xref: /freebsd/sys/kern/kern_mutex.c (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Berkeley Software Design Inc's name may not be used to endorse or
15  *    promote products derived from this software without specific prior
16  *    written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32  */
33 
34 /*
35  * Machine independent bits of mutex implementation.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_adaptive_mutexes.h"
42 #include "opt_ddb.h"
43 #include "opt_hwpmc_hooks.h"
44 #include "opt_sched.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bus.h>
49 #include <sys/conf.h>
50 #include <sys/kdb.h>
51 #include <sys/kernel.h>
52 #include <sys/ktr.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mutex.h>
56 #include <sys/proc.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/sbuf.h>
60 #include <sys/smp.h>
61 #include <sys/sysctl.h>
62 #include <sys/turnstile.h>
63 #include <sys/vmmeter.h>
64 #include <sys/lock_profile.h>
65 
66 #include <machine/atomic.h>
67 #include <machine/bus.h>
68 #include <machine/cpu.h>
69 
70 #include <ddb/ddb.h>
71 
72 #include <fs/devfs/devfs_int.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 
77 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
78 #define	ADAPTIVE_MUTEXES
79 #endif
80 
81 #ifdef HWPMC_HOOKS
82 #include <sys/pmckern.h>
83 PMC_SOFT_DEFINE( , , lock, failed);
84 #endif
85 
86 /*
87  * Return the mutex address when the lock cookie address is provided.
88  * This functionality assumes that struct mtx* have a member named mtx_lock.
89  */
90 #define	mtxlock2mtx(c)	(__containerof(c, struct mtx, mtx_lock))
91 
92 /*
93  * Internal utility macros.
94  */
95 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
96 
97 #define	mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
98 
99 static void	assert_mtx(const struct lock_object *lock, int what);
100 #ifdef DDB
101 static void	db_show_mtx(const struct lock_object *lock);
102 #endif
103 static void	lock_mtx(struct lock_object *lock, uintptr_t how);
104 static void	lock_spin(struct lock_object *lock, uintptr_t how);
105 #ifdef KDTRACE_HOOKS
106 static int	owner_mtx(const struct lock_object *lock,
107 		    struct thread **owner);
108 #endif
109 static uintptr_t unlock_mtx(struct lock_object *lock);
110 static uintptr_t unlock_spin(struct lock_object *lock);
111 
112 /*
113  * Lock classes for sleep and spin mutexes.
114  */
115 struct lock_class lock_class_mtx_sleep = {
116 	.lc_name = "sleep mutex",
117 	.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
118 	.lc_assert = assert_mtx,
119 #ifdef DDB
120 	.lc_ddb_show = db_show_mtx,
121 #endif
122 	.lc_lock = lock_mtx,
123 	.lc_unlock = unlock_mtx,
124 #ifdef KDTRACE_HOOKS
125 	.lc_owner = owner_mtx,
126 #endif
127 };
128 struct lock_class lock_class_mtx_spin = {
129 	.lc_name = "spin mutex",
130 	.lc_flags = LC_SPINLOCK | LC_RECURSABLE,
131 	.lc_assert = assert_mtx,
132 #ifdef DDB
133 	.lc_ddb_show = db_show_mtx,
134 #endif
135 	.lc_lock = lock_spin,
136 	.lc_unlock = unlock_spin,
137 #ifdef KDTRACE_HOOKS
138 	.lc_owner = owner_mtx,
139 #endif
140 };
141 
142 #ifdef ADAPTIVE_MUTEXES
143 #ifdef MUTEX_CUSTOM_BACKOFF
144 static SYSCTL_NODE(_debug, OID_AUTO, mtx, CTLFLAG_RD, NULL, "mtx debugging");
145 
146 static struct lock_delay_config __read_frequently mtx_delay;
147 
148 SYSCTL_U16(_debug_mtx, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_delay.base,
149     0, "");
150 SYSCTL_U16(_debug_mtx, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_delay.max,
151     0, "");
152 
153 LOCK_DELAY_SYSINIT_DEFAULT(mtx_delay);
154 #else
155 #define mtx_delay	locks_delay
156 #endif
157 #endif
158 
159 #ifdef MUTEX_SPIN_CUSTOM_BACKOFF
160 static SYSCTL_NODE(_debug, OID_AUTO, mtx_spin, CTLFLAG_RD, NULL,
161     "mtx spin debugging");
162 
163 static struct lock_delay_config __read_frequently mtx_spin_delay;
164 
165 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_base, CTLFLAG_RW,
166     &mtx_spin_delay.base, 0, "");
167 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_max, CTLFLAG_RW,
168     &mtx_spin_delay.max, 0, "");
169 
170 LOCK_DELAY_SYSINIT_DEFAULT(mtx_spin_delay);
171 #else
172 #define mtx_spin_delay	locks_delay
173 #endif
174 
175 /*
176  * System-wide mutexes
177  */
178 struct mtx blocked_lock;
179 struct mtx __exclusive_cache_line Giant;
180 
181 static void _mtx_lock_indefinite_check(struct mtx *, struct lock_delay_arg *);
182 
183 void
184 assert_mtx(const struct lock_object *lock, int what)
185 {
186 
187 	/*
188 	 * Treat LA_LOCKED as if LA_XLOCKED was asserted.
189 	 *
190 	 * Some callers of lc_assert uses LA_LOCKED to indicate that either
191 	 * a shared lock or write lock was held, while other callers uses
192 	 * the more strict LA_XLOCKED (used as MA_OWNED).
193 	 *
194 	 * Mutex is the only lock class that can not be shared, as a result,
195 	 * we can reasonably consider the caller really intends to assert
196 	 * LA_XLOCKED when they are asserting LA_LOCKED on a mutex object.
197 	 */
198 	if (what & LA_LOCKED) {
199 		what &= ~LA_LOCKED;
200 		what |= LA_XLOCKED;
201 	}
202 	mtx_assert((const struct mtx *)lock, what);
203 }
204 
205 void
206 lock_mtx(struct lock_object *lock, uintptr_t how)
207 {
208 
209 	mtx_lock((struct mtx *)lock);
210 }
211 
212 void
213 lock_spin(struct lock_object *lock, uintptr_t how)
214 {
215 
216 	panic("spin locks can only use msleep_spin");
217 }
218 
219 uintptr_t
220 unlock_mtx(struct lock_object *lock)
221 {
222 	struct mtx *m;
223 
224 	m = (struct mtx *)lock;
225 	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
226 	mtx_unlock(m);
227 	return (0);
228 }
229 
230 uintptr_t
231 unlock_spin(struct lock_object *lock)
232 {
233 
234 	panic("spin locks can only use msleep_spin");
235 }
236 
237 #ifdef KDTRACE_HOOKS
238 int
239 owner_mtx(const struct lock_object *lock, struct thread **owner)
240 {
241 	const struct mtx *m;
242 	uintptr_t x;
243 
244 	m = (const struct mtx *)lock;
245 	x = m->mtx_lock;
246 	*owner = (struct thread *)(x & ~MTX_FLAGMASK);
247 	return (*owner != NULL);
248 }
249 #endif
250 
251 /*
252  * Function versions of the inlined __mtx_* macros.  These are used by
253  * modules and can also be called from assembly language if needed.
254  */
255 void
256 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
257 {
258 	struct mtx *m;
259 	uintptr_t tid, v;
260 
261 	m = mtxlock2mtx(c);
262 
263 	KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
264 	    !TD_IS_IDLETHREAD(curthread),
265 	    ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
266 	    curthread, m->lock_object.lo_name, file, line));
267 	KASSERT(m->mtx_lock != MTX_DESTROYED,
268 	    ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
269 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
270 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
271 	    file, line));
272 	WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
273 	    LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
274 
275 	tid = (uintptr_t)curthread;
276 	v = MTX_UNOWNED;
277 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
278 		_mtx_lock_sleep(m, v, opts, file, line);
279 	else
280 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
281 		    m, 0, 0, file, line);
282 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
283 	    line);
284 	WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
285 	    file, line);
286 	TD_LOCKS_INC(curthread);
287 }
288 
289 void
290 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
291 {
292 	struct mtx *m;
293 
294 	m = mtxlock2mtx(c);
295 
296 	KASSERT(m->mtx_lock != MTX_DESTROYED,
297 	    ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
298 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
299 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
300 	    file, line));
301 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
302 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
303 	    line);
304 	mtx_assert(m, MA_OWNED);
305 
306 #ifdef LOCK_PROFILING
307 	__mtx_unlock_sleep(c, (uintptr_t)curthread, opts, file, line);
308 #else
309 	__mtx_unlock(m, curthread, opts, file, line);
310 #endif
311 	TD_LOCKS_DEC(curthread);
312 }
313 
314 void
315 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
316     int line)
317 {
318 	struct mtx *m;
319 #ifdef SMP
320 	uintptr_t tid, v;
321 #endif
322 
323 	m = mtxlock2mtx(c);
324 
325 	KASSERT(m->mtx_lock != MTX_DESTROYED,
326 	    ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
327 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
328 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
329 	    m->lock_object.lo_name, file, line));
330 	if (mtx_owned(m))
331 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
332 		    (opts & MTX_RECURSE) != 0,
333 	    ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
334 		    m->lock_object.lo_name, file, line));
335 	opts &= ~MTX_RECURSE;
336 	WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
337 	    file, line, NULL);
338 #ifdef SMP
339 	spinlock_enter();
340 	tid = (uintptr_t)curthread;
341 	v = MTX_UNOWNED;
342 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
343 		_mtx_lock_spin(m, v, opts, file, line);
344 	else
345 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire,
346 		    m, 0, 0, file, line);
347 #else
348 	__mtx_lock_spin(m, curthread, opts, file, line);
349 #endif
350 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
351 	    line);
352 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
353 }
354 
355 int
356 __mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
357     int line)
358 {
359 	struct mtx *m;
360 
361 	if (SCHEDULER_STOPPED())
362 		return (1);
363 
364 	m = mtxlock2mtx(c);
365 
366 	KASSERT(m->mtx_lock != MTX_DESTROYED,
367 	    ("mtx_trylock_spin() of destroyed mutex @ %s:%d", file, line));
368 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
369 	    ("mtx_trylock_spin() of sleep mutex %s @ %s:%d",
370 	    m->lock_object.lo_name, file, line));
371 	KASSERT((opts & MTX_RECURSE) == 0,
372 	    ("mtx_trylock_spin: unsupp. opt MTX_RECURSE on mutex %s @ %s:%d\n",
373 	    m->lock_object.lo_name, file, line));
374 	if (__mtx_trylock_spin(m, curthread, opts, file, line)) {
375 		LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 1, file, line);
376 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
377 		return (1);
378 	}
379 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 0, file, line);
380 	return (0);
381 }
382 
383 void
384 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
385     int line)
386 {
387 	struct mtx *m;
388 
389 	m = mtxlock2mtx(c);
390 
391 	KASSERT(m->mtx_lock != MTX_DESTROYED,
392 	    ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
393 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
394 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
395 	    m->lock_object.lo_name, file, line));
396 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
397 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
398 	    line);
399 	mtx_assert(m, MA_OWNED);
400 
401 	__mtx_unlock_spin(m);
402 }
403 
404 /*
405  * The important part of mtx_trylock{,_flags}()
406  * Tries to acquire lock `m.'  If this function is called on a mutex that
407  * is already owned, it will recursively acquire the lock.
408  */
409 int
410 _mtx_trylock_flags_int(struct mtx *m, int opts LOCK_FILE_LINE_ARG_DEF)
411 {
412 	struct thread *td;
413 	uintptr_t tid, v;
414 #ifdef LOCK_PROFILING
415 	uint64_t waittime = 0;
416 	int contested = 0;
417 #endif
418 	int rval;
419 	bool recursed;
420 
421 	td = curthread;
422 	tid = (uintptr_t)td;
423 	if (SCHEDULER_STOPPED_TD(td))
424 		return (1);
425 
426 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td),
427 	    ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
428 	    curthread, m->lock_object.lo_name, file, line));
429 	KASSERT(m->mtx_lock != MTX_DESTROYED,
430 	    ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
431 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
432 	    ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
433 	    file, line));
434 
435 	rval = 1;
436 	recursed = false;
437 	v = MTX_UNOWNED;
438 	for (;;) {
439 		if (_mtx_obtain_lock_fetch(m, &v, tid))
440 			break;
441 		if (v == MTX_UNOWNED)
442 			continue;
443 		if (v == tid &&
444 		    ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
445 		    (opts & MTX_RECURSE) != 0)) {
446 			m->mtx_recurse++;
447 			atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
448 			recursed = true;
449 			break;
450 		}
451 		rval = 0;
452 		break;
453 	}
454 
455 	opts &= ~MTX_RECURSE;
456 
457 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
458 	if (rval) {
459 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
460 		    file, line);
461 		TD_LOCKS_INC(curthread);
462 		if (!recursed)
463 			LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
464 			    m, contested, waittime, file, line);
465 	}
466 
467 	return (rval);
468 }
469 
470 int
471 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
472 {
473 	struct mtx *m;
474 
475 	m = mtxlock2mtx(c);
476 	return (_mtx_trylock_flags_int(m, opts LOCK_FILE_LINE_ARG));
477 }
478 
479 /*
480  * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
481  *
482  * We call this if the lock is either contested (i.e. we need to go to
483  * sleep waiting for it), or if we need to recurse on it.
484  */
485 #if LOCK_DEBUG > 0
486 void
487 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file,
488     int line)
489 #else
490 void
491 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v)
492 #endif
493 {
494 	struct thread *td;
495 	struct mtx *m;
496 	struct turnstile *ts;
497 	uintptr_t tid;
498 	struct thread *owner;
499 #ifdef LOCK_PROFILING
500 	int contested = 0;
501 	uint64_t waittime = 0;
502 #endif
503 #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS)
504 	struct lock_delay_arg lda;
505 #endif
506 #ifdef KDTRACE_HOOKS
507 	u_int sleep_cnt = 0;
508 	int64_t sleep_time = 0;
509 	int64_t all_time = 0;
510 #endif
511 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
512 	int doing_lockprof = 0;
513 #endif
514 
515 	td = curthread;
516 	tid = (uintptr_t)td;
517 	m = mtxlock2mtx(c);
518 
519 #ifdef KDTRACE_HOOKS
520 	if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
521 		while (v == MTX_UNOWNED) {
522 			if (_mtx_obtain_lock_fetch(m, &v, tid))
523 				goto out_lockstat;
524 		}
525 		doing_lockprof = 1;
526 		all_time -= lockstat_nsecs(&m->lock_object);
527 	}
528 #endif
529 #ifdef LOCK_PROFILING
530 	doing_lockprof = 1;
531 #endif
532 
533 	if (SCHEDULER_STOPPED_TD(td))
534 		return;
535 
536 #if defined(ADAPTIVE_MUTEXES)
537 	lock_delay_arg_init(&lda, &mtx_delay);
538 #elif defined(KDTRACE_HOOKS)
539 	lock_delay_arg_init(&lda, NULL);
540 #endif
541 
542 	if (__predict_false(v == MTX_UNOWNED))
543 		v = MTX_READ_VALUE(m);
544 
545 	if (__predict_false(lv_mtx_owner(v) == td)) {
546 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
547 		    (opts & MTX_RECURSE) != 0,
548 	    ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
549 		    m->lock_object.lo_name, file, line));
550 #if LOCK_DEBUG > 0
551 		opts &= ~MTX_RECURSE;
552 #endif
553 		m->mtx_recurse++;
554 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
555 		if (LOCK_LOG_TEST(&m->lock_object, opts))
556 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
557 		return;
558 	}
559 #if LOCK_DEBUG > 0
560 	opts &= ~MTX_RECURSE;
561 #endif
562 
563 #ifdef HWPMC_HOOKS
564 	PMC_SOFT_CALL( , , lock, failed);
565 #endif
566 	lock_profile_obtain_lock_failed(&m->lock_object,
567 		    &contested, &waittime);
568 	if (LOCK_LOG_TEST(&m->lock_object, opts))
569 		CTR4(KTR_LOCK,
570 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
571 		    m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
572 
573 	for (;;) {
574 		if (v == MTX_UNOWNED) {
575 			if (_mtx_obtain_lock_fetch(m, &v, tid))
576 				break;
577 			continue;
578 		}
579 #ifdef KDTRACE_HOOKS
580 		lda.spin_cnt++;
581 #endif
582 #ifdef ADAPTIVE_MUTEXES
583 		/*
584 		 * If the owner is running on another CPU, spin until the
585 		 * owner stops running or the state of the lock changes.
586 		 */
587 		owner = lv_mtx_owner(v);
588 		if (TD_IS_RUNNING(owner)) {
589 			if (LOCK_LOG_TEST(&m->lock_object, 0))
590 				CTR3(KTR_LOCK,
591 				    "%s: spinning on %p held by %p",
592 				    __func__, m, owner);
593 			KTR_STATE1(KTR_SCHED, "thread",
594 			    sched_tdname((struct thread *)tid),
595 			    "spinning", "lockname:\"%s\"",
596 			    m->lock_object.lo_name);
597 			do {
598 				lock_delay(&lda);
599 				v = MTX_READ_VALUE(m);
600 				owner = lv_mtx_owner(v);
601 			} while (v != MTX_UNOWNED && TD_IS_RUNNING(owner));
602 			KTR_STATE0(KTR_SCHED, "thread",
603 			    sched_tdname((struct thread *)tid),
604 			    "running");
605 			continue;
606 		}
607 #endif
608 
609 		ts = turnstile_trywait(&m->lock_object);
610 		v = MTX_READ_VALUE(m);
611 retry_turnstile:
612 
613 		/*
614 		 * Check if the lock has been released while spinning for
615 		 * the turnstile chain lock.
616 		 */
617 		if (v == MTX_UNOWNED) {
618 			turnstile_cancel(ts);
619 			continue;
620 		}
621 
622 #ifdef ADAPTIVE_MUTEXES
623 		/*
624 		 * The current lock owner might have started executing
625 		 * on another CPU (or the lock could have changed
626 		 * owners) while we were waiting on the turnstile
627 		 * chain lock.  If so, drop the turnstile lock and try
628 		 * again.
629 		 */
630 		owner = lv_mtx_owner(v);
631 		if (TD_IS_RUNNING(owner)) {
632 			turnstile_cancel(ts);
633 			continue;
634 		}
635 #endif
636 
637 		/*
638 		 * If the mutex isn't already contested and a failure occurs
639 		 * setting the contested bit, the mutex was either released
640 		 * or the state of the MTX_RECURSED bit changed.
641 		 */
642 		if ((v & MTX_CONTESTED) == 0 &&
643 		    !atomic_fcmpset_ptr(&m->mtx_lock, &v, v | MTX_CONTESTED)) {
644 			goto retry_turnstile;
645 		}
646 
647 		/*
648 		 * We definitely must sleep for this lock.
649 		 */
650 		mtx_assert(m, MA_NOTOWNED);
651 
652 		/*
653 		 * Block on the turnstile.
654 		 */
655 #ifdef KDTRACE_HOOKS
656 		sleep_time -= lockstat_nsecs(&m->lock_object);
657 #endif
658 #ifndef ADAPTIVE_MUTEXES
659 		owner = mtx_owner(m);
660 #endif
661 		MPASS(owner == mtx_owner(m));
662 		turnstile_wait(ts, owner, TS_EXCLUSIVE_QUEUE);
663 #ifdef KDTRACE_HOOKS
664 		sleep_time += lockstat_nsecs(&m->lock_object);
665 		sleep_cnt++;
666 #endif
667 		v = MTX_READ_VALUE(m);
668 	}
669 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
670 	if (__predict_true(!doing_lockprof))
671 		return;
672 #endif
673 #ifdef KDTRACE_HOOKS
674 	all_time += lockstat_nsecs(&m->lock_object);
675 	if (sleep_time)
676 		LOCKSTAT_RECORD1(adaptive__block, m, sleep_time);
677 
678 	/*
679 	 * Only record the loops spinning and not sleeping.
680 	 */
681 	if (lda.spin_cnt > sleep_cnt)
682 		LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time);
683 out_lockstat:
684 #endif
685 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested,
686 	    waittime, file, line);
687 }
688 
689 #ifdef SMP
690 /*
691  * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
692  *
693  * This is only called if we need to actually spin for the lock. Recursion
694  * is handled inline.
695  */
696 #if LOCK_DEBUG > 0
697 void
698 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v, int opts,
699     const char *file, int line)
700 #else
701 void
702 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v)
703 #endif
704 {
705 	struct mtx *m;
706 	struct lock_delay_arg lda;
707 	uintptr_t tid;
708 #ifdef LOCK_PROFILING
709 	int contested = 0;
710 	uint64_t waittime = 0;
711 #endif
712 #ifdef KDTRACE_HOOKS
713 	int64_t spin_time = 0;
714 #endif
715 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
716 	int doing_lockprof = 0;
717 #endif
718 
719 	tid = (uintptr_t)curthread;
720 	m = mtxlock2mtx(c);
721 
722 #ifdef KDTRACE_HOOKS
723 	if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
724 		while (v == MTX_UNOWNED) {
725 			if (_mtx_obtain_lock_fetch(m, &v, tid))
726 				goto out_lockstat;
727 		}
728 		doing_lockprof = 1;
729 		spin_time -= lockstat_nsecs(&m->lock_object);
730 	}
731 #endif
732 #ifdef LOCK_PROFILING
733 	doing_lockprof = 1;
734 #endif
735 
736 	if (__predict_false(v == MTX_UNOWNED))
737 		v = MTX_READ_VALUE(m);
738 
739 	if (__predict_false(v == tid)) {
740 		m->mtx_recurse++;
741 		return;
742 	}
743 
744 	if (SCHEDULER_STOPPED())
745 		return;
746 
747 	lock_delay_arg_init(&lda, &mtx_spin_delay);
748 
749 	if (LOCK_LOG_TEST(&m->lock_object, opts))
750 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
751 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
752 	    "spinning", "lockname:\"%s\"", m->lock_object.lo_name);
753 
754 #ifdef HWPMC_HOOKS
755 	PMC_SOFT_CALL( , , lock, failed);
756 #endif
757 	lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime);
758 
759 	for (;;) {
760 		if (v == MTX_UNOWNED) {
761 			if (_mtx_obtain_lock_fetch(m, &v, tid))
762 				break;
763 			continue;
764 		}
765 		/* Give interrupts a chance while we spin. */
766 		spinlock_exit();
767 		do {
768 			if (__predict_true(lda.spin_cnt < 10000000)) {
769 				lock_delay(&lda);
770 			} else {
771 				_mtx_lock_indefinite_check(m, &lda);
772 			}
773 			v = MTX_READ_VALUE(m);
774 		} while (v != MTX_UNOWNED);
775 		spinlock_enter();
776 	}
777 
778 	if (LOCK_LOG_TEST(&m->lock_object, opts))
779 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
780 	KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
781 	    "running");
782 
783 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
784 	if (__predict_true(!doing_lockprof))
785 		return;
786 #endif
787 #ifdef KDTRACE_HOOKS
788 	spin_time += lockstat_nsecs(&m->lock_object);
789 	if (lda.spin_cnt != 0)
790 		LOCKSTAT_RECORD1(spin__spin, m, spin_time);
791 out_lockstat:
792 #endif
793 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
794 	    contested, waittime, file, line);
795 }
796 #endif /* SMP */
797 
798 #ifdef INVARIANTS
799 static void
800 thread_lock_validate(struct mtx *m, int opts, const char *file, int line)
801 {
802 
803 	KASSERT(m->mtx_lock != MTX_DESTROYED,
804 	    ("thread_lock() of destroyed mutex @ %s:%d", file, line));
805 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
806 	    ("thread_lock() of sleep mutex %s @ %s:%d",
807 	    m->lock_object.lo_name, file, line));
808 	KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) == 0,
809 	    ("thread_lock: got a recursive mutex %s @ %s:%d\n",
810 	    m->lock_object.lo_name, file, line));
811 	WITNESS_CHECKORDER(&m->lock_object,
812 	    opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
813 }
814 #else
815 #define thread_lock_validate(m, opts, file, line) do { } while (0)
816 #endif
817 
818 #ifndef LOCK_PROFILING
819 #if LOCK_DEBUG > 0
820 void
821 _thread_lock(struct thread *td, int opts, const char *file, int line)
822 #else
823 void
824 _thread_lock(struct thread *td)
825 #endif
826 {
827 	struct mtx *m;
828 	uintptr_t tid;
829 
830 	tid = (uintptr_t)curthread;
831 
832 	if (__predict_false(LOCKSTAT_PROFILE_ENABLED(spin__acquire)))
833 		goto slowpath_noirq;
834 	spinlock_enter();
835 	m = td->td_lock;
836 	thread_lock_validate(m, 0, file, line);
837 	if (__predict_false(m == &blocked_lock))
838 		goto slowpath_unlocked;
839 	if (__predict_false(!_mtx_obtain_lock(m, tid)))
840 		goto slowpath_unlocked;
841 	if (__predict_true(m == td->td_lock)) {
842 		WITNESS_LOCK(&m->lock_object, LOP_EXCLUSIVE, file, line);
843 		return;
844 	}
845 	_mtx_release_lock_quick(m);
846 slowpath_unlocked:
847 	spinlock_exit();
848 slowpath_noirq:
849 #if LOCK_DEBUG > 0
850 	thread_lock_flags_(td, opts, file, line);
851 #else
852 	thread_lock_flags_(td, 0, 0, 0);
853 #endif
854 }
855 #endif
856 
857 void
858 thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
859 {
860 	struct mtx *m;
861 	uintptr_t tid, v;
862 	struct lock_delay_arg lda;
863 #ifdef LOCK_PROFILING
864 	int contested = 0;
865 	uint64_t waittime = 0;
866 #endif
867 #ifdef KDTRACE_HOOKS
868 	int64_t spin_time = 0;
869 #endif
870 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
871 	int doing_lockprof = 1;
872 #endif
873 
874 	tid = (uintptr_t)curthread;
875 
876 	if (SCHEDULER_STOPPED()) {
877 		/*
878 		 * Ensure that spinlock sections are balanced even when the
879 		 * scheduler is stopped, since we may otherwise inadvertently
880 		 * re-enable interrupts while dumping core.
881 		 */
882 		spinlock_enter();
883 		return;
884 	}
885 
886 	lock_delay_arg_init(&lda, &mtx_spin_delay);
887 
888 #ifdef HWPMC_HOOKS
889 	PMC_SOFT_CALL( , , lock, failed);
890 #endif
891 
892 #ifdef LOCK_PROFILING
893 	doing_lockprof = 1;
894 #elif defined(KDTRACE_HOOKS)
895 	doing_lockprof = lockstat_enabled;
896 	if (__predict_false(doing_lockprof))
897 		spin_time -= lockstat_nsecs(&td->td_lock->lock_object);
898 #endif
899 	spinlock_enter();
900 
901 	for (;;) {
902 retry:
903 		m = td->td_lock;
904 		thread_lock_validate(m, opts, file, line);
905 		v = MTX_READ_VALUE(m);
906 		for (;;) {
907 			if (v == MTX_UNOWNED) {
908 				if (_mtx_obtain_lock_fetch(m, &v, tid))
909 					break;
910 				continue;
911 			}
912 			MPASS(v != tid);
913 			lock_profile_obtain_lock_failed(&m->lock_object,
914 			    &contested, &waittime);
915 			/* Give interrupts a chance while we spin. */
916 			spinlock_exit();
917 			do {
918 				if (__predict_true(lda.spin_cnt < 10000000)) {
919 					lock_delay(&lda);
920 				} else {
921 					_mtx_lock_indefinite_check(m, &lda);
922 				}
923 				if (m != td->td_lock) {
924 					spinlock_enter();
925 					goto retry;
926 				}
927 				v = MTX_READ_VALUE(m);
928 			} while (v != MTX_UNOWNED);
929 			spinlock_enter();
930 		}
931 		if (m == td->td_lock)
932 			break;
933 		_mtx_release_lock_quick(m);
934 	}
935 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
936 	    line);
937 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
938 
939 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
940 	if (__predict_true(!doing_lockprof))
941 		return;
942 #endif
943 #ifdef KDTRACE_HOOKS
944 	spin_time += lockstat_nsecs(&m->lock_object);
945 #endif
946 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m, contested,
947 	    waittime, file, line);
948 #ifdef KDTRACE_HOOKS
949 	if (lda.spin_cnt != 0)
950 		LOCKSTAT_RECORD1(thread__spin, m, spin_time);
951 #endif
952 }
953 
954 struct mtx *
955 thread_lock_block(struct thread *td)
956 {
957 	struct mtx *lock;
958 
959 	lock = td->td_lock;
960 	mtx_assert(lock, MA_OWNED);
961 	td->td_lock = &blocked_lock;
962 
963 	return (lock);
964 }
965 
966 void
967 thread_lock_unblock(struct thread *td, struct mtx *new)
968 {
969 
970 	mtx_assert(new, MA_OWNED);
971 	KASSERT(td->td_lock == &blocked_lock,
972 	    ("thread %p lock %p not blocked_lock %p",
973 	    td, td->td_lock, &blocked_lock));
974 	atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
975 }
976 
977 void
978 thread_lock_block_wait(struct thread *td)
979 {
980 
981 	while (td->td_lock == &blocked_lock)
982 		cpu_spinwait();
983 
984 	/* Acquire fence to be certain that all thread state is visible. */
985 	atomic_thread_fence_acq();
986 }
987 
988 void
989 thread_lock_set(struct thread *td, struct mtx *new)
990 {
991 	struct mtx *lock;
992 
993 	mtx_assert(new, MA_OWNED);
994 	lock = td->td_lock;
995 	mtx_assert(lock, MA_OWNED);
996 	td->td_lock = new;
997 	mtx_unlock_spin(lock);
998 }
999 
1000 /*
1001  * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
1002  *
1003  * We are only called here if the lock is recursed, contested (i.e. we
1004  * need to wake up a blocked thread) or lockstat probe is active.
1005  */
1006 #if LOCK_DEBUG > 0
1007 void
1008 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v, int opts,
1009     const char *file, int line)
1010 #else
1011 void
1012 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v)
1013 #endif
1014 {
1015 	struct mtx *m;
1016 	struct turnstile *ts;
1017 	uintptr_t tid;
1018 
1019 	if (SCHEDULER_STOPPED())
1020 		return;
1021 
1022 	tid = (uintptr_t)curthread;
1023 	m = mtxlock2mtx(c);
1024 
1025 	if (__predict_false(v == tid))
1026 		v = MTX_READ_VALUE(m);
1027 
1028 	if (__predict_false(v & MTX_RECURSED)) {
1029 		if (--(m->mtx_recurse) == 0)
1030 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
1031 		if (LOCK_LOG_TEST(&m->lock_object, opts))
1032 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
1033 		return;
1034 	}
1035 
1036 	LOCKSTAT_PROFILE_RELEASE_LOCK(adaptive__release, m);
1037 	if (v == tid && _mtx_release_lock(m, tid))
1038 		return;
1039 
1040 	/*
1041 	 * We have to lock the chain before the turnstile so this turnstile
1042 	 * can be removed from the hash list if it is empty.
1043 	 */
1044 	turnstile_chain_lock(&m->lock_object);
1045 	_mtx_release_lock_quick(m);
1046 	ts = turnstile_lookup(&m->lock_object);
1047 	MPASS(ts != NULL);
1048 	if (LOCK_LOG_TEST(&m->lock_object, opts))
1049 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
1050 	turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
1051 
1052 	/*
1053 	 * This turnstile is now no longer associated with the mutex.  We can
1054 	 * unlock the chain lock so a new turnstile may take it's place.
1055 	 */
1056 	turnstile_unpend(ts);
1057 	turnstile_chain_unlock(&m->lock_object);
1058 }
1059 
1060 /*
1061  * All the unlocking of MTX_SPIN locks is done inline.
1062  * See the __mtx_unlock_spin() macro for the details.
1063  */
1064 
1065 /*
1066  * The backing function for the INVARIANTS-enabled mtx_assert()
1067  */
1068 #ifdef INVARIANT_SUPPORT
1069 void
1070 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
1071 {
1072 	const struct mtx *m;
1073 
1074 	if (KERNEL_PANICKED() || dumping || SCHEDULER_STOPPED())
1075 		return;
1076 
1077 	m = mtxlock2mtx(c);
1078 
1079 	switch (what) {
1080 	case MA_OWNED:
1081 	case MA_OWNED | MA_RECURSED:
1082 	case MA_OWNED | MA_NOTRECURSED:
1083 		if (!mtx_owned(m))
1084 			panic("mutex %s not owned at %s:%d",
1085 			    m->lock_object.lo_name, file, line);
1086 		if (mtx_recursed(m)) {
1087 			if ((what & MA_NOTRECURSED) != 0)
1088 				panic("mutex %s recursed at %s:%d",
1089 				    m->lock_object.lo_name, file, line);
1090 		} else if ((what & MA_RECURSED) != 0) {
1091 			panic("mutex %s unrecursed at %s:%d",
1092 			    m->lock_object.lo_name, file, line);
1093 		}
1094 		break;
1095 	case MA_NOTOWNED:
1096 		if (mtx_owned(m))
1097 			panic("mutex %s owned at %s:%d",
1098 			    m->lock_object.lo_name, file, line);
1099 		break;
1100 	default:
1101 		panic("unknown mtx_assert at %s:%d", file, line);
1102 	}
1103 }
1104 #endif
1105 
1106 /*
1107  * General init routine used by the MTX_SYSINIT() macro.
1108  */
1109 void
1110 mtx_sysinit(void *arg)
1111 {
1112 	struct mtx_args *margs = arg;
1113 
1114 	mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
1115 	    margs->ma_opts);
1116 }
1117 
1118 /*
1119  * Mutex initialization routine; initialize lock `m' of type contained in
1120  * `opts' with options contained in `opts' and name `name.'  The optional
1121  * lock type `type' is used as a general lock category name for use with
1122  * witness.
1123  */
1124 void
1125 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
1126 {
1127 	struct mtx *m;
1128 	struct lock_class *class;
1129 	int flags;
1130 
1131 	m = mtxlock2mtx(c);
1132 
1133 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
1134 	    MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0);
1135 	ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
1136 	    ("%s: mtx_lock not aligned for %s: %p", __func__, name,
1137 	    &m->mtx_lock));
1138 
1139 	/* Determine lock class and lock flags. */
1140 	if (opts & MTX_SPIN)
1141 		class = &lock_class_mtx_spin;
1142 	else
1143 		class = &lock_class_mtx_sleep;
1144 	flags = 0;
1145 	if (opts & MTX_QUIET)
1146 		flags |= LO_QUIET;
1147 	if (opts & MTX_RECURSE)
1148 		flags |= LO_RECURSABLE;
1149 	if ((opts & MTX_NOWITNESS) == 0)
1150 		flags |= LO_WITNESS;
1151 	if (opts & MTX_DUPOK)
1152 		flags |= LO_DUPOK;
1153 	if (opts & MTX_NOPROFILE)
1154 		flags |= LO_NOPROFILE;
1155 	if (opts & MTX_NEW)
1156 		flags |= LO_NEW;
1157 
1158 	/* Initialize mutex. */
1159 	lock_init(&m->lock_object, class, name, type, flags);
1160 
1161 	m->mtx_lock = MTX_UNOWNED;
1162 	m->mtx_recurse = 0;
1163 }
1164 
1165 /*
1166  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
1167  * passed in as a flag here because if the corresponding mtx_init() was
1168  * called with MTX_QUIET set, then it will already be set in the mutex's
1169  * flags.
1170  */
1171 void
1172 _mtx_destroy(volatile uintptr_t *c)
1173 {
1174 	struct mtx *m;
1175 
1176 	m = mtxlock2mtx(c);
1177 
1178 	if (!mtx_owned(m))
1179 		MPASS(mtx_unowned(m));
1180 	else {
1181 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
1182 
1183 		/* Perform the non-mtx related part of mtx_unlock_spin(). */
1184 		if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin)
1185 			spinlock_exit();
1186 		else
1187 			TD_LOCKS_DEC(curthread);
1188 
1189 		lock_profile_release_lock(&m->lock_object);
1190 		/* Tell witness this isn't locked to make it happy. */
1191 		WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
1192 		    __LINE__);
1193 	}
1194 
1195 	m->mtx_lock = MTX_DESTROYED;
1196 	lock_destroy(&m->lock_object);
1197 }
1198 
1199 /*
1200  * Intialize the mutex code and system mutexes.  This is called from the MD
1201  * startup code prior to mi_startup().  The per-CPU data space needs to be
1202  * setup before this is called.
1203  */
1204 void
1205 mutex_init(void)
1206 {
1207 
1208 	/* Setup turnstiles so that sleep mutexes work. */
1209 	init_turnstiles();
1210 
1211 	/*
1212 	 * Initialize mutexes.
1213 	 */
1214 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
1215 	mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
1216 	blocked_lock.mtx_lock = 0xdeadc0de;	/* Always blocked. */
1217 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
1218 	mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN);
1219 	mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN);
1220 	mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN);
1221 	mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN);
1222 	mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
1223 	mtx_lock(&Giant);
1224 }
1225 
1226 static void __noinline
1227 _mtx_lock_indefinite_check(struct mtx *m, struct lock_delay_arg *ldap)
1228 {
1229 	struct thread *td;
1230 
1231 	ldap->spin_cnt++;
1232 	if (ldap->spin_cnt < 60000000 || kdb_active || KERNEL_PANICKED())
1233 		cpu_lock_delay();
1234 	else {
1235 		td = mtx_owner(m);
1236 
1237 		/* If the mutex is unlocked, try again. */
1238 		if (td == NULL)
1239 			return;
1240 
1241 		printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
1242 		    m, m->lock_object.lo_name, td, td->td_tid);
1243 #ifdef WITNESS
1244 		witness_display_spinlock(&m->lock_object, td, printf);
1245 #endif
1246 		panic("spin lock held too long");
1247 	}
1248 	cpu_spinwait();
1249 }
1250 
1251 void
1252 mtx_spin_wait_unlocked(struct mtx *m)
1253 {
1254 	struct lock_delay_arg lda;
1255 
1256 	KASSERT(m->mtx_lock != MTX_DESTROYED,
1257 	    ("%s() of destroyed mutex %p", __func__, m));
1258 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
1259 	    ("%s() of sleep mutex %p (%s)", __func__, m,
1260 	    m->lock_object.lo_name));
1261 	KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m,
1262 	    m->lock_object.lo_name));
1263 
1264 	lda.spin_cnt = 0;
1265 
1266 	while (atomic_load_acq_ptr(&m->mtx_lock) != MTX_UNOWNED) {
1267 		if (__predict_true(lda.spin_cnt < 10000000)) {
1268 			cpu_spinwait();
1269 			lda.spin_cnt++;
1270 		} else {
1271 			_mtx_lock_indefinite_check(m, &lda);
1272 		}
1273 	}
1274 }
1275 
1276 #ifdef DDB
1277 void
1278 db_show_mtx(const struct lock_object *lock)
1279 {
1280 	struct thread *td;
1281 	const struct mtx *m;
1282 
1283 	m = (const struct mtx *)lock;
1284 
1285 	db_printf(" flags: {");
1286 	if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
1287 		db_printf("SPIN");
1288 	else
1289 		db_printf("DEF");
1290 	if (m->lock_object.lo_flags & LO_RECURSABLE)
1291 		db_printf(", RECURSE");
1292 	if (m->lock_object.lo_flags & LO_DUPOK)
1293 		db_printf(", DUPOK");
1294 	db_printf("}\n");
1295 	db_printf(" state: {");
1296 	if (mtx_unowned(m))
1297 		db_printf("UNOWNED");
1298 	else if (mtx_destroyed(m))
1299 		db_printf("DESTROYED");
1300 	else {
1301 		db_printf("OWNED");
1302 		if (m->mtx_lock & MTX_CONTESTED)
1303 			db_printf(", CONTESTED");
1304 		if (m->mtx_lock & MTX_RECURSED)
1305 			db_printf(", RECURSED");
1306 	}
1307 	db_printf("}\n");
1308 	if (!mtx_unowned(m) && !mtx_destroyed(m)) {
1309 		td = mtx_owner(m);
1310 		db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
1311 		    td->td_tid, td->td_proc->p_pid, td->td_name);
1312 		if (mtx_recursed(m))
1313 			db_printf(" recursed: %d\n", m->mtx_recurse);
1314 	}
1315 }
1316 #endif
1317