xref: /freebsd/sys/kern/kern_mtxpool.c (revision 6fd05b64b5b65dd4ba9b86482a0634a5f0b96c29)
1 /*-
2  * Copyright (c) 2001 Matthew Dillon.  All Rights Reserved.  Copyright
3  * terms are as specified in the COPYRIGHT file at the base of the source
4  * tree.
5  *
6  * Mutex pool routines.  These routines are designed to be used as short
7  * term leaf mutexes (e.g. the last mutex you might aquire other then
8  * calling msleep()).  They operate using a shared pool.  A mutex is chosen
9  * from the pool based on the supplied pointer (which may or may not be
10  * valid).
11  *
12  * Advantages:
13  *	- no structural overhead.  Mutexes can be associated with structures
14  *	  without adding bloat to the structures.
15  *	- mutexes can be obtained for invalid pointers, useful when uses
16  *	  mutexes to interlock destructor ops.
17  *	- no initialization/destructor overhead.
18  *	- can be used with msleep.
19  *
20  * Disadvantages:
21  *	- should generally only be used as leaf mutexes.
22  *	- pool/pool dependancy ordering cannot be depended on.
23  *	- possible L1 cache mastersip contention between cpus.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include <sys/param.h>
30 #include <sys/proc.h>
31 #include <sys/kernel.h>
32 #include <sys/ktr.h>
33 #include <sys/lock.h>
34 #include <sys/malloc.h>
35 #include <sys/mutex.h>
36 #include <sys/systm.h>
37 
38 
39 MALLOC_DEFINE(M_MTXPOOL, "mtx_pool", "mutex pool");
40 
41 /* Pool sizes must be a power of two */
42 #ifndef MTX_POOL_LOCKBUILDER_SIZE
43 #define MTX_POOL_LOCKBUILDER_SIZE	128
44 #endif
45 #ifndef MTX_POOL_SLEEP_SIZE
46 #define MTX_POOL_SLEEP_SIZE		128
47 #endif
48 
49 struct mtxpool_header {
50 	int		mtxpool_size;
51 	int		mtxpool_mask;
52 	int		mtxpool_shift;
53 	int		mtxpool_next;
54 };
55 
56 struct mtx_pool {
57 	struct mtxpool_header mtx_pool_header;
58 	struct mtx	mtx_pool_ary[1];
59 };
60 
61 static struct mtx_pool_lockbuilder {
62 	struct mtxpool_header mtx_pool_header;
63 	struct mtx	mtx_pool_ary[MTX_POOL_LOCKBUILDER_SIZE];
64 } lockbuilder_pool;
65 
66 #define mtx_pool_size	mtx_pool_header.mtxpool_size
67 #define mtx_pool_mask	mtx_pool_header.mtxpool_mask
68 #define mtx_pool_shift	mtx_pool_header.mtxpool_shift
69 #define mtx_pool_next	mtx_pool_header.mtxpool_next
70 
71 struct mtx_pool *mtxpool_sleep;
72 struct mtx_pool *mtxpool_lockbuilder;
73 
74 #if UINTPTR_MAX == UINT64_MAX	/* 64 bits */
75 # define POINTER_BITS		64
76 # define HASH_MULTIPLIER	11400714819323198485u /* (2^64)*(sqrt(5)-1)/2 */
77 #else				/* assume 32 bits */
78 # define POINTER_BITS		32
79 # define HASH_MULTIPLIER	2654435769u	      /* (2^32)*(sqrt(5)-1)/2 */
80 #endif
81 
82 /*
83  * Return the (shared) pool mutex associated with the specified address.
84  * The returned mutex is a leaf level mutex, meaning that if you obtain it
85  * you cannot obtain any other mutexes until you release it.  You can
86  * legally msleep() on the mutex.
87  */
88 struct mtx *
89 mtx_pool_find(struct mtx_pool *pool, void *ptr)
90 {
91 	int p;
92 
93 	KASSERT(pool != NULL, ("_mtx_pool_find(): null pool"));
94 	/*
95 	 * Fibonacci hash, see Knuth's
96 	 * _Art of Computer Programming, Volume 3 / Sorting and Searching_
97 	 */
98 	p = ((HASH_MULTIPLIER * (uintptr_t)ptr) >> pool->mtx_pool_shift) &
99 	    pool->mtx_pool_mask;
100 	return (&pool->mtx_pool_ary[p]);
101 }
102 
103 static void
104 mtx_pool_initialize(struct mtx_pool *pool, const char *mtx_name, int pool_size,
105     int opts)
106 {
107 	int i, maskbits;
108 
109 	pool->mtx_pool_size = pool_size;
110 	pool->mtx_pool_mask = pool_size - 1;
111 	for (i = 1, maskbits = 0; (i & pool_size) == 0; i = i << 1)
112 		maskbits++;
113 	pool->mtx_pool_shift = POINTER_BITS - maskbits;
114 	pool->mtx_pool_next = 0;
115 	for (i = 0; i < pool_size; ++i)
116 		mtx_init(&pool->mtx_pool_ary[i], mtx_name, NULL, opts);
117 }
118 
119 struct mtx_pool *
120 mtx_pool_create(const char *mtx_name, int pool_size, int opts)
121 {
122 	struct mtx_pool *pool;
123 
124 	if (pool_size <= 0 || !powerof2(pool_size)) {
125 		printf("WARNING: %s pool size is not a power of 2.\n",
126 		    mtx_name);
127 		pool_size = 128;
128 	}
129 	MALLOC(pool, struct mtx_pool *,
130 	    sizeof (struct mtx_pool) + ((pool_size - 1) * sizeof (struct mtx)),
131 	    M_MTXPOOL, M_WAITOK | M_ZERO);
132 	mtx_pool_initialize(pool, mtx_name, pool_size, opts);
133 	return pool;
134 }
135 
136 void
137 mtx_pool_destroy(struct mtx_pool **poolp)
138 {
139 	int i;
140 	struct mtx_pool *pool = *poolp;
141 
142 	for (i = pool->mtx_pool_size - 1; i >= 0; --i)
143 		mtx_destroy(&pool->mtx_pool_ary[i]);
144 	FREE(pool, M_MTXPOOL);
145 	*poolp = NULL;
146 }
147 
148 static void
149 mtx_pool_setup_static(void *dummy __unused)
150 {
151 	mtx_pool_initialize((struct mtx_pool *)&lockbuilder_pool,
152 	    "lockbuilder mtxpool", MTX_POOL_LOCKBUILDER_SIZE,
153 	    MTX_DEF | MTX_NOWITNESS | MTX_QUIET);
154 	mtxpool_lockbuilder = (struct mtx_pool *)&lockbuilder_pool;
155 }
156 
157 static void
158 mtx_pool_setup_dynamic(void *dummy __unused)
159 {
160 	mtxpool_sleep = mtx_pool_create("sleep mtxpool",
161 	    MTX_POOL_SLEEP_SIZE, MTX_DEF);
162 }
163 
164 /*
165  * Obtain a (shared) mutex from the pool.  The returned mutex is a leaf
166  * level mutex, meaning that if you obtain it you cannot obtain any other
167  * mutexes until you release it.  You can legally msleep() on the mutex.
168  */
169 struct mtx *
170 mtx_pool_alloc(struct mtx_pool *pool)
171 {
172 	int i;
173 
174 	KASSERT(pool != NULL, ("mtx_pool_alloc(): null pool"));
175 	/*
176 	 * mtx_pool_next is unprotected against multiple accesses,
177 	 * but simultaneous access by two CPUs should not be very
178 	 * harmful.
179 	 */
180 	i = pool->mtx_pool_next;
181 	pool->mtx_pool_next = (i + 1) & pool->mtx_pool_mask;
182 	return (&pool->mtx_pool_ary[i]);
183 }
184 
185 /*
186  * The lockbuilder pool must be initialized early because the lockmgr
187  * and sx locks depend on it.  The sx locks are used in the kernel
188  * memory allocator.  The lockmgr subsystem is initialized by
189  * SYSINIT(..., SI_SUB_LOCKMGR, ...).
190  *
191  * We can't call MALLOC() to dynamically allocate the sleep pool
192  * until after kmeminit() has been called, which is done by
193  * SYSINIT(..., SI_SUB_KMEM, ...).
194  */
195 SYSINIT(mtxpooli1, SI_SUB_MTX_POOL_STATIC, SI_ORDER_FIRST,
196     mtx_pool_setup_static, NULL);
197 SYSINIT(mtxpooli2, SI_SUB_MTX_POOL_DYNAMIC, SI_ORDER_FIRST,
198     mtx_pool_setup_dynamic, NULL);
199