xref: /freebsd/sys/kern/kern_mbuf.c (revision f37852c17391fdf0e8309bcf684384dd0d854e43)
1 /*-
2  * Copyright (c) 2004, 2005,
3  *	Bosko Milekic <bmilekic@FreeBSD.org>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_param.h"
32 
33 #include <sys/param.h>
34 #include <sys/malloc.h>
35 #include <sys/types.h>
36 #include <sys/systm.h>
37 #include <sys/mbuf.h>
38 #include <sys/domain.h>
39 #include <sys/eventhandler.h>
40 #include <sys/kernel.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/protosw.h>
44 #include <sys/smp.h>
45 #include <sys/sysctl.h>
46 
47 #include <vm/vm.h>
48 #include <vm/vm_extern.h>
49 #include <vm/vm_kern.h>
50 #include <vm/vm_page.h>
51 #include <vm/vm_map.h>
52 #include <vm/uma.h>
53 #include <vm/uma_dbg.h>
54 
55 /*
56  * In FreeBSD, Mbufs and Mbuf Clusters are allocated from UMA
57  * Zones.
58  *
59  * Mbuf Clusters (2K, contiguous) are allocated from the Cluster
60  * Zone.  The Zone can be capped at kern.ipc.nmbclusters, if the
61  * administrator so desires.
62  *
63  * Mbufs are allocated from a UMA Master Zone called the Mbuf
64  * Zone.
65  *
66  * Additionally, FreeBSD provides a Packet Zone, which it
67  * configures as a Secondary Zone to the Mbuf Master Zone,
68  * thus sharing backend Slab kegs with the Mbuf Master Zone.
69  *
70  * Thus common-case allocations and locking are simplified:
71  *
72  *  m_clget()                m_getcl()
73  *    |                         |
74  *    |   .------------>[(Packet Cache)]    m_get(), m_gethdr()
75  *    |   |             [     Packet   ]            |
76  *  [(Cluster Cache)]   [    Secondary ]   [ (Mbuf Cache)     ]
77  *  [ Cluster Zone  ]   [     Zone     ]   [ Mbuf Master Zone ]
78  *        |                       \________         |
79  *  [ Cluster Keg   ]                      \       /
80  *        |	                         [ Mbuf Keg   ]
81  *  [ Cluster Slabs ]                         |
82  *        |                              [ Mbuf Slabs ]
83  *         \____________(VM)_________________/
84  *
85  *
86  * Whenever an object is allocated with uma_zalloc() out of
87  * one of the Zones its _ctor_ function is executed.  The same
88  * for any deallocation through uma_zfree() the _dtor_ function
89  * is executed.
90  *
91  * Caches are per-CPU and are filled from the Master Zone.
92  *
93  * Whenever an object is allocated from the underlying global
94  * memory pool it gets pre-initialized with the _zinit_ functions.
95  * When the Keg's are overfull objects get decommissioned with
96  * _zfini_ functions and free'd back to the global memory pool.
97  *
98  */
99 
100 int nmbufs;			/* limits number of mbufs */
101 int nmbclusters;		/* limits number of mbuf clusters */
102 int nmbjumbop;			/* limits number of page size jumbo clusters */
103 int nmbjumbo9;			/* limits number of 9k jumbo clusters */
104 int nmbjumbo16;			/* limits number of 16k jumbo clusters */
105 
106 static quad_t maxmbufmem;	/* overall real memory limit for all mbufs */
107 
108 SYSCTL_QUAD(_kern_ipc, OID_AUTO, maxmbufmem, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &maxmbufmem, 0,
109     "Maximum real memory allocatable to various mbuf types");
110 
111 /*
112  * tunable_mbinit() has to be run before any mbuf allocations are done.
113  */
114 static void
115 tunable_mbinit(void *dummy)
116 {
117 	quad_t realmem;
118 
119 	/*
120 	 * The default limit for all mbuf related memory is 1/2 of all
121 	 * available kernel memory (physical or kmem).
122 	 * At most it can be 3/4 of available kernel memory.
123 	 */
124 	realmem = qmin((quad_t)physmem * PAGE_SIZE, vm_kmem_size);
125 	maxmbufmem = realmem / 2;
126 	TUNABLE_QUAD_FETCH("kern.ipc.maxmbufmem", &maxmbufmem);
127 	if (maxmbufmem > realmem / 4 * 3)
128 		maxmbufmem = realmem / 4 * 3;
129 
130 	TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
131 	if (nmbclusters == 0)
132 		nmbclusters = maxmbufmem / MCLBYTES / 4;
133 
134 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbop", &nmbjumbop);
135 	if (nmbjumbop == 0)
136 		nmbjumbop = maxmbufmem / MJUMPAGESIZE / 4;
137 
138 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbo9", &nmbjumbo9);
139 	if (nmbjumbo9 == 0)
140 		nmbjumbo9 = maxmbufmem / MJUM9BYTES / 6;
141 
142 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbo16", &nmbjumbo16);
143 	if (nmbjumbo16 == 0)
144 		nmbjumbo16 = maxmbufmem / MJUM16BYTES / 6;
145 
146 	/*
147 	 * We need at least as many mbufs as we have clusters of
148 	 * the various types added together.
149 	 */
150 	TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
151 	if (nmbufs < nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16)
152 		nmbufs = lmax(maxmbufmem / MSIZE / 5,
153 		    nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16);
154 }
155 SYSINIT(tunable_mbinit, SI_SUB_KMEM, SI_ORDER_MIDDLE, tunable_mbinit, NULL);
156 
157 static int
158 sysctl_nmbclusters(SYSCTL_HANDLER_ARGS)
159 {
160 	int error, newnmbclusters;
161 
162 	newnmbclusters = nmbclusters;
163 	error = sysctl_handle_int(oidp, &newnmbclusters, 0, req);
164 	if (error == 0 && req->newptr && newnmbclusters != nmbclusters) {
165 		if (newnmbclusters > nmbclusters &&
166 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
167 			nmbclusters = newnmbclusters;
168 			nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
169 			EVENTHANDLER_INVOKE(nmbclusters_change);
170 		} else
171 			error = EINVAL;
172 	}
173 	return (error);
174 }
175 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbclusters, CTLTYPE_INT|CTLFLAG_RW,
176 &nmbclusters, 0, sysctl_nmbclusters, "IU",
177     "Maximum number of mbuf clusters allowed");
178 
179 static int
180 sysctl_nmbjumbop(SYSCTL_HANDLER_ARGS)
181 {
182 	int error, newnmbjumbop;
183 
184 	newnmbjumbop = nmbjumbop;
185 	error = sysctl_handle_int(oidp, &newnmbjumbop, 0, req);
186 	if (error == 0 && req->newptr && newnmbjumbop != nmbjumbop) {
187 		if (newnmbjumbop > nmbjumbop &&
188 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
189 			nmbjumbop = newnmbjumbop;
190 			nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
191 		} else
192 			error = EINVAL;
193 	}
194 	return (error);
195 }
196 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbop, CTLTYPE_INT|CTLFLAG_RW,
197 &nmbjumbop, 0, sysctl_nmbjumbop, "IU",
198     "Maximum number of mbuf page size jumbo clusters allowed");
199 
200 static int
201 sysctl_nmbjumbo9(SYSCTL_HANDLER_ARGS)
202 {
203 	int error, newnmbjumbo9;
204 
205 	newnmbjumbo9 = nmbjumbo9;
206 	error = sysctl_handle_int(oidp, &newnmbjumbo9, 0, req);
207 	if (error == 0 && req->newptr && newnmbjumbo9 != nmbjumbo9) {
208 		if (newnmbjumbo9 > nmbjumbo9 &&
209 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
210 			nmbjumbo9 = newnmbjumbo9;
211 			nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
212 		} else
213 			error = EINVAL;
214 	}
215 	return (error);
216 }
217 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo9, CTLTYPE_INT|CTLFLAG_RW,
218 &nmbjumbo9, 0, sysctl_nmbjumbo9, "IU",
219     "Maximum number of mbuf 9k jumbo clusters allowed");
220 
221 static int
222 sysctl_nmbjumbo16(SYSCTL_HANDLER_ARGS)
223 {
224 	int error, newnmbjumbo16;
225 
226 	newnmbjumbo16 = nmbjumbo16;
227 	error = sysctl_handle_int(oidp, &newnmbjumbo16, 0, req);
228 	if (error == 0 && req->newptr && newnmbjumbo16 != nmbjumbo16) {
229 		if (newnmbjumbo16 > nmbjumbo16 &&
230 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
231 			nmbjumbo16 = newnmbjumbo16;
232 			nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
233 		} else
234 			error = EINVAL;
235 	}
236 	return (error);
237 }
238 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo16, CTLTYPE_INT|CTLFLAG_RW,
239 &nmbjumbo16, 0, sysctl_nmbjumbo16, "IU",
240     "Maximum number of mbuf 16k jumbo clusters allowed");
241 
242 static int
243 sysctl_nmbufs(SYSCTL_HANDLER_ARGS)
244 {
245 	int error, newnmbufs;
246 
247 	newnmbufs = nmbufs;
248 	error = sysctl_handle_int(oidp, &newnmbufs, 0, req);
249 	if (error == 0 && req->newptr && newnmbufs != nmbufs) {
250 		if (newnmbufs > nmbufs) {
251 			nmbufs = newnmbufs;
252 			nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
253 			EVENTHANDLER_INVOKE(nmbufs_change);
254 		} else
255 			error = EINVAL;
256 	}
257 	return (error);
258 }
259 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs, CTLTYPE_INT|CTLFLAG_RW,
260 &nmbufs, 0, sysctl_nmbufs, "IU",
261     "Maximum number of mbufs allowed");
262 
263 /*
264  * Zones from which we allocate.
265  */
266 uma_zone_t	zone_mbuf;
267 uma_zone_t	zone_clust;
268 uma_zone_t	zone_pack;
269 uma_zone_t	zone_jumbop;
270 uma_zone_t	zone_jumbo9;
271 uma_zone_t	zone_jumbo16;
272 
273 /*
274  * Local prototypes.
275  */
276 static int	mb_ctor_mbuf(void *, int, void *, int);
277 static int	mb_ctor_clust(void *, int, void *, int);
278 static int	mb_ctor_pack(void *, int, void *, int);
279 static void	mb_dtor_mbuf(void *, int, void *);
280 static void	mb_dtor_pack(void *, int, void *);
281 static int	mb_zinit_pack(void *, int, int);
282 static void	mb_zfini_pack(void *, int);
283 static void	mb_reclaim(uma_zone_t, int);
284 static void    *mbuf_jumbo_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
285 
286 /* Ensure that MSIZE is a power of 2. */
287 CTASSERT((((MSIZE - 1) ^ MSIZE) + 1) >> 1 == MSIZE);
288 
289 /*
290  * Initialize FreeBSD Network buffer allocation.
291  */
292 static void
293 mbuf_init(void *dummy)
294 {
295 
296 	/*
297 	 * Configure UMA zones for Mbufs, Clusters, and Packets.
298 	 */
299 	zone_mbuf = uma_zcreate(MBUF_MEM_NAME, MSIZE,
300 	    mb_ctor_mbuf, mb_dtor_mbuf,
301 #ifdef INVARIANTS
302 	    trash_init, trash_fini,
303 #else
304 	    NULL, NULL,
305 #endif
306 	    MSIZE - 1, UMA_ZONE_MAXBUCKET);
307 	if (nmbufs > 0)
308 		nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
309 	uma_zone_set_warning(zone_mbuf, "kern.ipc.nmbufs limit reached");
310 	uma_zone_set_maxaction(zone_mbuf, mb_reclaim);
311 
312 	zone_clust = uma_zcreate(MBUF_CLUSTER_MEM_NAME, MCLBYTES,
313 	    mb_ctor_clust,
314 #ifdef INVARIANTS
315 	    trash_dtor, trash_init, trash_fini,
316 #else
317 	    NULL, NULL, NULL,
318 #endif
319 	    UMA_ALIGN_PTR, 0);
320 	if (nmbclusters > 0)
321 		nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
322 	uma_zone_set_warning(zone_clust, "kern.ipc.nmbclusters limit reached");
323 	uma_zone_set_maxaction(zone_clust, mb_reclaim);
324 
325 	zone_pack = uma_zsecond_create(MBUF_PACKET_MEM_NAME, mb_ctor_pack,
326 	    mb_dtor_pack, mb_zinit_pack, mb_zfini_pack, zone_mbuf);
327 
328 	/* Make jumbo frame zone too. Page size, 9k and 16k. */
329 	zone_jumbop = uma_zcreate(MBUF_JUMBOP_MEM_NAME, MJUMPAGESIZE,
330 	    mb_ctor_clust,
331 #ifdef INVARIANTS
332 	    trash_dtor, trash_init, trash_fini,
333 #else
334 	    NULL, NULL, NULL,
335 #endif
336 	    UMA_ALIGN_PTR, 0);
337 	if (nmbjumbop > 0)
338 		nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
339 	uma_zone_set_warning(zone_jumbop, "kern.ipc.nmbjumbop limit reached");
340 	uma_zone_set_maxaction(zone_jumbop, mb_reclaim);
341 
342 	zone_jumbo9 = uma_zcreate(MBUF_JUMBO9_MEM_NAME, MJUM9BYTES,
343 	    mb_ctor_clust,
344 #ifdef INVARIANTS
345 	    trash_dtor, trash_init, trash_fini,
346 #else
347 	    NULL, NULL, NULL,
348 #endif
349 	    UMA_ALIGN_PTR, 0);
350 	uma_zone_set_allocf(zone_jumbo9, mbuf_jumbo_alloc);
351 	if (nmbjumbo9 > 0)
352 		nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
353 	uma_zone_set_warning(zone_jumbo9, "kern.ipc.nmbjumbo9 limit reached");
354 	uma_zone_set_maxaction(zone_jumbo9, mb_reclaim);
355 
356 	zone_jumbo16 = uma_zcreate(MBUF_JUMBO16_MEM_NAME, MJUM16BYTES,
357 	    mb_ctor_clust,
358 #ifdef INVARIANTS
359 	    trash_dtor, trash_init, trash_fini,
360 #else
361 	    NULL, NULL, NULL,
362 #endif
363 	    UMA_ALIGN_PTR, 0);
364 	uma_zone_set_allocf(zone_jumbo16, mbuf_jumbo_alloc);
365 	if (nmbjumbo16 > 0)
366 		nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
367 	uma_zone_set_warning(zone_jumbo16, "kern.ipc.nmbjumbo16 limit reached");
368 	uma_zone_set_maxaction(zone_jumbo16, mb_reclaim);
369 
370 	/*
371 	 * Hook event handler for low-memory situation, used to
372 	 * drain protocols and push data back to the caches (UMA
373 	 * later pushes it back to VM).
374 	 */
375 	EVENTHANDLER_REGISTER(vm_lowmem, mb_reclaim, NULL,
376 	    EVENTHANDLER_PRI_FIRST);
377 }
378 SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbuf_init, NULL);
379 
380 /*
381  * UMA backend page allocator for the jumbo frame zones.
382  *
383  * Allocates kernel virtual memory that is backed by contiguous physical
384  * pages.
385  */
386 static void *
387 mbuf_jumbo_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
388 {
389 
390 	/* Inform UMA that this allocator uses kernel_map/object. */
391 	*flags = UMA_SLAB_KERNEL;
392 	return ((void *)kmem_alloc_contig(kernel_arena, bytes, wait,
393 	    (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT));
394 }
395 
396 /*
397  * Constructor for Mbuf master zone.
398  *
399  * The 'arg' pointer points to a mb_args structure which
400  * contains call-specific information required to support the
401  * mbuf allocation API.  See mbuf.h.
402  */
403 static int
404 mb_ctor_mbuf(void *mem, int size, void *arg, int how)
405 {
406 	struct mbuf *m;
407 	struct mb_args *args;
408 	int error;
409 	int flags;
410 	short type;
411 
412 #ifdef INVARIANTS
413 	trash_ctor(mem, size, arg, how);
414 #endif
415 	args = (struct mb_args *)arg;
416 	type = args->type;
417 
418 	/*
419 	 * The mbuf is initialized later.  The caller has the
420 	 * responsibility to set up any MAC labels too.
421 	 */
422 	if (type == MT_NOINIT)
423 		return (0);
424 
425 	m = (struct mbuf *)mem;
426 	flags = args->flags;
427 	MPASS((flags & M_NOFREE) == 0);
428 
429 	error = m_init(m, how, type, flags);
430 
431 	return (error);
432 }
433 
434 /*
435  * The Mbuf master zone destructor.
436  */
437 static void
438 mb_dtor_mbuf(void *mem, int size, void *arg)
439 {
440 	struct mbuf *m;
441 	unsigned long flags;
442 
443 	m = (struct mbuf *)mem;
444 	flags = (unsigned long)arg;
445 
446 	KASSERT((m->m_flags & M_NOFREE) == 0, ("%s: M_NOFREE set", __func__));
447 	if (!(flags & MB_DTOR_SKIP) && (m->m_flags & M_PKTHDR) && !SLIST_EMPTY(&m->m_pkthdr.tags))
448 		m_tag_delete_chain(m, NULL);
449 #ifdef INVARIANTS
450 	trash_dtor(mem, size, arg);
451 #endif
452 }
453 
454 /*
455  * The Mbuf Packet zone destructor.
456  */
457 static void
458 mb_dtor_pack(void *mem, int size, void *arg)
459 {
460 	struct mbuf *m;
461 
462 	m = (struct mbuf *)mem;
463 	if ((m->m_flags & M_PKTHDR) != 0)
464 		m_tag_delete_chain(m, NULL);
465 
466 	/* Make sure we've got a clean cluster back. */
467 	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
468 	KASSERT(m->m_ext.ext_buf != NULL, ("%s: ext_buf == NULL", __func__));
469 	KASSERT(m->m_ext.ext_free == NULL, ("%s: ext_free != NULL", __func__));
470 	KASSERT(m->m_ext.ext_arg1 == NULL, ("%s: ext_arg1 != NULL", __func__));
471 	KASSERT(m->m_ext.ext_arg2 == NULL, ("%s: ext_arg2 != NULL", __func__));
472 	KASSERT(m->m_ext.ext_size == MCLBYTES, ("%s: ext_size != MCLBYTES", __func__));
473 	KASSERT(m->m_ext.ext_type == EXT_PACKET, ("%s: ext_type != EXT_PACKET", __func__));
474 #ifdef INVARIANTS
475 	trash_dtor(m->m_ext.ext_buf, MCLBYTES, arg);
476 #endif
477 	/*
478 	 * If there are processes blocked on zone_clust, waiting for pages
479 	 * to be freed up, * cause them to be woken up by draining the
480 	 * packet zone.  We are exposed to a race here * (in the check for
481 	 * the UMA_ZFLAG_FULL) where we might miss the flag set, but that
482 	 * is deliberate. We don't want to acquire the zone lock for every
483 	 * mbuf free.
484 	 */
485 	if (uma_zone_exhausted_nolock(zone_clust))
486 		zone_drain(zone_pack);
487 }
488 
489 /*
490  * The Cluster and Jumbo[PAGESIZE|9|16] zone constructor.
491  *
492  * Here the 'arg' pointer points to the Mbuf which we
493  * are configuring cluster storage for.  If 'arg' is
494  * empty we allocate just the cluster without setting
495  * the mbuf to it.  See mbuf.h.
496  */
497 static int
498 mb_ctor_clust(void *mem, int size, void *arg, int how)
499 {
500 	struct mbuf *m;
501 
502 #ifdef INVARIANTS
503 	trash_ctor(mem, size, arg, how);
504 #endif
505 	m = (struct mbuf *)arg;
506 	if (m != NULL) {
507 		m->m_ext.ext_buf = (caddr_t)mem;
508 		m->m_data = m->m_ext.ext_buf;
509 		m->m_flags |= M_EXT;
510 		m->m_ext.ext_free = NULL;
511 		m->m_ext.ext_arg1 = NULL;
512 		m->m_ext.ext_arg2 = NULL;
513 		m->m_ext.ext_size = size;
514 		m->m_ext.ext_type = m_gettype(size);
515 		m->m_ext.ext_flags = EXT_FLAG_EMBREF;
516 		m->m_ext.ext_count = 1;
517 	}
518 
519 	return (0);
520 }
521 
522 /*
523  * The Packet secondary zone's init routine, executed on the
524  * object's transition from mbuf keg slab to zone cache.
525  */
526 static int
527 mb_zinit_pack(void *mem, int size, int how)
528 {
529 	struct mbuf *m;
530 
531 	m = (struct mbuf *)mem;		/* m is virgin. */
532 	if (uma_zalloc_arg(zone_clust, m, how) == NULL ||
533 	    m->m_ext.ext_buf == NULL)
534 		return (ENOMEM);
535 	m->m_ext.ext_type = EXT_PACKET;	/* Override. */
536 #ifdef INVARIANTS
537 	trash_init(m->m_ext.ext_buf, MCLBYTES, how);
538 #endif
539 	return (0);
540 }
541 
542 /*
543  * The Packet secondary zone's fini routine, executed on the
544  * object's transition from zone cache to keg slab.
545  */
546 static void
547 mb_zfini_pack(void *mem, int size)
548 {
549 	struct mbuf *m;
550 
551 	m = (struct mbuf *)mem;
552 #ifdef INVARIANTS
553 	trash_fini(m->m_ext.ext_buf, MCLBYTES);
554 #endif
555 	uma_zfree_arg(zone_clust, m->m_ext.ext_buf, NULL);
556 #ifdef INVARIANTS
557 	trash_dtor(mem, size, NULL);
558 #endif
559 }
560 
561 /*
562  * The "packet" keg constructor.
563  */
564 static int
565 mb_ctor_pack(void *mem, int size, void *arg, int how)
566 {
567 	struct mbuf *m;
568 	struct mb_args *args;
569 	int error, flags;
570 	short type;
571 
572 	m = (struct mbuf *)mem;
573 	args = (struct mb_args *)arg;
574 	flags = args->flags;
575 	type = args->type;
576 	MPASS((flags & M_NOFREE) == 0);
577 
578 #ifdef INVARIANTS
579 	trash_ctor(m->m_ext.ext_buf, MCLBYTES, arg, how);
580 #endif
581 
582 	error = m_init(m, how, type, flags);
583 
584 	/* m_ext is already initialized. */
585 	m->m_data = m->m_ext.ext_buf;
586  	m->m_flags = (flags | M_EXT);
587 
588 	return (error);
589 }
590 
591 /*
592  * This is the protocol drain routine.  Called by UMA whenever any of the
593  * mbuf zones is closed to its limit.
594  *
595  * No locks should be held when this is called.  The drain routines have to
596  * presently acquire some locks which raises the possibility of lock order
597  * reversal.
598  */
599 static void
600 mb_reclaim(uma_zone_t zone __unused, int pending __unused)
601 {
602 	struct domain *dp;
603 	struct protosw *pr;
604 
605 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK | WARN_PANIC, NULL, __func__);
606 
607 	for (dp = domains; dp != NULL; dp = dp->dom_next)
608 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
609 			if (pr->pr_drain != NULL)
610 				(*pr->pr_drain)();
611 }
612 
613 /*
614  * Clean up after mbufs with M_EXT storage attached to them if the
615  * reference count hits 1.
616  */
617 void
618 mb_free_ext(struct mbuf *m)
619 {
620 	volatile u_int *refcnt;
621 	struct mbuf *mref;
622 	int freembuf;
623 
624 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
625 
626 	/* See if this is the mbuf that holds the embedded refcount. */
627 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
628 		refcnt = &m->m_ext.ext_count;
629 		mref = m;
630 	} else {
631 		KASSERT(m->m_ext.ext_cnt != NULL,
632 		    ("%s: no refcounting pointer on %p", __func__, m));
633 		refcnt = m->m_ext.ext_cnt;
634 		mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
635 	}
636 
637 	/*
638 	 * Check if the header is embedded in the cluster.  It is
639 	 * important that we can't touch any of the mbuf fields
640 	 * after we have freed the external storage, since mbuf
641 	 * could have been embedded in it.  For now, the mbufs
642 	 * embedded into the cluster are always of type EXT_EXTREF,
643 	 * and for this type we won't free the mref.
644 	 */
645 	if (m->m_flags & M_NOFREE) {
646 		freembuf = 0;
647 		KASSERT(m->m_ext.ext_type == EXT_EXTREF,
648 		    ("%s: no-free mbuf %p has wrong type", __func__, m));
649 	} else
650 		freembuf = 1;
651 
652 	/* Free attached storage if this mbuf is the only reference to it. */
653 	if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
654 		switch (m->m_ext.ext_type) {
655 		case EXT_PACKET:
656 			/* The packet zone is special. */
657 			if (*refcnt == 0)
658 				*refcnt = 1;
659 			uma_zfree(zone_pack, mref);
660 			break;
661 		case EXT_CLUSTER:
662 			uma_zfree(zone_clust, m->m_ext.ext_buf);
663 			uma_zfree(zone_mbuf, mref);
664 			break;
665 		case EXT_JUMBOP:
666 			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
667 			uma_zfree(zone_mbuf, mref);
668 			break;
669 		case EXT_JUMBO9:
670 			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
671 			uma_zfree(zone_mbuf, mref);
672 			break;
673 		case EXT_JUMBO16:
674 			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
675 			uma_zfree(zone_mbuf, mref);
676 			break;
677 		case EXT_SFBUF:
678 			sf_ext_free(m->m_ext.ext_arg1, m->m_ext.ext_arg2);
679 			uma_zfree(zone_mbuf, mref);
680 			break;
681 		case EXT_SFBUF_NOCACHE:
682 			sf_ext_free_nocache(m->m_ext.ext_arg1,
683 			    m->m_ext.ext_arg2);
684 			uma_zfree(zone_mbuf, mref);
685 			break;
686 		case EXT_NET_DRV:
687 		case EXT_MOD_TYPE:
688 		case EXT_DISPOSABLE:
689 			KASSERT(m->m_ext.ext_free != NULL,
690 				("%s: ext_free not set", __func__));
691 			(*(m->m_ext.ext_free))(m, m->m_ext.ext_arg1,
692 			    m->m_ext.ext_arg2);
693 			uma_zfree(zone_mbuf, mref);
694 			break;
695 		case EXT_EXTREF:
696 			KASSERT(m->m_ext.ext_free != NULL,
697 				("%s: ext_free not set", __func__));
698 			(*(m->m_ext.ext_free))(m, m->m_ext.ext_arg1,
699 			    m->m_ext.ext_arg2);
700 			break;
701 		default:
702 			KASSERT(m->m_ext.ext_type == 0,
703 				("%s: unknown ext_type", __func__));
704 		}
705 	}
706 
707 	if (freembuf && m != mref)
708 		uma_zfree(zone_mbuf, m);
709 }
710 
711 /*
712  * Official mbuf(9) allocation KPI for stack and drivers:
713  *
714  * m_get()	- a single mbuf without any attachments, sys/mbuf.h.
715  * m_gethdr()	- a single mbuf initialized as M_PKTHDR, sys/mbuf.h.
716  * m_getcl()	- an mbuf + 2k cluster, sys/mbuf.h.
717  * m_clget()	- attach cluster to already allocated mbuf.
718  * m_cljget()	- attach jumbo cluster to already allocated mbuf.
719  * m_get2()	- allocate minimum mbuf that would fit size argument.
720  * m_getm2()	- allocate a chain of mbufs/clusters.
721  * m_extadd()	- attach external cluster to mbuf.
722  *
723  * m_free()	- free single mbuf with its tags and ext, sys/mbuf.h.
724  * m_freem()	- free chain of mbufs.
725  */
726 
727 int
728 m_clget(struct mbuf *m, int how)
729 {
730 
731 	KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
732 	    __func__, m));
733 	m->m_ext.ext_buf = (char *)NULL;
734 	uma_zalloc_arg(zone_clust, m, how);
735 	/*
736 	 * On a cluster allocation failure, drain the packet zone and retry,
737 	 * we might be able to loosen a few clusters up on the drain.
738 	 */
739 	if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) {
740 		zone_drain(zone_pack);
741 		uma_zalloc_arg(zone_clust, m, how);
742 	}
743 	MBUF_PROBE2(m__clget, m, how);
744 	return (m->m_flags & M_EXT);
745 }
746 
747 /*
748  * m_cljget() is different from m_clget() as it can allocate clusters without
749  * attaching them to an mbuf.  In that case the return value is the pointer
750  * to the cluster of the requested size.  If an mbuf was specified, it gets
751  * the cluster attached to it and the return value can be safely ignored.
752  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
753  */
754 void *
755 m_cljget(struct mbuf *m, int how, int size)
756 {
757 	uma_zone_t zone;
758 	void *retval;
759 
760 	if (m != NULL) {
761 		KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
762 		    __func__, m));
763 		m->m_ext.ext_buf = NULL;
764 	}
765 
766 	zone = m_getzone(size);
767 	retval = uma_zalloc_arg(zone, m, how);
768 
769 	MBUF_PROBE4(m__cljget, m, how, size, retval);
770 
771 	return (retval);
772 }
773 
774 /*
775  * m_get2() allocates minimum mbuf that would fit "size" argument.
776  */
777 struct mbuf *
778 m_get2(int size, int how, short type, int flags)
779 {
780 	struct mb_args args;
781 	struct mbuf *m, *n;
782 
783 	args.flags = flags;
784 	args.type = type;
785 
786 	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
787 		return (uma_zalloc_arg(zone_mbuf, &args, how));
788 	if (size <= MCLBYTES)
789 		return (uma_zalloc_arg(zone_pack, &args, how));
790 
791 	if (size > MJUMPAGESIZE)
792 		return (NULL);
793 
794 	m = uma_zalloc_arg(zone_mbuf, &args, how);
795 	if (m == NULL)
796 		return (NULL);
797 
798 	n = uma_zalloc_arg(zone_jumbop, m, how);
799 	if (n == NULL) {
800 		uma_zfree(zone_mbuf, m);
801 		return (NULL);
802 	}
803 
804 	return (m);
805 }
806 
807 /*
808  * m_getjcl() returns an mbuf with a cluster of the specified size attached.
809  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
810  */
811 struct mbuf *
812 m_getjcl(int how, short type, int flags, int size)
813 {
814 	struct mb_args args;
815 	struct mbuf *m, *n;
816 	uma_zone_t zone;
817 
818 	if (size == MCLBYTES)
819 		return m_getcl(how, type, flags);
820 
821 	args.flags = flags;
822 	args.type = type;
823 
824 	m = uma_zalloc_arg(zone_mbuf, &args, how);
825 	if (m == NULL)
826 		return (NULL);
827 
828 	zone = m_getzone(size);
829 	n = uma_zalloc_arg(zone, m, how);
830 	if (n == NULL) {
831 		uma_zfree(zone_mbuf, m);
832 		return (NULL);
833 	}
834 	return (m);
835 }
836 
837 /*
838  * Allocate a given length worth of mbufs and/or clusters (whatever fits
839  * best) and return a pointer to the top of the allocated chain.  If an
840  * existing mbuf chain is provided, then we will append the new chain
841  * to the existing one but still return the top of the newly allocated
842  * chain.
843  */
844 struct mbuf *
845 m_getm2(struct mbuf *m, int len, int how, short type, int flags)
846 {
847 	struct mbuf *mb, *nm = NULL, *mtail = NULL;
848 
849 	KASSERT(len >= 0, ("%s: len is < 0", __func__));
850 
851 	/* Validate flags. */
852 	flags &= (M_PKTHDR | M_EOR);
853 
854 	/* Packet header mbuf must be first in chain. */
855 	if ((flags & M_PKTHDR) && m != NULL)
856 		flags &= ~M_PKTHDR;
857 
858 	/* Loop and append maximum sized mbufs to the chain tail. */
859 	while (len > 0) {
860 		if (len > MCLBYTES)
861 			mb = m_getjcl(how, type, (flags & M_PKTHDR),
862 			    MJUMPAGESIZE);
863 		else if (len >= MINCLSIZE)
864 			mb = m_getcl(how, type, (flags & M_PKTHDR));
865 		else if (flags & M_PKTHDR)
866 			mb = m_gethdr(how, type);
867 		else
868 			mb = m_get(how, type);
869 
870 		/* Fail the whole operation if one mbuf can't be allocated. */
871 		if (mb == NULL) {
872 			if (nm != NULL)
873 				m_freem(nm);
874 			return (NULL);
875 		}
876 
877 		/* Book keeping. */
878 		len -= M_SIZE(mb);
879 		if (mtail != NULL)
880 			mtail->m_next = mb;
881 		else
882 			nm = mb;
883 		mtail = mb;
884 		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
885 	}
886 	if (flags & M_EOR)
887 		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
888 
889 	/* If mbuf was supplied, append new chain to the end of it. */
890 	if (m != NULL) {
891 		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
892 			;
893 		mtail->m_next = nm;
894 		mtail->m_flags &= ~M_EOR;
895 	} else
896 		m = nm;
897 
898 	return (m);
899 }
900 
901 /*-
902  * Configure a provided mbuf to refer to the provided external storage
903  * buffer and setup a reference count for said buffer.
904  *
905  * Arguments:
906  *    mb     The existing mbuf to which to attach the provided buffer.
907  *    buf    The address of the provided external storage buffer.
908  *    size   The size of the provided buffer.
909  *    freef  A pointer to a routine that is responsible for freeing the
910  *           provided external storage buffer.
911  *    args   A pointer to an argument structure (of any type) to be passed
912  *           to the provided freef routine (may be NULL).
913  *    flags  Any other flags to be passed to the provided mbuf.
914  *    type   The type that the external storage buffer should be
915  *           labeled with.
916  *
917  * Returns:
918  *    Nothing.
919  */
920 void
921 m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
922     void (*freef)(struct mbuf *, void *, void *), void *arg1, void *arg2,
923     int flags, int type)
924 {
925 
926 	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
927 
928 	mb->m_flags |= (M_EXT | flags);
929 	mb->m_ext.ext_buf = buf;
930 	mb->m_data = mb->m_ext.ext_buf;
931 	mb->m_ext.ext_size = size;
932 	mb->m_ext.ext_free = freef;
933 	mb->m_ext.ext_arg1 = arg1;
934 	mb->m_ext.ext_arg2 = arg2;
935 	mb->m_ext.ext_type = type;
936 
937 	if (type != EXT_EXTREF) {
938 		mb->m_ext.ext_count = 1;
939 		mb->m_ext.ext_flags = EXT_FLAG_EMBREF;
940 	} else
941 		mb->m_ext.ext_flags = 0;
942 }
943 
944 /*
945  * Free an entire chain of mbufs and associated external buffers, if
946  * applicable.
947  */
948 void
949 m_freem(struct mbuf *mb)
950 {
951 
952 	MBUF_PROBE1(m__freem, mb);
953 	while (mb != NULL)
954 		mb = m_free(mb);
955 }
956