xref: /freebsd/sys/kern/kern_mutex.c (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Berkeley Software Design Inc's name may not be used to endorse or
15  *    promote products derived from this software without specific prior
16  *    written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32  */
33 
34 /*
35  * Machine independent bits of mutex implementation.
36  */
37 
38 #include <sys/cdefs.h>
39 #include "opt_adaptive_mutexes.h"
40 #include "opt_ddb.h"
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_sched.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bus.h>
47 #include <sys/conf.h>
48 #include <sys/kdb.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/sched.h>
57 #include <sys/sbuf.h>
58 #include <sys/smp.h>
59 #include <sys/sysctl.h>
60 #include <sys/turnstile.h>
61 #include <sys/vmmeter.h>
62 #include <sys/lock_profile.h>
63 
64 #include <machine/atomic.h>
65 #include <machine/bus.h>
66 #include <machine/cpu.h>
67 
68 #include <ddb/ddb.h>
69 
70 #include <fs/devfs/devfs_int.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_extern.h>
74 
75 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
76 #define	ADAPTIVE_MUTEXES
77 #endif
78 
79 #ifdef HWPMC_HOOKS
80 #include <sys/pmckern.h>
81 PMC_SOFT_DEFINE( , , lock, failed);
82 #endif
83 
84 /*
85  * Return the mutex address when the lock cookie address is provided.
86  * This functionality assumes that struct mtx* have a member named mtx_lock.
87  */
88 #define	mtxlock2mtx(c)	(__containerof(c, struct mtx, mtx_lock))
89 
90 /*
91  * Internal utility macros.
92  */
93 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
94 
95 #define	mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
96 
97 static void	assert_mtx(const struct lock_object *lock, int what);
98 #ifdef DDB
99 static void	db_show_mtx(const struct lock_object *lock);
100 #endif
101 static void	lock_mtx(struct lock_object *lock, uintptr_t how);
102 static void	lock_spin(struct lock_object *lock, uintptr_t how);
103 static int	trylock_mtx(struct lock_object *lock, uintptr_t how);
104 static int	trylock_spin(struct lock_object *lock, uintptr_t how);
105 #ifdef KDTRACE_HOOKS
106 static int	owner_mtx(const struct lock_object *lock,
107 		    struct thread **owner);
108 #endif
109 static uintptr_t unlock_mtx(struct lock_object *lock);
110 static uintptr_t unlock_spin(struct lock_object *lock);
111 
112 /*
113  * Lock classes for sleep and spin mutexes.
114  */
115 struct lock_class lock_class_mtx_sleep = {
116 	.lc_name = "sleep mutex",
117 	.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
118 	.lc_assert = assert_mtx,
119 #ifdef DDB
120 	.lc_ddb_show = db_show_mtx,
121 #endif
122 	.lc_lock = lock_mtx,
123 	.lc_trylock = trylock_mtx,
124 	.lc_unlock = unlock_mtx,
125 #ifdef KDTRACE_HOOKS
126 	.lc_owner = owner_mtx,
127 #endif
128 };
129 struct lock_class lock_class_mtx_spin = {
130 	.lc_name = "spin mutex",
131 	.lc_flags = LC_SPINLOCK | LC_RECURSABLE,
132 	.lc_assert = assert_mtx,
133 #ifdef DDB
134 	.lc_ddb_show = db_show_mtx,
135 #endif
136 	.lc_lock = lock_spin,
137 	.lc_trylock = trylock_spin,
138 	.lc_unlock = unlock_spin,
139 #ifdef KDTRACE_HOOKS
140 	.lc_owner = owner_mtx,
141 #endif
142 };
143 
144 #ifdef ADAPTIVE_MUTEXES
145 #ifdef MUTEX_CUSTOM_BACKOFF
146 static SYSCTL_NODE(_debug, OID_AUTO, mtx, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
147     "mtx debugging");
148 
149 static struct lock_delay_config __read_frequently mtx_delay;
150 
151 SYSCTL_U16(_debug_mtx, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_delay.base,
152     0, "");
153 SYSCTL_U16(_debug_mtx, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_delay.max,
154     0, "");
155 
156 LOCK_DELAY_SYSINIT_DEFAULT(mtx_delay);
157 #else
158 #define mtx_delay	locks_delay
159 #endif
160 #endif
161 
162 #ifdef MUTEX_SPIN_CUSTOM_BACKOFF
163 static SYSCTL_NODE(_debug, OID_AUTO, mtx_spin,
164     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
165     "mtx spin debugging");
166 
167 static struct lock_delay_config __read_frequently mtx_spin_delay;
168 
169 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_base, CTLFLAG_RW,
170     &mtx_spin_delay.base, 0, "");
171 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_max, CTLFLAG_RW,
172     &mtx_spin_delay.max, 0, "");
173 
174 LOCK_DELAY_SYSINIT_DEFAULT(mtx_spin_delay);
175 #else
176 #define mtx_spin_delay	locks_delay
177 #endif
178 
179 /*
180  * System-wide mutexes
181  */
182 struct mtx blocked_lock;
183 struct mtx __exclusive_cache_line Giant;
184 
185 static void _mtx_lock_indefinite_check(struct mtx *, struct lock_delay_arg *);
186 
187 static void
188 assert_mtx(const struct lock_object *lock, int what)
189 {
190 
191 	/*
192 	 * Treat LA_LOCKED as if LA_XLOCKED was asserted.
193 	 *
194 	 * Some callers of lc_assert uses LA_LOCKED to indicate that either
195 	 * a shared lock or write lock was held, while other callers uses
196 	 * the more strict LA_XLOCKED (used as MA_OWNED).
197 	 *
198 	 * Mutex is the only lock class that can not be shared, as a result,
199 	 * we can reasonably consider the caller really intends to assert
200 	 * LA_XLOCKED when they are asserting LA_LOCKED on a mutex object.
201 	 */
202 	if (what & LA_LOCKED) {
203 		what &= ~LA_LOCKED;
204 		what |= LA_XLOCKED;
205 	}
206 	mtx_assert((const struct mtx *)lock, what);
207 }
208 
209 static void
210 lock_mtx(struct lock_object *lock, uintptr_t how)
211 {
212 
213 	mtx_lock((struct mtx *)lock);
214 }
215 
216 static void
217 lock_spin(struct lock_object *lock, uintptr_t how)
218 {
219 
220 	mtx_lock_spin((struct mtx *)lock);
221 }
222 
223 static int
224 trylock_mtx(struct lock_object *lock, uintptr_t how)
225 {
226 
227 	return (mtx_trylock((struct mtx *)lock));
228 }
229 
230 static int
231 trylock_spin(struct lock_object *lock, uintptr_t how)
232 {
233 
234 	return (mtx_trylock_spin((struct mtx *)lock));
235 }
236 
237 static uintptr_t
238 unlock_mtx(struct lock_object *lock)
239 {
240 	struct mtx *m;
241 
242 	m = (struct mtx *)lock;
243 	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
244 	mtx_unlock(m);
245 	return (0);
246 }
247 
248 static uintptr_t
249 unlock_spin(struct lock_object *lock)
250 {
251 	struct mtx *m;
252 
253 	m = (struct mtx *)lock;
254 	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
255 	mtx_unlock_spin(m);
256 	return (0);
257 }
258 
259 #ifdef KDTRACE_HOOKS
260 static int
261 owner_mtx(const struct lock_object *lock, struct thread **owner)
262 {
263 	const struct mtx *m;
264 	uintptr_t x;
265 
266 	m = (const struct mtx *)lock;
267 	x = m->mtx_lock;
268 	*owner = (struct thread *)(x & ~MTX_FLAGMASK);
269 	return (*owner != NULL);
270 }
271 #endif
272 
273 /*
274  * Function versions of the inlined __mtx_* macros.  These are used by
275  * modules and can also be called from assembly language if needed.
276  */
277 void
278 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
279 {
280 	struct mtx *m;
281 	uintptr_t tid, v;
282 
283 	m = mtxlock2mtx(c);
284 
285 	KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
286 	    !TD_IS_IDLETHREAD(curthread),
287 	    ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
288 	    curthread, m->lock_object.lo_name, file, line));
289 	KASSERT(m->mtx_lock != MTX_DESTROYED,
290 	    ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
291 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
292 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
293 	    file, line));
294 	WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
295 	    LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
296 
297 	tid = (uintptr_t)curthread;
298 	v = MTX_UNOWNED;
299 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
300 		_mtx_lock_sleep(m, v, opts, file, line);
301 	else
302 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
303 		    m, 0, 0, file, line);
304 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
305 	    line);
306 	WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
307 	    file, line);
308 	TD_LOCKS_INC(curthread);
309 }
310 
311 void
312 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
313 {
314 	struct mtx *m;
315 
316 	m = mtxlock2mtx(c);
317 
318 	KASSERT(m->mtx_lock != MTX_DESTROYED,
319 	    ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
320 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
321 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
322 	    file, line));
323 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
324 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
325 	    line);
326 	mtx_assert(m, MA_OWNED);
327 
328 #ifdef LOCK_PROFILING
329 	__mtx_unlock_sleep(c, (uintptr_t)curthread, opts, file, line);
330 #else
331 	__mtx_unlock(m, curthread, opts, file, line);
332 #endif
333 	TD_LOCKS_DEC(curthread);
334 }
335 
336 void
337 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
338     int line)
339 {
340 	struct mtx *m;
341 #ifdef SMP
342 	uintptr_t tid, v;
343 #endif
344 
345 	m = mtxlock2mtx(c);
346 
347 	KASSERT(m->mtx_lock != MTX_DESTROYED,
348 	    ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
349 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
350 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
351 	    m->lock_object.lo_name, file, line));
352 	if (mtx_owned(m))
353 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
354 		    (opts & MTX_RECURSE) != 0,
355 	    ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
356 		    m->lock_object.lo_name, file, line));
357 	opts &= ~MTX_RECURSE;
358 	WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
359 	    file, line, NULL);
360 #ifdef SMP
361 	spinlock_enter();
362 	tid = (uintptr_t)curthread;
363 	v = MTX_UNOWNED;
364 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
365 		_mtx_lock_spin(m, v, opts, file, line);
366 	else
367 		LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire,
368 		    m, 0, 0, file, line);
369 #else
370 	__mtx_lock_spin(m, curthread, opts, file, line);
371 #endif
372 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
373 	    line);
374 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
375 }
376 
377 int
378 __mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
379     int line)
380 {
381 	struct mtx *m;
382 
383 	if (SCHEDULER_STOPPED())
384 		return (1);
385 
386 	m = mtxlock2mtx(c);
387 
388 	KASSERT(m->mtx_lock != MTX_DESTROYED,
389 	    ("mtx_trylock_spin() of destroyed mutex @ %s:%d", file, line));
390 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
391 	    ("mtx_trylock_spin() of sleep mutex %s @ %s:%d",
392 	    m->lock_object.lo_name, file, line));
393 	KASSERT((opts & MTX_RECURSE) == 0,
394 	    ("mtx_trylock_spin: unsupp. opt MTX_RECURSE on mutex %s @ %s:%d\n",
395 	    m->lock_object.lo_name, file, line));
396 	if (__mtx_trylock_spin(m, curthread, opts, file, line)) {
397 		LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 1, file, line);
398 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
399 		return (1);
400 	}
401 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 0, file, line);
402 	return (0);
403 }
404 
405 void
406 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
407     int line)
408 {
409 	struct mtx *m;
410 
411 	m = mtxlock2mtx(c);
412 
413 	KASSERT(m->mtx_lock != MTX_DESTROYED,
414 	    ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
415 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
416 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
417 	    m->lock_object.lo_name, file, line));
418 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
419 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
420 	    line);
421 	mtx_assert(m, MA_OWNED);
422 
423 	__mtx_unlock_spin(m);
424 }
425 
426 /*
427  * The important part of mtx_trylock{,_flags}()
428  * Tries to acquire lock `m.'  If this function is called on a mutex that
429  * is already owned, it will recursively acquire the lock.
430  */
431 int
432 _mtx_trylock_flags_int(struct mtx *m, int opts LOCK_FILE_LINE_ARG_DEF)
433 {
434 	struct thread *td;
435 	uintptr_t tid, v;
436 #ifdef LOCK_PROFILING
437 	uint64_t waittime = 0;
438 	int contested = 0;
439 #endif
440 	int rval;
441 	bool recursed;
442 
443 	td = curthread;
444 	tid = (uintptr_t)td;
445 	if (SCHEDULER_STOPPED())
446 		return (1);
447 
448 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td),
449 	    ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
450 	    curthread, m->lock_object.lo_name, file, line));
451 	KASSERT(m->mtx_lock != MTX_DESTROYED,
452 	    ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
453 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
454 	    ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
455 	    file, line));
456 
457 	rval = 1;
458 	recursed = false;
459 	v = MTX_UNOWNED;
460 	for (;;) {
461 		if (_mtx_obtain_lock_fetch(m, &v, tid))
462 			break;
463 		if (v == MTX_UNOWNED)
464 			continue;
465 		if (v == tid &&
466 		    ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
467 		    (opts & MTX_RECURSE) != 0)) {
468 			m->mtx_recurse++;
469 			atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
470 			recursed = true;
471 			break;
472 		}
473 		rval = 0;
474 		break;
475 	}
476 
477 	opts &= ~MTX_RECURSE;
478 
479 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
480 	if (rval) {
481 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
482 		    file, line);
483 		TD_LOCKS_INC(curthread);
484 		if (!recursed)
485 			LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
486 			    m, contested, waittime, file, line);
487 	}
488 
489 	return (rval);
490 }
491 
492 int
493 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
494 {
495 	struct mtx *m;
496 
497 	m = mtxlock2mtx(c);
498 	return (_mtx_trylock_flags_int(m, opts LOCK_FILE_LINE_ARG));
499 }
500 
501 /*
502  * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
503  *
504  * We call this if the lock is either contested (i.e. we need to go to
505  * sleep waiting for it), or if we need to recurse on it.
506  */
507 #if LOCK_DEBUG > 0
508 void
509 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file,
510     int line)
511 #else
512 void
513 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v)
514 #endif
515 {
516 	struct thread *td;
517 	struct mtx *m;
518 	struct turnstile *ts;
519 	uintptr_t tid;
520 	struct thread *owner;
521 #ifdef LOCK_PROFILING
522 	int contested = 0;
523 	uint64_t waittime = 0;
524 #endif
525 #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS)
526 	struct lock_delay_arg lda;
527 #endif
528 #ifdef KDTRACE_HOOKS
529 	u_int sleep_cnt = 0;
530 	int64_t sleep_time = 0;
531 	int64_t all_time = 0;
532 #endif
533 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
534 	int doing_lockprof = 0;
535 #endif
536 
537 	td = curthread;
538 	tid = (uintptr_t)td;
539 	m = mtxlock2mtx(c);
540 
541 #ifdef KDTRACE_HOOKS
542 	if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
543 		while (v == MTX_UNOWNED) {
544 			if (_mtx_obtain_lock_fetch(m, &v, tid))
545 				goto out_lockstat;
546 		}
547 		doing_lockprof = 1;
548 		all_time -= lockstat_nsecs(&m->lock_object);
549 	}
550 #endif
551 #ifdef LOCK_PROFILING
552 	doing_lockprof = 1;
553 #endif
554 
555 	if (SCHEDULER_STOPPED())
556 		return;
557 
558 	if (__predict_false(v == MTX_UNOWNED))
559 		v = MTX_READ_VALUE(m);
560 
561 	if (__predict_false(lv_mtx_owner(v) == td)) {
562 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
563 		    (opts & MTX_RECURSE) != 0,
564 	    ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
565 		    m->lock_object.lo_name, file, line));
566 #if LOCK_DEBUG > 0
567 		opts &= ~MTX_RECURSE;
568 #endif
569 		m->mtx_recurse++;
570 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
571 		if (LOCK_LOG_TEST(&m->lock_object, opts))
572 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
573 		return;
574 	}
575 #if LOCK_DEBUG > 0
576 	opts &= ~MTX_RECURSE;
577 #endif
578 
579 #if defined(ADAPTIVE_MUTEXES)
580 	lock_delay_arg_init(&lda, &mtx_delay);
581 #elif defined(KDTRACE_HOOKS)
582 	lock_delay_arg_init_noadapt(&lda);
583 #endif
584 
585 #ifdef HWPMC_HOOKS
586 	PMC_SOFT_CALL( , , lock, failed);
587 #endif
588 	lock_profile_obtain_lock_failed(&m->lock_object, false,
589 		    &contested, &waittime);
590 	if (LOCK_LOG_TEST(&m->lock_object, opts))
591 		CTR4(KTR_LOCK,
592 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
593 		    m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
594 
595 	THREAD_CONTENDS_ON_LOCK(&m->lock_object);
596 
597 	for (;;) {
598 		if (v == MTX_UNOWNED) {
599 			if (_mtx_obtain_lock_fetch(m, &v, tid))
600 				break;
601 			continue;
602 		}
603 #ifdef KDTRACE_HOOKS
604 		lda.spin_cnt++;
605 #endif
606 #ifdef ADAPTIVE_MUTEXES
607 		/*
608 		 * If the owner is running on another CPU, spin until the
609 		 * owner stops running or the state of the lock changes.
610 		 */
611 		owner = lv_mtx_owner(v);
612 		if (TD_IS_RUNNING(owner)) {
613 			if (LOCK_LOG_TEST(&m->lock_object, 0))
614 				CTR3(KTR_LOCK,
615 				    "%s: spinning on %p held by %p",
616 				    __func__, m, owner);
617 			KTR_STATE1(KTR_SCHED, "thread",
618 			    sched_tdname((struct thread *)tid),
619 			    "spinning", "lockname:\"%s\"",
620 			    m->lock_object.lo_name);
621 			do {
622 				lock_delay(&lda);
623 				v = MTX_READ_VALUE(m);
624 				owner = lv_mtx_owner(v);
625 			} while (v != MTX_UNOWNED && TD_IS_RUNNING(owner));
626 			KTR_STATE0(KTR_SCHED, "thread",
627 			    sched_tdname((struct thread *)tid),
628 			    "running");
629 			continue;
630 		}
631 #endif
632 
633 		ts = turnstile_trywait(&m->lock_object);
634 		v = MTX_READ_VALUE(m);
635 retry_turnstile:
636 
637 		/*
638 		 * Check if the lock has been released while spinning for
639 		 * the turnstile chain lock.
640 		 */
641 		if (v == MTX_UNOWNED) {
642 			turnstile_cancel(ts);
643 			continue;
644 		}
645 
646 #ifdef ADAPTIVE_MUTEXES
647 		/*
648 		 * The current lock owner might have started executing
649 		 * on another CPU (or the lock could have changed
650 		 * owners) while we were waiting on the turnstile
651 		 * chain lock.  If so, drop the turnstile lock and try
652 		 * again.
653 		 */
654 		owner = lv_mtx_owner(v);
655 		if (TD_IS_RUNNING(owner)) {
656 			turnstile_cancel(ts);
657 			continue;
658 		}
659 #endif
660 
661 		/*
662 		 * If the mutex isn't already contested and a failure occurs
663 		 * setting the contested bit, the mutex was either released
664 		 * or the state of the MTX_RECURSED bit changed.
665 		 */
666 		if ((v & MTX_CONTESTED) == 0 &&
667 		    !atomic_fcmpset_ptr(&m->mtx_lock, &v, v | MTX_CONTESTED)) {
668 			goto retry_turnstile;
669 		}
670 
671 		/*
672 		 * We definitely must sleep for this lock.
673 		 */
674 		mtx_assert(m, MA_NOTOWNED);
675 
676 		/*
677 		 * Block on the turnstile.
678 		 */
679 #ifdef KDTRACE_HOOKS
680 		sleep_time -= lockstat_nsecs(&m->lock_object);
681 #endif
682 #ifndef ADAPTIVE_MUTEXES
683 		owner = mtx_owner(m);
684 #endif
685 		MPASS(owner == mtx_owner(m));
686 		turnstile_wait(ts, owner, TS_EXCLUSIVE_QUEUE);
687 #ifdef KDTRACE_HOOKS
688 		sleep_time += lockstat_nsecs(&m->lock_object);
689 		sleep_cnt++;
690 #endif
691 		v = MTX_READ_VALUE(m);
692 	}
693 	THREAD_CONTENTION_DONE(&m->lock_object);
694 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
695 	if (__predict_true(!doing_lockprof))
696 		return;
697 #endif
698 #ifdef KDTRACE_HOOKS
699 	all_time += lockstat_nsecs(&m->lock_object);
700 	if (sleep_time)
701 		LOCKSTAT_RECORD1(adaptive__block, m, sleep_time);
702 
703 	/*
704 	 * Only record the loops spinning and not sleeping.
705 	 */
706 	if (lda.spin_cnt > sleep_cnt)
707 		LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time);
708 out_lockstat:
709 #endif
710 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested,
711 	    waittime, file, line);
712 }
713 
714 #ifdef SMP
715 /*
716  * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
717  *
718  * This is only called if we need to actually spin for the lock. Recursion
719  * is handled inline.
720  */
721 #if LOCK_DEBUG > 0
722 void
723 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v, int opts,
724     const char *file, int line)
725 #else
726 void
727 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v)
728 #endif
729 {
730 	struct mtx *m;
731 	struct lock_delay_arg lda;
732 	uintptr_t tid;
733 #ifdef LOCK_PROFILING
734 	int contested = 0;
735 	uint64_t waittime = 0;
736 #endif
737 #ifdef KDTRACE_HOOKS
738 	int64_t spin_time = 0;
739 #endif
740 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
741 	int doing_lockprof = 0;
742 #endif
743 
744 	tid = (uintptr_t)curthread;
745 	m = mtxlock2mtx(c);
746 
747 #ifdef KDTRACE_HOOKS
748 	if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
749 		while (v == MTX_UNOWNED) {
750 			if (_mtx_obtain_lock_fetch(m, &v, tid))
751 				goto out_lockstat;
752 		}
753 		doing_lockprof = 1;
754 		spin_time -= lockstat_nsecs(&m->lock_object);
755 	}
756 #endif
757 #ifdef LOCK_PROFILING
758 	doing_lockprof = 1;
759 #endif
760 
761 	if (__predict_false(v == MTX_UNOWNED))
762 		v = MTX_READ_VALUE(m);
763 
764 	if (__predict_false(v == tid)) {
765 		m->mtx_recurse++;
766 		return;
767 	}
768 
769 	if (SCHEDULER_STOPPED())
770 		return;
771 
772 	if (LOCK_LOG_TEST(&m->lock_object, opts))
773 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
774 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
775 	    "spinning", "lockname:\"%s\"", m->lock_object.lo_name);
776 
777 	lock_delay_arg_init(&lda, &mtx_spin_delay);
778 
779 #ifdef HWPMC_HOOKS
780 	PMC_SOFT_CALL( , , lock, failed);
781 #endif
782 	lock_profile_obtain_lock_failed(&m->lock_object, true, &contested, &waittime);
783 
784 	for (;;) {
785 		if (v == MTX_UNOWNED) {
786 			if (_mtx_obtain_lock_fetch(m, &v, tid))
787 				break;
788 			continue;
789 		}
790 		/* Give interrupts a chance while we spin. */
791 		spinlock_exit();
792 		do {
793 			if (__predict_true(lda.spin_cnt < 10000000)) {
794 				lock_delay(&lda);
795 			} else {
796 				_mtx_lock_indefinite_check(m, &lda);
797 			}
798 			v = MTX_READ_VALUE(m);
799 		} while (v != MTX_UNOWNED);
800 		spinlock_enter();
801 	}
802 
803 	if (LOCK_LOG_TEST(&m->lock_object, opts))
804 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
805 	KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
806 	    "running");
807 
808 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
809 	if (__predict_true(!doing_lockprof))
810 		return;
811 #endif
812 #ifdef KDTRACE_HOOKS
813 	spin_time += lockstat_nsecs(&m->lock_object);
814 	if (lda.spin_cnt != 0)
815 		LOCKSTAT_RECORD1(spin__spin, m, spin_time);
816 out_lockstat:
817 #endif
818 	LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire, m,
819 	    contested, waittime, file, line);
820 }
821 #endif /* SMP */
822 
823 #ifdef INVARIANTS
824 static void
825 thread_lock_validate(struct mtx *m, int opts, const char *file, int line)
826 {
827 
828 	KASSERT(m->mtx_lock != MTX_DESTROYED,
829 	    ("thread_lock() of destroyed mutex @ %s:%d", file, line));
830 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
831 	    ("thread_lock() of sleep mutex %s @ %s:%d",
832 	    m->lock_object.lo_name, file, line));
833 	KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) == 0,
834 	    ("thread_lock: got a recursive mutex %s @ %s:%d\n",
835 	    m->lock_object.lo_name, file, line));
836 	WITNESS_CHECKORDER(&m->lock_object,
837 	    opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
838 }
839 #else
840 #define thread_lock_validate(m, opts, file, line) do { } while (0)
841 #endif
842 
843 #ifndef LOCK_PROFILING
844 #if LOCK_DEBUG > 0
845 void
846 _thread_lock(struct thread *td, int opts, const char *file, int line)
847 #else
848 void
849 _thread_lock(struct thread *td)
850 #endif
851 {
852 	struct mtx *m;
853 	uintptr_t tid;
854 
855 	tid = (uintptr_t)curthread;
856 
857 	if (__predict_false(LOCKSTAT_PROFILE_ENABLED(spin__acquire)))
858 		goto slowpath_noirq;
859 	spinlock_enter();
860 	m = td->td_lock;
861 	thread_lock_validate(m, 0, file, line);
862 	if (__predict_false(m == &blocked_lock))
863 		goto slowpath_unlocked;
864 	if (__predict_false(!_mtx_obtain_lock(m, tid)))
865 		goto slowpath_unlocked;
866 	if (__predict_true(m == td->td_lock)) {
867 		WITNESS_LOCK(&m->lock_object, LOP_EXCLUSIVE, file, line);
868 		return;
869 	}
870 	_mtx_release_lock_quick(m);
871 slowpath_unlocked:
872 	spinlock_exit();
873 slowpath_noirq:
874 #if LOCK_DEBUG > 0
875 	thread_lock_flags_(td, opts, file, line);
876 #else
877 	thread_lock_flags_(td, 0, 0, 0);
878 #endif
879 }
880 #endif
881 
882 void
883 thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
884 {
885 	struct mtx *m;
886 	uintptr_t tid, v;
887 	struct lock_delay_arg lda;
888 #ifdef LOCK_PROFILING
889 	int contested = 0;
890 	uint64_t waittime = 0;
891 #endif
892 #ifdef KDTRACE_HOOKS
893 	int64_t spin_time = 0;
894 #endif
895 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
896 	int doing_lockprof = 1;
897 #endif
898 
899 	tid = (uintptr_t)curthread;
900 
901 	if (SCHEDULER_STOPPED()) {
902 		/*
903 		 * Ensure that spinlock sections are balanced even when the
904 		 * scheduler is stopped, since we may otherwise inadvertently
905 		 * re-enable interrupts while dumping core.
906 		 */
907 		spinlock_enter();
908 		return;
909 	}
910 
911 	lock_delay_arg_init(&lda, &mtx_spin_delay);
912 
913 #ifdef HWPMC_HOOKS
914 	PMC_SOFT_CALL( , , lock, failed);
915 #endif
916 
917 #ifdef LOCK_PROFILING
918 	doing_lockprof = 1;
919 #elif defined(KDTRACE_HOOKS)
920 	doing_lockprof = lockstat_enabled;
921 #endif
922 #ifdef KDTRACE_HOOKS
923 	if (__predict_false(doing_lockprof))
924 		spin_time -= lockstat_nsecs(&td->td_lock->lock_object);
925 #endif
926 	spinlock_enter();
927 
928 	for (;;) {
929 retry:
930 		m = td->td_lock;
931 		thread_lock_validate(m, opts, file, line);
932 		v = MTX_READ_VALUE(m);
933 		for (;;) {
934 			if (v == MTX_UNOWNED) {
935 				if (_mtx_obtain_lock_fetch(m, &v, tid))
936 					break;
937 				continue;
938 			}
939 			MPASS(v != tid);
940 			lock_profile_obtain_lock_failed(&m->lock_object, true,
941 			    &contested, &waittime);
942 			/* Give interrupts a chance while we spin. */
943 			spinlock_exit();
944 			do {
945 				if (__predict_true(lda.spin_cnt < 10000000)) {
946 					lock_delay(&lda);
947 				} else {
948 					_mtx_lock_indefinite_check(m, &lda);
949 				}
950 				if (m != td->td_lock) {
951 					spinlock_enter();
952 					goto retry;
953 				}
954 				v = MTX_READ_VALUE(m);
955 			} while (v != MTX_UNOWNED);
956 			spinlock_enter();
957 		}
958 		if (m == td->td_lock)
959 			break;
960 		_mtx_release_lock_quick(m);
961 	}
962 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
963 	    line);
964 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
965 
966 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
967 	if (__predict_true(!doing_lockprof))
968 		return;
969 #endif
970 #ifdef KDTRACE_HOOKS
971 	spin_time += lockstat_nsecs(&m->lock_object);
972 #endif
973 	LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire, m, contested,
974 	    waittime, file, line);
975 #ifdef KDTRACE_HOOKS
976 	if (lda.spin_cnt != 0)
977 		LOCKSTAT_RECORD1(thread__spin, m, spin_time);
978 #endif
979 }
980 
981 struct mtx *
982 thread_lock_block(struct thread *td)
983 {
984 	struct mtx *lock;
985 
986 	lock = td->td_lock;
987 	mtx_assert(lock, MA_OWNED);
988 	td->td_lock = &blocked_lock;
989 
990 	return (lock);
991 }
992 
993 void
994 thread_lock_unblock(struct thread *td, struct mtx *new)
995 {
996 
997 	mtx_assert(new, MA_OWNED);
998 	KASSERT(td->td_lock == &blocked_lock,
999 	    ("thread %p lock %p not blocked_lock %p",
1000 	    td, td->td_lock, &blocked_lock));
1001 	atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
1002 }
1003 
1004 void
1005 thread_lock_block_wait(struct thread *td)
1006 {
1007 
1008 	while (td->td_lock == &blocked_lock)
1009 		cpu_spinwait();
1010 
1011 	/* Acquire fence to be certain that all thread state is visible. */
1012 	atomic_thread_fence_acq();
1013 }
1014 
1015 void
1016 thread_lock_set(struct thread *td, struct mtx *new)
1017 {
1018 	struct mtx *lock;
1019 
1020 	mtx_assert(new, MA_OWNED);
1021 	lock = td->td_lock;
1022 	mtx_assert(lock, MA_OWNED);
1023 	td->td_lock = new;
1024 	mtx_unlock_spin(lock);
1025 }
1026 
1027 /*
1028  * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
1029  *
1030  * We are only called here if the lock is recursed, contested (i.e. we
1031  * need to wake up a blocked thread) or lockstat probe is active.
1032  */
1033 #if LOCK_DEBUG > 0
1034 void
1035 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v, int opts,
1036     const char *file, int line)
1037 #else
1038 void
1039 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v)
1040 #endif
1041 {
1042 	struct mtx *m;
1043 	struct turnstile *ts;
1044 	uintptr_t tid;
1045 
1046 	if (SCHEDULER_STOPPED())
1047 		return;
1048 
1049 	tid = (uintptr_t)curthread;
1050 	m = mtxlock2mtx(c);
1051 
1052 	if (__predict_false(v == tid))
1053 		v = MTX_READ_VALUE(m);
1054 
1055 	if (__predict_false(v & MTX_RECURSED)) {
1056 		if (--(m->mtx_recurse) == 0)
1057 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
1058 		if (LOCK_LOG_TEST(&m->lock_object, opts))
1059 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
1060 		return;
1061 	}
1062 
1063 	LOCKSTAT_PROFILE_RELEASE_LOCK(adaptive__release, m);
1064 	if (v == tid && _mtx_release_lock(m, tid))
1065 		return;
1066 
1067 	/*
1068 	 * We have to lock the chain before the turnstile so this turnstile
1069 	 * can be removed from the hash list if it is empty.
1070 	 */
1071 	turnstile_chain_lock(&m->lock_object);
1072 	_mtx_release_lock_quick(m);
1073 	ts = turnstile_lookup(&m->lock_object);
1074 	if (__predict_false(ts == NULL)) {
1075 		panic("got NULL turnstile on mutex %p v %zx", m, v);
1076 	}
1077 	if (LOCK_LOG_TEST(&m->lock_object, opts))
1078 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
1079 	turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
1080 
1081 	/*
1082 	 * This turnstile is now no longer associated with the mutex.  We can
1083 	 * unlock the chain lock so a new turnstile may take it's place.
1084 	 */
1085 	turnstile_unpend(ts);
1086 	turnstile_chain_unlock(&m->lock_object);
1087 }
1088 
1089 /*
1090  * All the unlocking of MTX_SPIN locks is done inline.
1091  * See the __mtx_unlock_spin() macro for the details.
1092  */
1093 
1094 /*
1095  * The backing function for the INVARIANTS-enabled mtx_assert()
1096  */
1097 #ifdef INVARIANT_SUPPORT
1098 void
1099 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
1100 {
1101 	const struct mtx *m;
1102 
1103 	if (KERNEL_PANICKED() || dumping || SCHEDULER_STOPPED())
1104 		return;
1105 
1106 	m = mtxlock2mtx(c);
1107 
1108 	switch (what) {
1109 	case MA_OWNED:
1110 	case MA_OWNED | MA_RECURSED:
1111 	case MA_OWNED | MA_NOTRECURSED:
1112 		if (!mtx_owned(m))
1113 			panic("mutex %s not owned at %s:%d",
1114 			    m->lock_object.lo_name, file, line);
1115 		if (mtx_recursed(m)) {
1116 			if ((what & MA_NOTRECURSED) != 0)
1117 				panic("mutex %s recursed at %s:%d",
1118 				    m->lock_object.lo_name, file, line);
1119 		} else if ((what & MA_RECURSED) != 0) {
1120 			panic("mutex %s unrecursed at %s:%d",
1121 			    m->lock_object.lo_name, file, line);
1122 		}
1123 		break;
1124 	case MA_NOTOWNED:
1125 		if (mtx_owned(m))
1126 			panic("mutex %s owned at %s:%d",
1127 			    m->lock_object.lo_name, file, line);
1128 		break;
1129 	default:
1130 		panic("unknown mtx_assert at %s:%d", file, line);
1131 	}
1132 }
1133 #endif
1134 
1135 /*
1136  * General init routine used by the MTX_SYSINIT() macro.
1137  */
1138 void
1139 mtx_sysinit(void *arg)
1140 {
1141 	struct mtx_args *margs = arg;
1142 
1143 	mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
1144 	    margs->ma_opts);
1145 }
1146 
1147 /*
1148  * Mutex initialization routine; initialize lock `m' of type contained in
1149  * `opts' with options contained in `opts' and name `name.'  The optional
1150  * lock type `type' is used as a general lock category name for use with
1151  * witness.
1152  */
1153 void
1154 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
1155 {
1156 	struct mtx *m;
1157 	struct lock_class *class;
1158 	int flags;
1159 
1160 	m = mtxlock2mtx(c);
1161 
1162 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
1163 	    MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0);
1164 	ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
1165 	    ("%s: mtx_lock not aligned for %s: %p", __func__, name,
1166 	    &m->mtx_lock));
1167 
1168 	/* Determine lock class and lock flags. */
1169 	if (opts & MTX_SPIN)
1170 		class = &lock_class_mtx_spin;
1171 	else
1172 		class = &lock_class_mtx_sleep;
1173 	flags = 0;
1174 	if (opts & MTX_QUIET)
1175 		flags |= LO_QUIET;
1176 	if (opts & MTX_RECURSE)
1177 		flags |= LO_RECURSABLE;
1178 	if ((opts & MTX_NOWITNESS) == 0)
1179 		flags |= LO_WITNESS;
1180 	if (opts & MTX_DUPOK)
1181 		flags |= LO_DUPOK;
1182 	if (opts & MTX_NOPROFILE)
1183 		flags |= LO_NOPROFILE;
1184 	if (opts & MTX_NEW)
1185 		flags |= LO_NEW;
1186 
1187 	/* Initialize mutex. */
1188 	lock_init(&m->lock_object, class, name, type, flags);
1189 
1190 	m->mtx_lock = MTX_UNOWNED;
1191 	m->mtx_recurse = 0;
1192 }
1193 
1194 /*
1195  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
1196  * passed in as a flag here because if the corresponding mtx_init() was
1197  * called with MTX_QUIET set, then it will already be set in the mutex's
1198  * flags.
1199  */
1200 void
1201 _mtx_destroy(volatile uintptr_t *c)
1202 {
1203 	struct mtx *m;
1204 
1205 	m = mtxlock2mtx(c);
1206 
1207 	if (!mtx_owned(m))
1208 		MPASS(mtx_unowned(m));
1209 	else {
1210 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
1211 
1212 		/* Perform the non-mtx related part of mtx_unlock_spin(). */
1213 		if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin) {
1214 			lock_profile_release_lock(&m->lock_object, true);
1215 			spinlock_exit();
1216 		} else {
1217 			TD_LOCKS_DEC(curthread);
1218 			lock_profile_release_lock(&m->lock_object, false);
1219 		}
1220 
1221 		/* Tell witness this isn't locked to make it happy. */
1222 		WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
1223 		    __LINE__);
1224 	}
1225 
1226 	m->mtx_lock = MTX_DESTROYED;
1227 	lock_destroy(&m->lock_object);
1228 }
1229 
1230 /*
1231  * Intialize the mutex code and system mutexes.  This is called from the MD
1232  * startup code prior to mi_startup().  The per-CPU data space needs to be
1233  * setup before this is called.
1234  */
1235 void
1236 mutex_init(void)
1237 {
1238 
1239 	/* Setup turnstiles so that sleep mutexes work. */
1240 	init_turnstiles();
1241 
1242 	/*
1243 	 * Initialize mutexes.
1244 	 */
1245 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
1246 	mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
1247 	blocked_lock.mtx_lock = 0xdeadc0de;	/* Always blocked. */
1248 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
1249 	mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN);
1250 	mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN);
1251 	mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN);
1252 	mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN);
1253 	mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
1254 	mtx_lock(&Giant);
1255 }
1256 
1257 static void __noinline
1258 _mtx_lock_indefinite_check(struct mtx *m, struct lock_delay_arg *ldap)
1259 {
1260 	struct thread *td;
1261 
1262 	ldap->spin_cnt++;
1263 	if (ldap->spin_cnt < 60000000 || kdb_active || KERNEL_PANICKED())
1264 		cpu_lock_delay();
1265 	else {
1266 		td = mtx_owner(m);
1267 
1268 		/* If the mutex is unlocked, try again. */
1269 		if (td == NULL)
1270 			return;
1271 
1272 		printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
1273 		    m, m->lock_object.lo_name, td, td->td_tid);
1274 #ifdef WITNESS
1275 		witness_display_spinlock(&m->lock_object, td, printf);
1276 #endif
1277 		panic("spin lock held too long");
1278 	}
1279 	cpu_spinwait();
1280 }
1281 
1282 void
1283 mtx_spin_wait_unlocked(struct mtx *m)
1284 {
1285 	struct lock_delay_arg lda;
1286 
1287 	KASSERT(m->mtx_lock != MTX_DESTROYED,
1288 	    ("%s() of destroyed mutex %p", __func__, m));
1289 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
1290 	    ("%s() of sleep mutex %p (%s)", __func__, m,
1291 	    m->lock_object.lo_name));
1292 	KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m,
1293 	    m->lock_object.lo_name));
1294 
1295 	lda.spin_cnt = 0;
1296 
1297 	while (atomic_load_acq_ptr(&m->mtx_lock) != MTX_UNOWNED) {
1298 		if (__predict_true(lda.spin_cnt < 10000000)) {
1299 			cpu_spinwait();
1300 			lda.spin_cnt++;
1301 		} else {
1302 			_mtx_lock_indefinite_check(m, &lda);
1303 		}
1304 	}
1305 }
1306 
1307 void
1308 mtx_wait_unlocked(struct mtx *m)
1309 {
1310 	struct thread *owner;
1311 	uintptr_t v;
1312 
1313 	KASSERT(m->mtx_lock != MTX_DESTROYED,
1314 	    ("%s() of destroyed mutex %p", __func__, m));
1315 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
1316 	    ("%s() not a sleep mutex %p (%s)", __func__, m,
1317 	    m->lock_object.lo_name));
1318 	KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m,
1319 	    m->lock_object.lo_name));
1320 
1321 	for (;;) {
1322 		v = atomic_load_acq_ptr(&m->mtx_lock);
1323 		if (v == MTX_UNOWNED) {
1324 			break;
1325 		}
1326 		owner = lv_mtx_owner(v);
1327 		if (!TD_IS_RUNNING(owner)) {
1328 			mtx_lock(m);
1329 			mtx_unlock(m);
1330 			break;
1331 		}
1332 		cpu_spinwait();
1333 	}
1334 }
1335 
1336 #ifdef DDB
1337 static void
1338 db_show_mtx(const struct lock_object *lock)
1339 {
1340 	struct thread *td;
1341 	const struct mtx *m;
1342 
1343 	m = (const struct mtx *)lock;
1344 
1345 	db_printf(" flags: {");
1346 	if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
1347 		db_printf("SPIN");
1348 	else
1349 		db_printf("DEF");
1350 	if (m->lock_object.lo_flags & LO_RECURSABLE)
1351 		db_printf(", RECURSE");
1352 	if (m->lock_object.lo_flags & LO_DUPOK)
1353 		db_printf(", DUPOK");
1354 	db_printf("}\n");
1355 	db_printf(" state: {");
1356 	if (mtx_unowned(m))
1357 		db_printf("UNOWNED");
1358 	else if (mtx_destroyed(m))
1359 		db_printf("DESTROYED");
1360 	else {
1361 		db_printf("OWNED");
1362 		if (m->mtx_lock & MTX_CONTESTED)
1363 			db_printf(", CONTESTED");
1364 		if (m->mtx_lock & MTX_RECURSED)
1365 			db_printf(", RECURSED");
1366 	}
1367 	db_printf("}\n");
1368 	if (!mtx_unowned(m) && !mtx_destroyed(m)) {
1369 		td = mtx_owner(m);
1370 		db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
1371 		    td->td_tid, td->td_proc->p_pid, td->td_name);
1372 		if (mtx_recursed(m))
1373 			db_printf(" recursed: %d\n", m->mtx_recurse);
1374 	}
1375 }
1376 #endif
1377