&m->lock_object, opts)) 404 CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m); 405 return; 406 } 407 opts &= ~MTX_RECURSE; 408 409 #ifdef HWPMC_HOOKS 410 PMC_SOFT_CALL( , , lock, failed); 411 #endif 412 lock_profile_obtain_lock_failed(&m->lock_object, 413 &contested, &waittime); 414 if (LOCK_LOG_TEST(&m->lock_object, opts)) 415 CTR4(KTR_LOCK, 416 "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d", 417 m->lock_object.lo_name, (void *)m->mtx_lock, file, line); 418 419 while (!_mtx_obtain_lock(m, tid)) { 420 #ifdef KDTRACE_HOOKS 421 spin_cnt++; 422 #endif 423 #ifdef ADAPTIVE_MUTEXES 424 /* 425 * If the owner is running on another CPU, spin until the 426 * owner stops running or the state of the lock changes. 427 */ 428 v = m->mtx_lock; 429 if (v != MTX_UNOWNED) { 430 owner = (struct thread *)(v & ~MTX_FLAGMASK); 431 if (TD_IS_RUNNING(owner)) { 432 if (LOCK_LOG_TEST(&m->lock_object, 0)) 433 CTR3(KTR_LOCK, 434 "%s: spinning on %p held by %p", 435 __func__, m, owner); 436 while (mtx_owner(m) == owner && 437 TD_IS_RUNNING(owner)) { 438 cpu_spinwait(); 439 #ifdef KDTRACE_HOOKS 440 spin_cnt++; 441 #endif 442 } 443 continue; 444 } 445 } 446 #endif 447 448 ts = turnstile_trywait(&m->lock_object); 449 v = m->mtx_lock; 450 451 /* 452 * Check if the lock has been released while spinning for 453 * the turnstile chain lock. 454 */ 455 if (v == MTX_UNOWNED) { 456 turnstile_cancel(ts); 457 continue; 458 } 459 460 #ifdef ADAPTIVE_MUTEXES 461 /* 462 * The current lock owner might have started executing 463 * on another CPU (or the lock could have changed 464 * owners) while we were waiting on the turnstile 465 * chain lock. If so, drop the turnstile lock and try 466 * again. 467 */ 468 owner = (struct thread *)(v & ~MTX_FLAGMASK); 469 if (TD_IS_RUNNING(owner)) { 470 turnstile_cancel(ts); 471 continue; 472 } 473 #endif 474 475 /* 476 * If the mutex isn't already contested and a failure occurs 477 * setting the contested bit, the mutex was either released 478 * or the state of the MTX_RECURSED bit changed. 479 */ 480 if ((v & MTX_CONTESTED) == 0 && 481 !atomic_cmpset_ptr(&m->mtx_lock, v, v | MTX_CONTESTED)) { 482 turnstile_cancel(ts); 483 continue; 484 } 485 486 /* 487 * We definitely must sleep for this lock. 488 */ 489 mtx_assert(m, MA_NOTOWNED); 490 491 #ifdef KTR 492 if (!cont_logged) { 493 CTR6(KTR_CONTENTION, 494 "contention: %p at %s:%d wants %s, taken by %s:%d", 495 (void *)tid, file, line, m->lock_object.lo_name, 496 WITNESS_FILE(&m->lock_object), 497 WITNESS_LINE(&m->lock_object)); 498 cont_logged = 1; 499 } 500 #endif 501 502 /* 503 * Block on the turnstile. 504 */ 505 #ifdef KDTRACE_HOOKS 506 sleep_time -= lockstat_nsecs(); 507 #endif 508 turnstile_wait(ts, mtx_owner(m), TS_EXCLUSIVE_QUEUE); 509 #ifdef KDTRACE_HOOKS 510 sleep_time += lockstat_nsecs(); 511 sleep_cnt++; 512 #endif 513 } 514 #ifdef KTR 515 if (cont_logged) { 516 CTR4(KTR_CONTENTION, 517 "contention end: %s acquired by %p at %s:%d", 518 m->lock_object.lo_name, (void *)tid, file, line); 519 } 520 #endif 521 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_LOCK_ACQUIRE, m, contested, 522 waittime, file, line); 523 #ifdef KDTRACE_HOOKS 524 if (sleep_time) 525 LOCKSTAT_RECORD1(LS_MTX_LOCK_BLOCK, m, sleep_time); 526 527 /* 528 * Only record the loops spinning and not sleeping. 529 */ 530 if (spin_cnt > sleep_cnt) 531 LOCKSTAT_RECORD1(LS_MTX_LOCK_SPIN, m, (spin_cnt - sleep_cnt)); 532 #endif 533 } 534 535 static void 536 _mtx_lock_spin_failed(struct mtx *m) 537 { 538 struct thread *td; 539 540 td = mtx_owner(m); 541 542 /* If the mutex is unlocked, try again. */ 543 if (td == NULL) 544 return; 545 546 printf( "spin lock %p (%s) held by %p (tid %d) too long\n", 547 m, m->lock_object.lo_name, td, td->td_tid); 548 #ifdef WITNESS 549 witness_display_spinlock(&m->lock_object, td, printf); 550 #endif 551 panic("spin lock held too long"); 552 } 553 554 #ifdef SMP 555 /* 556 * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock. 557 * 558 * This is only called if we need to actually spin for the lock. Recursion 559 * is handled inline. 560 */ 561 void 562 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t tid, int opts, 563 const char *file, int line) 564 { 565 struct mtx *m; 566 int i = 0; 567 #ifdef LOCK_PROFILING 568 int contested = 0; 569 uint64_t waittime = 0; 570 #endif 571 572 if (SCHEDULER_STOPPED()) 573 return; 574 575 m = mtxlock2mtx(c); 576 577 if (LOCK_LOG_TEST(&m->lock_object, opts)) 578 CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m); 579 580 #ifdef HWPMC_HOOKS 581 PMC_SOFT_CALL( , , lock, failed); 582 #endif 583 lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime); 584 while (!_mtx_obtain_lock(m, tid)) { 585 586 /* Give interrupts a chance while we spin. */ 587 spinlock_exit(); 588 while (m->mtx_lock != MTX_UNOWNED) { 589 if (i++ < 10000000) { 590 cpu_spinwait(); 591 continue; 592 } 593 if (i < 60000000 || kdb_active || panicstr != NULL) 594 DELAY(1); 595 else 596 _mtx_lock_spin_failed(m); 597 cpu_spinwait(); 598 } 599 spinlock_enter(); 600 } 601 602 if (LOCK_LOG_TEST(&m->lock_object, opts)) 603 CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m); 604 605 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_SPIN_LOCK_ACQUIRE, m, 606 contested, waittime, (file), (line)); 607 LOCKSTAT_RECORD1(LS_MTX_SPIN_LOCK_SPIN, m, i); 608 } 609 #endif /* SMP */ 610 611 void 612 thread_lock_flags_(struct thread *td, int opts, const char *file, int line) 613 { 614 struct mtx *m; 615 uintptr_t tid; 616 int i; 617 #ifdef LOCK_PROFILING 618 int contested = 0; 619 uint64_t waittime = 0; 620 #endif 621 #ifdef KDTRACE_HOOKS 622 uint64_t spin_cnt = 0; 623 #endif 624 625 i = 0; 626 tid = (uintptr_t)curthread; 627 628 if (SCHEDULER_STOPPED()) 629 return; 630 631 for (;;) { 632 retry: 633 spinlock_enter(); 634 m = td->td_lock; 635 KASSERT(m->mtx_lock != MTX_DESTROYED, 636 ("thread_lock() of destroyed mutex @ %s:%d", file, line)); 637 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin, 638 ("thread_lock() of sleep mutex %s @ %s:%d", 639 m->lock_object.lo_name, file, line)); 640 if (mtx_owned(m)) 641 KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0, 642 ("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n", 643 m->lock_object.lo_name, file, line)); 644 WITNESS_CHECKORDER(&m->lock_object, 645 opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL); 646 while (!_mtx_obtain_lock(m, tid)) { 647 #ifdef KDTRACE_HOOKS 648 spin_cnt++; 649 #endif 650 if (m->mtx_lock == tid) { 651 m->mtx_recurse++; 652 break; 653 } 654 #ifdef HWPMC_HOOKS 655 PMC_SOFT_CALL( , , lock, failed); 656 #endif 657 lock_profile_obtain_lock_failed(&m->lock_object, 658 &contested, &waittime); 659 /* Give interrupts a chance while we spin. */ 660 spinlock_exit(); 661 while (m->mtx_lock != MTX_UNOWNED) { 662 if (i++ < 10000000) 663 cpu_spinwait(); 664 else if (i < 60000000 || 665 kdb_active || panicstr != NULL) 666 DELAY(1); 667 else 668 _mtx_lock_spin_failed(m); 669 cpu_spinwait(); 670 if (m != td->td_lock) 671 goto retry; 672 } 673 spinlock_enter(); 674 } 675 if (m == td->td_lock) 676 break; 677 __mtx_unlock_spin(m); /* does spinlock_exit() */ 678 #ifdef KDTRACE_HOOKS 679 spin_cnt++; 680 #endif 681 } 682 if (m->mtx_recurse == 0) 683 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_SPIN_LOCK_ACQUIRE, 684 m, contested, waittime, (file), (line)); 685 LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file, 686 line); 687 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); 688 LOCKSTAT_RECORD1(LS_THREAD_LOCK_SPIN, m, spin_cnt); 689 } 690 691 struct mtx * 692 thread_lock_block(struct thread *td) 693 { 694 struct mtx *lock; 695 696 THREAD_LOCK_ASSERT(td, MA_OWNED); 697 lock = td->td_lock; 698 td->td_lock = &blocked_lock; 699 mtx_unlock_spin(lock); 700 701 return (lock); 702 } 703 704 void 705 thread_lock_unblock(struct thread *td, struct mtx *new) 706 { 707 mtx_assert(new, MA_OWNED); 708 MPASS(td->td_lock == &blocked_lock); 709 atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new); 710 } 711 712 void 713 thread_lock_set(struct thread *td, struct mtx *new) 714 { 715 struct mtx *lock; 716 717 mtx_assert(new, MA_OWNED); 718 THREAD_LOCK_ASSERT(td, MA_OWNED); 719 lock = td->td_lock; 720 td->td_lock = new; 721 mtx_unlock_spin(lock); 722 } 723 724 /* 725 * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock. 726 * 727 * We are only called here if the lock is recursed or contested (i.e. we 728 * need to wake up a blocked thread). 729 */ 730 void 731 __mtx_unlock_sleep(volatile uintptr_t *c, int opts, const char *file, int line) 732 { 733 struct mtx *m; 734 struct turnstile *ts; 735 736 if (SCHEDULER_STOPPED()) 737 return; 738 739 m = mtxlock2mtx(c); 740 741 if (mtx_recursed(m)) { 742 if (--(m->mtx_recurse) == 0) 743 atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED); 744 if (LOCK_LOG_TEST(&m->lock_object, opts)) 745 CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m); 746 return; 747 } 748 749 /* 750 * We have to lock the chain before the turnstile so this turnstile 751 * can be removed from the hash list if it is empty. 752 */ 753 turnstile_chain_lock(&m->lock_object); 754 ts = turnstile_lookup(&m->lock_object); 755 if (LOCK_LOG_TEST(&m->lock_object, opts)) 756 CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m); 757 MPASS(ts != NULL); 758 turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE); 759 _mtx_release_lock_quick(m); 760 761 /* 762 * This turnstile is now no longer associated with the mutex. We can 763 * unlock the chain lock so a new turnstile may take it's place. 764 */ 765 turnstile_unpend(ts, TS_EXCLUSIVE_LOCK); 766 turnstile_chain_unlock(&m->lock_object); 767 } 768 769 /* 770 * All the unlocking of MTX_SPIN locks is done inline. 771 * See the __mtx_unlock_spin() macro for the details. 772 */ 773 774 /* 775 * The backing function for the INVARIANTS-enabled mtx_assert() 776 */ 777 #ifdef INVARIANT_SUPPORT 778 void 779 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line) 780 { 781 const struct mtx *m; 782 783 if (panicstr != NULL || dumping) 784 return; 785 786 m = mtxlock2mtx(c); 787 788 switch (what) { 789 case MA_OWNED: 790 case MA_OWNED | MA_RECURSED: 791 case MA_OWNED | MA_NOTRECURSED: 792 if (!mtx_owned(m)) 793 panic("mutex %s not owned at %s:%d", 794 m->lock_object.lo_name, file, line); 795 if (mtx_recursed(m)) { 796 if ((what & MA_NOTRECURSED) != 0) 797 panic("mutex %s recursed at %s:%d", 798 m->lock_object.lo_name, file, line); 799 } else if ((what & MA_RECURSED) != 0) { 800 panic("mutex %s unrecursed at %s:%d", 801 m->lock_object.lo_name, file, line); 802 } 803 break; 804 case MA_NOTOWNED: 805 if (mtx_owned(m)) 806 panic("mutex %s owned at %s:%d", 807 m->lock_object.lo_name, file, line); 808 break; 809 default: 810 panic("unknown mtx_assert at %s:%d", file, line); 811 } 812 } 813 #endif 814 815 /* 816 * The MUTEX_DEBUG-enabled mtx_validate() 817 * 818 * Most of these checks have been moved off into the LO_INITIALIZED flag 819 * maintained by the witness code. 820 */ 821 #ifdef MUTEX_DEBUG 822 823 void mtx_validate(struct mtx *); 824 825 void 826 mtx_validate(struct mtx *m) 827 { 828 829 /* 830 * XXX: When kernacc() does not require Giant we can reenable this check 831 */ 832 #ifdef notyet 833 /* 834 * Can't call kernacc() from early init386(), especially when 835 * initializing Giant mutex, because some stuff in kernacc() 836 * requires Giant itself. 837 */ 838 if (!cold) 839 if (!kernacc((caddr_t)m, sizeof(m), 840 VM_PROT_READ | VM_PROT_WRITE)) 841 panic("Can't read and write to mutex %p", m); 842 #endif 843 } 844 #endif 845 846 /* 847 * General init routine used by the MTX_SYSINIT() macro. 848 */ 849 void 850 mtx_sysinit(void *arg) 851 { 852 struct mtx_args *margs = arg; 853 854 mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL, 855 margs->ma_opts); 856 } 857 858 /* 859 * Mutex initialization routine; initialize lock `m' of type contained in 860 * `opts' with options contained in `opts' and name `name.' The optional 861 * lock type `type' is used as a general lock category name for use with 862 * witness. 863 */ 864 void 865 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts) 866 { 867 struct mtx *m; 868 struct lock_class *class; 869 int flags; 870 871 m = mtxlock2mtx(c); 872 873 MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE | 874 MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE)) == 0); 875 ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock, 876 ("%s: mtx_lock not aligned for %s: %p", __func__, name, 877 &m->mtx_lock)); 878 879 #ifdef MUTEX_DEBUG 880 /* Diagnostic and error correction */ 881 mtx_validate(m); 882 #endif 883 884 /* Determine lock class and lock flags. */ 885 if (opts & MTX_SPIN) 886 class = &lock_class_mtx_spin; 887 else 888 class = &lock_class_mtx_sleep; 889 flags = 0; 890 if (opts & MTX_QUIET) 891 flags |= LO_QUIET; 892 if (opts & MTX_RECURSE) 893 flags |= LO_RECURSABLE; 894 if ((opts & MTX_NOWITNESS) == 0) 895 flags |= LO_WITNESS; 896 if (opts & MTX_DUPOK) 897 flags |= LO_DUPOK; 898 if (opts & MTX_NOPROFILE) 899 flags |= LO_NOPROFILE; 900 901 /* Initialize mutex. */ 902 lock_init(&m->lock_object, class, name, type, flags); 903 904 m->mtx_lock = MTX_UNOWNED; 905 m->mtx_recurse = 0; 906 } 907 908 /* 909 * Remove lock `m' from all_mtx queue. We don't allow MTX_QUIET to be 910 * passed in as a flag here because if the corresponding mtx_init() was 911 * called with MTX_QUIET set, then it will already be set in the mutex's 912 * flags. 913 */ 914 void 915 _mtx_destroy(volatile uintptr_t *c) 916 { 917 struct mtx *m; 918 919 m = mtxlock2mtx(c); 920 921 if (!mtx_owned(m)) 922 MPASS(mtx_unowned(m)); 923 else { 924 MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0); 925 926 /* Perform the non-mtx related part of mtx_unlock_spin(). */ 927 if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin) 928 spinlock_exit(); 929 else 930 curthread->td_locks--; 931 932 lock_profile_release_lock(&m->lock_object); 933 /* Tell witness this isn't locked to make it happy. */ 934 WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__, 935 __LINE__); 936 } 937 938 m->mtx_lock = MTX_DESTROYED; 939 lock_destroy(&m->lock_object); 940 } 941 942 /* 943 * Intialize the mutex code and system mutexes. This is called from the MD 944 * startup code prior to mi_startup(). The per-CPU data space needs to be 945 * setup before this is called. 946 */ 947 void 948 mutex_init(void) 949 { 950 951 /* Setup turnstiles so that sleep mutexes work. */ 952 init_turnstiles(); 953 954 /* 955 * Initialize mutexes. 956 */ 957 mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE); 958 mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN); 959 blocked_lock.mtx_lock = 0xdeadc0de; /* Always blocked. */ 960 mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 961 mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 962 mtx_init(&devmtx, "cdev", NULL, MTX_DEF); 963 mtx_lock(&Giant); 964 } 965 966 #ifdef DDB 967 void 968 db_show_mtx(const struct lock_object *lock) 969 { 970 struct thread *td; 971 const struct mtx *m; 972 973 m = (const struct mtx *)lock; 974 975 db_printf(" flags: {"); 976 if (LOCK_CLASS(lock) == &lock_class_mtx_spin) 977 db_printf("SPIN"); 978 else 979 db_printf("DEF"); 980 if (m->lock_object.lo_flags & LO_RECURSABLE) 981 db_printf(", RECURSE"); 982 if (m->lock_object.lo_flags & LO_DUPOK) 983 db_printf(", DUPOK"); 984 db_printf("}\n"); 985 db_printf(" state: {"); 986 if (mtx_unowned(m)) 987 db_printf("UNOWNED"); 988 else if (mtx_destroyed(m)) 989 db_printf("DESTROYED"); 990 else { 991 db_printf("OWNED"); 992 if (m->mtx_lock & MTX_CONTESTED) 993 db_printf(", CONTESTED"); 994 if (m->mtx_lock & MTX_RECURSED) 995 db_printf(", RECURSED"); 996 } 997 db_printf("}\n"); 998 if (!mtx_unowned(m) && !mtx_destroyed(m)) { 999 td = mtx_owner(m); 1000 db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td, 1001 td->td_tid, td->td_proc->p_pid, td->td_name); 1002 if (mtx_recursed(m)) 1003 db_printf(" recursed: %d\n", m->mtx_recurse); 1004 } 1005 } 1006 #endif 1007