xref: /freebsd/sys/kern/kern_mbuf.c (revision d38c30c092828f4882ce13b08d0bd3fd6dc7afb5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004, 2005,
5  *	Bosko Milekic <bmilekic@FreeBSD.org>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_param.h"
34 #include "opt_kern_tls.h"
35 
36 #include <sys/param.h>
37 #include <sys/conf.h>
38 #include <sys/domainset.h>
39 #include <sys/malloc.h>
40 #include <sys/systm.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/eventhandler.h>
44 #include <sys/kernel.h>
45 #include <sys/ktls.h>
46 #include <sys/limits.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/protosw.h>
50 #include <sys/refcount.h>
51 #include <sys/sf_buf.h>
52 #include <sys/smp.h>
53 #include <sys/socket.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/if.h>
57 #include <net/if_var.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_extern.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/uma.h>
65 #include <vm/uma_dbg.h>
66 
67 /*
68  * In FreeBSD, Mbufs and Mbuf Clusters are allocated from UMA
69  * Zones.
70  *
71  * Mbuf Clusters (2K, contiguous) are allocated from the Cluster
72  * Zone.  The Zone can be capped at kern.ipc.nmbclusters, if the
73  * administrator so desires.
74  *
75  * Mbufs are allocated from a UMA Master Zone called the Mbuf
76  * Zone.
77  *
78  * Additionally, FreeBSD provides a Packet Zone, which it
79  * configures as a Secondary Zone to the Mbuf Master Zone,
80  * thus sharing backend Slab kegs with the Mbuf Master Zone.
81  *
82  * Thus common-case allocations and locking are simplified:
83  *
84  *  m_clget()                m_getcl()
85  *    |                         |
86  *    |   .------------>[(Packet Cache)]    m_get(), m_gethdr()
87  *    |   |             [     Packet   ]            |
88  *  [(Cluster Cache)]   [    Secondary ]   [ (Mbuf Cache)     ]
89  *  [ Cluster Zone  ]   [     Zone     ]   [ Mbuf Master Zone ]
90  *        |                       \________         |
91  *  [ Cluster Keg   ]                      \       /
92  *        |	                         [ Mbuf Keg   ]
93  *  [ Cluster Slabs ]                         |
94  *        |                              [ Mbuf Slabs ]
95  *         \____________(VM)_________________/
96  *
97  *
98  * Whenever an object is allocated with uma_zalloc() out of
99  * one of the Zones its _ctor_ function is executed.  The same
100  * for any deallocation through uma_zfree() the _dtor_ function
101  * is executed.
102  *
103  * Caches are per-CPU and are filled from the Master Zone.
104  *
105  * Whenever an object is allocated from the underlying global
106  * memory pool it gets pre-initialized with the _zinit_ functions.
107  * When the Keg's are overfull objects get decommissioned with
108  * _zfini_ functions and free'd back to the global memory pool.
109  *
110  */
111 
112 int nmbufs;			/* limits number of mbufs */
113 int nmbclusters;		/* limits number of mbuf clusters */
114 int nmbjumbop;			/* limits number of page size jumbo clusters */
115 int nmbjumbo9;			/* limits number of 9k jumbo clusters */
116 int nmbjumbo16;			/* limits number of 16k jumbo clusters */
117 
118 bool mb_use_ext_pgs;		/* use EXT_PGS mbufs for sendfile & TLS */
119 SYSCTL_BOOL(_kern_ipc, OID_AUTO, mb_use_ext_pgs, CTLFLAG_RWTUN,
120     &mb_use_ext_pgs, 0,
121     "Use unmapped mbufs for sendfile(2) and TLS offload");
122 
123 static quad_t maxmbufmem;	/* overall real memory limit for all mbufs */
124 
125 SYSCTL_QUAD(_kern_ipc, OID_AUTO, maxmbufmem, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &maxmbufmem, 0,
126     "Maximum real memory allocatable to various mbuf types");
127 
128 static counter_u64_t snd_tag_count;
129 SYSCTL_COUNTER_U64(_kern_ipc, OID_AUTO, num_snd_tags, CTLFLAG_RW,
130     &snd_tag_count, "# of active mbuf send tags");
131 
132 /*
133  * tunable_mbinit() has to be run before any mbuf allocations are done.
134  */
135 static void
136 tunable_mbinit(void *dummy)
137 {
138 	quad_t realmem;
139 
140 	/*
141 	 * The default limit for all mbuf related memory is 1/2 of all
142 	 * available kernel memory (physical or kmem).
143 	 * At most it can be 3/4 of available kernel memory.
144 	 */
145 	realmem = qmin((quad_t)physmem * PAGE_SIZE, vm_kmem_size);
146 	maxmbufmem = realmem / 2;
147 	TUNABLE_QUAD_FETCH("kern.ipc.maxmbufmem", &maxmbufmem);
148 	if (maxmbufmem > realmem / 4 * 3)
149 		maxmbufmem = realmem / 4 * 3;
150 
151 	TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
152 	if (nmbclusters == 0)
153 		nmbclusters = maxmbufmem / MCLBYTES / 4;
154 
155 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbop", &nmbjumbop);
156 	if (nmbjumbop == 0)
157 		nmbjumbop = maxmbufmem / MJUMPAGESIZE / 4;
158 
159 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbo9", &nmbjumbo9);
160 	if (nmbjumbo9 == 0)
161 		nmbjumbo9 = maxmbufmem / MJUM9BYTES / 6;
162 
163 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbo16", &nmbjumbo16);
164 	if (nmbjumbo16 == 0)
165 		nmbjumbo16 = maxmbufmem / MJUM16BYTES / 6;
166 
167 	/*
168 	 * We need at least as many mbufs as we have clusters of
169 	 * the various types added together.
170 	 */
171 	TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
172 	if (nmbufs < nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16)
173 		nmbufs = lmax(maxmbufmem / MSIZE / 5,
174 		    nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16);
175 }
176 SYSINIT(tunable_mbinit, SI_SUB_KMEM, SI_ORDER_MIDDLE, tunable_mbinit, NULL);
177 
178 static int
179 sysctl_nmbclusters(SYSCTL_HANDLER_ARGS)
180 {
181 	int error, newnmbclusters;
182 
183 	newnmbclusters = nmbclusters;
184 	error = sysctl_handle_int(oidp, &newnmbclusters, 0, req);
185 	if (error == 0 && req->newptr && newnmbclusters != nmbclusters) {
186 		if (newnmbclusters > nmbclusters &&
187 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
188 			nmbclusters = newnmbclusters;
189 			nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
190 			EVENTHANDLER_INVOKE(nmbclusters_change);
191 		} else
192 			error = EINVAL;
193 	}
194 	return (error);
195 }
196 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbclusters, CTLTYPE_INT|CTLFLAG_RW,
197 &nmbclusters, 0, sysctl_nmbclusters, "IU",
198     "Maximum number of mbuf clusters allowed");
199 
200 static int
201 sysctl_nmbjumbop(SYSCTL_HANDLER_ARGS)
202 {
203 	int error, newnmbjumbop;
204 
205 	newnmbjumbop = nmbjumbop;
206 	error = sysctl_handle_int(oidp, &newnmbjumbop, 0, req);
207 	if (error == 0 && req->newptr && newnmbjumbop != nmbjumbop) {
208 		if (newnmbjumbop > nmbjumbop &&
209 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
210 			nmbjumbop = newnmbjumbop;
211 			nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
212 		} else
213 			error = EINVAL;
214 	}
215 	return (error);
216 }
217 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbop, CTLTYPE_INT|CTLFLAG_RW,
218 &nmbjumbop, 0, sysctl_nmbjumbop, "IU",
219     "Maximum number of mbuf page size jumbo clusters allowed");
220 
221 static int
222 sysctl_nmbjumbo9(SYSCTL_HANDLER_ARGS)
223 {
224 	int error, newnmbjumbo9;
225 
226 	newnmbjumbo9 = nmbjumbo9;
227 	error = sysctl_handle_int(oidp, &newnmbjumbo9, 0, req);
228 	if (error == 0 && req->newptr && newnmbjumbo9 != nmbjumbo9) {
229 		if (newnmbjumbo9 > nmbjumbo9 &&
230 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
231 			nmbjumbo9 = newnmbjumbo9;
232 			nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
233 		} else
234 			error = EINVAL;
235 	}
236 	return (error);
237 }
238 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo9, CTLTYPE_INT|CTLFLAG_RW,
239 &nmbjumbo9, 0, sysctl_nmbjumbo9, "IU",
240     "Maximum number of mbuf 9k jumbo clusters allowed");
241 
242 static int
243 sysctl_nmbjumbo16(SYSCTL_HANDLER_ARGS)
244 {
245 	int error, newnmbjumbo16;
246 
247 	newnmbjumbo16 = nmbjumbo16;
248 	error = sysctl_handle_int(oidp, &newnmbjumbo16, 0, req);
249 	if (error == 0 && req->newptr && newnmbjumbo16 != nmbjumbo16) {
250 		if (newnmbjumbo16 > nmbjumbo16 &&
251 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
252 			nmbjumbo16 = newnmbjumbo16;
253 			nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
254 		} else
255 			error = EINVAL;
256 	}
257 	return (error);
258 }
259 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo16, CTLTYPE_INT|CTLFLAG_RW,
260 &nmbjumbo16, 0, sysctl_nmbjumbo16, "IU",
261     "Maximum number of mbuf 16k jumbo clusters allowed");
262 
263 static int
264 sysctl_nmbufs(SYSCTL_HANDLER_ARGS)
265 {
266 	int error, newnmbufs;
267 
268 	newnmbufs = nmbufs;
269 	error = sysctl_handle_int(oidp, &newnmbufs, 0, req);
270 	if (error == 0 && req->newptr && newnmbufs != nmbufs) {
271 		if (newnmbufs > nmbufs) {
272 			nmbufs = newnmbufs;
273 			nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
274 			EVENTHANDLER_INVOKE(nmbufs_change);
275 		} else
276 			error = EINVAL;
277 	}
278 	return (error);
279 }
280 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs, CTLTYPE_INT|CTLFLAG_RW,
281 &nmbufs, 0, sysctl_nmbufs, "IU",
282     "Maximum number of mbufs allowed");
283 
284 /*
285  * Zones from which we allocate.
286  */
287 uma_zone_t	zone_mbuf;
288 uma_zone_t	zone_clust;
289 uma_zone_t	zone_pack;
290 uma_zone_t	zone_jumbop;
291 uma_zone_t	zone_jumbo9;
292 uma_zone_t	zone_jumbo16;
293 uma_zone_t	zone_extpgs;
294 
295 /*
296  * Local prototypes.
297  */
298 static int	mb_ctor_mbuf(void *, int, void *, int);
299 static int	mb_ctor_clust(void *, int, void *, int);
300 static int	mb_ctor_pack(void *, int, void *, int);
301 static void	mb_dtor_mbuf(void *, int, void *);
302 static void	mb_dtor_pack(void *, int, void *);
303 static int	mb_zinit_pack(void *, int, int);
304 static void	mb_zfini_pack(void *, int);
305 static void	mb_reclaim(uma_zone_t, int);
306 
307 /* Ensure that MSIZE is a power of 2. */
308 CTASSERT((((MSIZE - 1) ^ MSIZE) + 1) >> 1 == MSIZE);
309 
310 _Static_assert(sizeof(struct mbuf_ext_pgs) == 256,
311     "mbuf_ext_pgs size mismatch");
312 
313 /*
314  * Initialize FreeBSD Network buffer allocation.
315  */
316 static void
317 mbuf_init(void *dummy)
318 {
319 
320 	/*
321 	 * Configure UMA zones for Mbufs, Clusters, and Packets.
322 	 */
323 	zone_mbuf = uma_zcreate(MBUF_MEM_NAME, MSIZE,
324 	    mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL,
325 	    MSIZE - 1, UMA_ZONE_CONTIG | UMA_ZONE_MAXBUCKET);
326 	if (nmbufs > 0)
327 		nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
328 	uma_zone_set_warning(zone_mbuf, "kern.ipc.nmbufs limit reached");
329 	uma_zone_set_maxaction(zone_mbuf, mb_reclaim);
330 
331 	zone_clust = uma_zcreate(MBUF_CLUSTER_MEM_NAME, MCLBYTES,
332 	    mb_ctor_clust, NULL, NULL, NULL,
333 	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
334 	if (nmbclusters > 0)
335 		nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
336 	uma_zone_set_warning(zone_clust, "kern.ipc.nmbclusters limit reached");
337 	uma_zone_set_maxaction(zone_clust, mb_reclaim);
338 
339 	zone_pack = uma_zsecond_create(MBUF_PACKET_MEM_NAME, mb_ctor_pack,
340 	    mb_dtor_pack, mb_zinit_pack, mb_zfini_pack, zone_mbuf);
341 
342 	/* Make jumbo frame zone too. Page size, 9k and 16k. */
343 	zone_jumbop = uma_zcreate(MBUF_JUMBOP_MEM_NAME, MJUMPAGESIZE,
344 	    mb_ctor_clust, NULL, NULL, NULL,
345 	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
346 	if (nmbjumbop > 0)
347 		nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
348 	uma_zone_set_warning(zone_jumbop, "kern.ipc.nmbjumbop limit reached");
349 	uma_zone_set_maxaction(zone_jumbop, mb_reclaim);
350 
351 	zone_jumbo9 = uma_zcreate(MBUF_JUMBO9_MEM_NAME, MJUM9BYTES,
352 	    mb_ctor_clust, NULL, NULL, NULL,
353 	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
354 	if (nmbjumbo9 > 0)
355 		nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
356 	uma_zone_set_warning(zone_jumbo9, "kern.ipc.nmbjumbo9 limit reached");
357 	uma_zone_set_maxaction(zone_jumbo9, mb_reclaim);
358 
359 	zone_jumbo16 = uma_zcreate(MBUF_JUMBO16_MEM_NAME, MJUM16BYTES,
360 	    mb_ctor_clust, NULL, NULL, NULL,
361 	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
362 	if (nmbjumbo16 > 0)
363 		nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
364 	uma_zone_set_warning(zone_jumbo16, "kern.ipc.nmbjumbo16 limit reached");
365 	uma_zone_set_maxaction(zone_jumbo16, mb_reclaim);
366 
367 	zone_extpgs = uma_zcreate(MBUF_EXTPGS_MEM_NAME,
368 	    sizeof(struct mbuf_ext_pgs),
369 	    NULL, NULL, NULL, NULL,
370 	    UMA_ALIGN_CACHE, 0);
371 
372 	/*
373 	 * Hook event handler for low-memory situation, used to
374 	 * drain protocols and push data back to the caches (UMA
375 	 * later pushes it back to VM).
376 	 */
377 	EVENTHANDLER_REGISTER(vm_lowmem, mb_reclaim, NULL,
378 	    EVENTHANDLER_PRI_FIRST);
379 
380 	snd_tag_count = counter_u64_alloc(M_WAITOK);
381 }
382 SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbuf_init, NULL);
383 
384 #ifdef DEBUGNET
385 /*
386  * debugnet makes use of a pre-allocated pool of mbufs and clusters.  When
387  * debugnet is configured, we initialize a set of UMA cache zones which return
388  * items from this pool.  At panic-time, the regular UMA zone pointers are
389  * overwritten with those of the cache zones so that drivers may allocate and
390  * free mbufs and clusters without attempting to allocate physical memory.
391  *
392  * We keep mbufs and clusters in a pair of mbuf queues.  In particular, for
393  * the purpose of caching clusters, we treat them as mbufs.
394  */
395 static struct mbufq dn_mbufq =
396     { STAILQ_HEAD_INITIALIZER(dn_mbufq.mq_head), 0, INT_MAX };
397 static struct mbufq dn_clustq =
398     { STAILQ_HEAD_INITIALIZER(dn_clustq.mq_head), 0, INT_MAX };
399 
400 static int dn_clsize;
401 static uma_zone_t dn_zone_mbuf;
402 static uma_zone_t dn_zone_clust;
403 static uma_zone_t dn_zone_pack;
404 
405 static struct debugnet_saved_zones {
406 	uma_zone_t dsz_mbuf;
407 	uma_zone_t dsz_clust;
408 	uma_zone_t dsz_pack;
409 	uma_zone_t dsz_jumbop;
410 	uma_zone_t dsz_jumbo9;
411 	uma_zone_t dsz_jumbo16;
412 	bool dsz_debugnet_zones_enabled;
413 } dn_saved_zones;
414 
415 static int
416 dn_buf_import(void *arg, void **store, int count, int domain __unused,
417     int flags)
418 {
419 	struct mbufq *q;
420 	struct mbuf *m;
421 	int i;
422 
423 	q = arg;
424 
425 	for (i = 0; i < count; i++) {
426 		m = mbufq_dequeue(q);
427 		if (m == NULL)
428 			break;
429 		trash_init(m, q == &dn_mbufq ? MSIZE : dn_clsize, flags);
430 		store[i] = m;
431 	}
432 	KASSERT((flags & M_WAITOK) == 0 || i == count,
433 	    ("%s: ran out of pre-allocated mbufs", __func__));
434 	return (i);
435 }
436 
437 static void
438 dn_buf_release(void *arg, void **store, int count)
439 {
440 	struct mbufq *q;
441 	struct mbuf *m;
442 	int i;
443 
444 	q = arg;
445 
446 	for (i = 0; i < count; i++) {
447 		m = store[i];
448 		(void)mbufq_enqueue(q, m);
449 	}
450 }
451 
452 static int
453 dn_pack_import(void *arg __unused, void **store, int count, int domain __unused,
454     int flags __unused)
455 {
456 	struct mbuf *m;
457 	void *clust;
458 	int i;
459 
460 	for (i = 0; i < count; i++) {
461 		m = m_get(MT_DATA, M_NOWAIT);
462 		if (m == NULL)
463 			break;
464 		clust = uma_zalloc(dn_zone_clust, M_NOWAIT);
465 		if (clust == NULL) {
466 			m_free(m);
467 			break;
468 		}
469 		mb_ctor_clust(clust, dn_clsize, m, 0);
470 		store[i] = m;
471 	}
472 	KASSERT((flags & M_WAITOK) == 0 || i == count,
473 	    ("%s: ran out of pre-allocated mbufs", __func__));
474 	return (i);
475 }
476 
477 static void
478 dn_pack_release(void *arg __unused, void **store, int count)
479 {
480 	struct mbuf *m;
481 	void *clust;
482 	int i;
483 
484 	for (i = 0; i < count; i++) {
485 		m = store[i];
486 		clust = m->m_ext.ext_buf;
487 		uma_zfree(dn_zone_clust, clust);
488 		uma_zfree(dn_zone_mbuf, m);
489 	}
490 }
491 
492 /*
493  * Free the pre-allocated mbufs and clusters reserved for debugnet, and destroy
494  * the corresponding UMA cache zones.
495  */
496 void
497 debugnet_mbuf_drain(void)
498 {
499 	struct mbuf *m;
500 	void *item;
501 
502 	if (dn_zone_mbuf != NULL) {
503 		uma_zdestroy(dn_zone_mbuf);
504 		dn_zone_mbuf = NULL;
505 	}
506 	if (dn_zone_clust != NULL) {
507 		uma_zdestroy(dn_zone_clust);
508 		dn_zone_clust = NULL;
509 	}
510 	if (dn_zone_pack != NULL) {
511 		uma_zdestroy(dn_zone_pack);
512 		dn_zone_pack = NULL;
513 	}
514 
515 	while ((m = mbufq_dequeue(&dn_mbufq)) != NULL)
516 		m_free(m);
517 	while ((item = mbufq_dequeue(&dn_clustq)) != NULL)
518 		uma_zfree(m_getzone(dn_clsize), item);
519 }
520 
521 /*
522  * Callback invoked immediately prior to starting a debugnet connection.
523  */
524 void
525 debugnet_mbuf_start(void)
526 {
527 
528 	MPASS(!dn_saved_zones.dsz_debugnet_zones_enabled);
529 
530 	/* Save the old zone pointers to restore when debugnet is closed. */
531 	dn_saved_zones = (struct debugnet_saved_zones) {
532 		.dsz_debugnet_zones_enabled = true,
533 		.dsz_mbuf = zone_mbuf,
534 		.dsz_clust = zone_clust,
535 		.dsz_pack = zone_pack,
536 		.dsz_jumbop = zone_jumbop,
537 		.dsz_jumbo9 = zone_jumbo9,
538 		.dsz_jumbo16 = zone_jumbo16,
539 	};
540 
541 	/*
542 	 * All cluster zones return buffers of the size requested by the
543 	 * drivers.  It's up to the driver to reinitialize the zones if the
544 	 * MTU of a debugnet-enabled interface changes.
545 	 */
546 	printf("debugnet: overwriting mbuf zone pointers\n");
547 	zone_mbuf = dn_zone_mbuf;
548 	zone_clust = dn_zone_clust;
549 	zone_pack = dn_zone_pack;
550 	zone_jumbop = dn_zone_clust;
551 	zone_jumbo9 = dn_zone_clust;
552 	zone_jumbo16 = dn_zone_clust;
553 }
554 
555 /*
556  * Callback invoked when a debugnet connection is closed/finished.
557  */
558 void
559 debugnet_mbuf_finish(void)
560 {
561 
562 	MPASS(dn_saved_zones.dsz_debugnet_zones_enabled);
563 
564 	printf("debugnet: restoring mbuf zone pointers\n");
565 	zone_mbuf = dn_saved_zones.dsz_mbuf;
566 	zone_clust = dn_saved_zones.dsz_clust;
567 	zone_pack = dn_saved_zones.dsz_pack;
568 	zone_jumbop = dn_saved_zones.dsz_jumbop;
569 	zone_jumbo9 = dn_saved_zones.dsz_jumbo9;
570 	zone_jumbo16 = dn_saved_zones.dsz_jumbo16;
571 
572 	memset(&dn_saved_zones, 0, sizeof(dn_saved_zones));
573 }
574 
575 /*
576  * Reinitialize the debugnet mbuf+cluster pool and cache zones.
577  */
578 void
579 debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize)
580 {
581 	struct mbuf *m;
582 	void *item;
583 
584 	debugnet_mbuf_drain();
585 
586 	dn_clsize = clsize;
587 
588 	dn_zone_mbuf = uma_zcache_create("debugnet_" MBUF_MEM_NAME,
589 	    MSIZE, mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL,
590 	    dn_buf_import, dn_buf_release,
591 	    &dn_mbufq, UMA_ZONE_NOBUCKET);
592 
593 	dn_zone_clust = uma_zcache_create("debugnet_" MBUF_CLUSTER_MEM_NAME,
594 	    clsize, mb_ctor_clust, NULL, NULL, NULL,
595 	    dn_buf_import, dn_buf_release,
596 	    &dn_clustq, UMA_ZONE_NOBUCKET);
597 
598 	dn_zone_pack = uma_zcache_create("debugnet_" MBUF_PACKET_MEM_NAME,
599 	    MCLBYTES, mb_ctor_pack, mb_dtor_pack, NULL, NULL,
600 	    dn_pack_import, dn_pack_release,
601 	    NULL, UMA_ZONE_NOBUCKET);
602 
603 	while (nmbuf-- > 0) {
604 		m = m_get(MT_DATA, M_WAITOK);
605 		uma_zfree(dn_zone_mbuf, m);
606 	}
607 	while (nclust-- > 0) {
608 		item = uma_zalloc(m_getzone(dn_clsize), M_WAITOK);
609 		uma_zfree(dn_zone_clust, item);
610 	}
611 }
612 #endif /* DEBUGNET */
613 
614 /*
615  * Constructor for Mbuf master zone.
616  *
617  * The 'arg' pointer points to a mb_args structure which
618  * contains call-specific information required to support the
619  * mbuf allocation API.  See mbuf.h.
620  */
621 static int
622 mb_ctor_mbuf(void *mem, int size, void *arg, int how)
623 {
624 	struct mbuf *m;
625 	struct mb_args *args;
626 	int error;
627 	int flags;
628 	short type;
629 
630 	args = (struct mb_args *)arg;
631 	type = args->type;
632 
633 	/*
634 	 * The mbuf is initialized later.  The caller has the
635 	 * responsibility to set up any MAC labels too.
636 	 */
637 	if (type == MT_NOINIT)
638 		return (0);
639 
640 	m = (struct mbuf *)mem;
641 	flags = args->flags;
642 	MPASS((flags & M_NOFREE) == 0);
643 
644 	error = m_init(m, how, type, flags);
645 
646 	return (error);
647 }
648 
649 /*
650  * The Mbuf master zone destructor.
651  */
652 static void
653 mb_dtor_mbuf(void *mem, int size, void *arg)
654 {
655 	struct mbuf *m;
656 	unsigned long flags;
657 
658 	m = (struct mbuf *)mem;
659 	flags = (unsigned long)arg;
660 
661 	KASSERT((m->m_flags & M_NOFREE) == 0, ("%s: M_NOFREE set", __func__));
662 	if (!(flags & MB_DTOR_SKIP) && (m->m_flags & M_PKTHDR) && !SLIST_EMPTY(&m->m_pkthdr.tags))
663 		m_tag_delete_chain(m, NULL);
664 }
665 
666 /*
667  * The Mbuf Packet zone destructor.
668  */
669 static void
670 mb_dtor_pack(void *mem, int size, void *arg)
671 {
672 	struct mbuf *m;
673 
674 	m = (struct mbuf *)mem;
675 	if ((m->m_flags & M_PKTHDR) != 0)
676 		m_tag_delete_chain(m, NULL);
677 
678 	/* Make sure we've got a clean cluster back. */
679 	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
680 	KASSERT(m->m_ext.ext_buf != NULL, ("%s: ext_buf == NULL", __func__));
681 	KASSERT(m->m_ext.ext_free == NULL, ("%s: ext_free != NULL", __func__));
682 	KASSERT(m->m_ext.ext_arg1 == NULL, ("%s: ext_arg1 != NULL", __func__));
683 	KASSERT(m->m_ext.ext_arg2 == NULL, ("%s: ext_arg2 != NULL", __func__));
684 	KASSERT(m->m_ext.ext_size == MCLBYTES, ("%s: ext_size != MCLBYTES", __func__));
685 	KASSERT(m->m_ext.ext_type == EXT_PACKET, ("%s: ext_type != EXT_PACKET", __func__));
686 #ifdef INVARIANTS
687 	trash_dtor(m->m_ext.ext_buf, MCLBYTES, arg);
688 #endif
689 	/*
690 	 * If there are processes blocked on zone_clust, waiting for pages
691 	 * to be freed up, cause them to be woken up by draining the
692 	 * packet zone.  We are exposed to a race here (in the check for
693 	 * the UMA_ZFLAG_FULL) where we might miss the flag set, but that
694 	 * is deliberate. We don't want to acquire the zone lock for every
695 	 * mbuf free.
696 	 */
697 	if (uma_zone_exhausted(zone_clust))
698 		uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN);
699 }
700 
701 /*
702  * The Cluster and Jumbo[PAGESIZE|9|16] zone constructor.
703  *
704  * Here the 'arg' pointer points to the Mbuf which we
705  * are configuring cluster storage for.  If 'arg' is
706  * empty we allocate just the cluster without setting
707  * the mbuf to it.  See mbuf.h.
708  */
709 static int
710 mb_ctor_clust(void *mem, int size, void *arg, int how)
711 {
712 	struct mbuf *m;
713 
714 	m = (struct mbuf *)arg;
715 	if (m != NULL) {
716 		m->m_ext.ext_buf = (char *)mem;
717 		m->m_data = m->m_ext.ext_buf;
718 		m->m_flags |= M_EXT;
719 		m->m_ext.ext_free = NULL;
720 		m->m_ext.ext_arg1 = NULL;
721 		m->m_ext.ext_arg2 = NULL;
722 		m->m_ext.ext_size = size;
723 		m->m_ext.ext_type = m_gettype(size);
724 		m->m_ext.ext_flags = EXT_FLAG_EMBREF;
725 		m->m_ext.ext_count = 1;
726 	}
727 
728 	return (0);
729 }
730 
731 /*
732  * The Packet secondary zone's init routine, executed on the
733  * object's transition from mbuf keg slab to zone cache.
734  */
735 static int
736 mb_zinit_pack(void *mem, int size, int how)
737 {
738 	struct mbuf *m;
739 
740 	m = (struct mbuf *)mem;		/* m is virgin. */
741 	if (uma_zalloc_arg(zone_clust, m, how) == NULL ||
742 	    m->m_ext.ext_buf == NULL)
743 		return (ENOMEM);
744 	m->m_ext.ext_type = EXT_PACKET;	/* Override. */
745 #ifdef INVARIANTS
746 	trash_init(m->m_ext.ext_buf, MCLBYTES, how);
747 #endif
748 	return (0);
749 }
750 
751 /*
752  * The Packet secondary zone's fini routine, executed on the
753  * object's transition from zone cache to keg slab.
754  */
755 static void
756 mb_zfini_pack(void *mem, int size)
757 {
758 	struct mbuf *m;
759 
760 	m = (struct mbuf *)mem;
761 #ifdef INVARIANTS
762 	trash_fini(m->m_ext.ext_buf, MCLBYTES);
763 #endif
764 	uma_zfree_arg(zone_clust, m->m_ext.ext_buf, NULL);
765 #ifdef INVARIANTS
766 	trash_dtor(mem, size, NULL);
767 #endif
768 }
769 
770 /*
771  * The "packet" keg constructor.
772  */
773 static int
774 mb_ctor_pack(void *mem, int size, void *arg, int how)
775 {
776 	struct mbuf *m;
777 	struct mb_args *args;
778 	int error, flags;
779 	short type;
780 
781 	m = (struct mbuf *)mem;
782 	args = (struct mb_args *)arg;
783 	flags = args->flags;
784 	type = args->type;
785 	MPASS((flags & M_NOFREE) == 0);
786 
787 #ifdef INVARIANTS
788 	trash_ctor(m->m_ext.ext_buf, MCLBYTES, arg, how);
789 #endif
790 
791 	error = m_init(m, how, type, flags);
792 
793 	/* m_ext is already initialized. */
794 	m->m_data = m->m_ext.ext_buf;
795  	m->m_flags = (flags | M_EXT);
796 
797 	return (error);
798 }
799 
800 /*
801  * This is the protocol drain routine.  Called by UMA whenever any of the
802  * mbuf zones is closed to its limit.
803  *
804  * No locks should be held when this is called.  The drain routines have to
805  * presently acquire some locks which raises the possibility of lock order
806  * reversal.
807  */
808 static void
809 mb_reclaim(uma_zone_t zone __unused, int pending __unused)
810 {
811 	struct epoch_tracker et;
812 	struct domain *dp;
813 	struct protosw *pr;
814 
815 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK | WARN_PANIC, NULL, __func__);
816 
817 	NET_EPOCH_ENTER(et);
818 	for (dp = domains; dp != NULL; dp = dp->dom_next)
819 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
820 			if (pr->pr_drain != NULL)
821 				(*pr->pr_drain)();
822 	NET_EPOCH_EXIT(et);
823 }
824 
825 /*
826  * Free "count" units of I/O from an mbuf chain.  They could be held
827  * in EXT_PGS or just as a normal mbuf.  This code is intended to be
828  * called in an error path (I/O error, closed connection, etc).
829  */
830 void
831 mb_free_notready(struct mbuf *m, int count)
832 {
833 	int i;
834 
835 	for (i = 0; i < count && m != NULL; i++) {
836 		if ((m->m_flags & M_EXT) != 0 &&
837 		    m->m_ext.ext_type == EXT_PGS) {
838 			m->m_ext.ext_pgs->nrdy--;
839 			if (m->m_ext.ext_pgs->nrdy != 0)
840 				continue;
841 		}
842 		m = m_free(m);
843 	}
844 	KASSERT(i == count, ("Removed only %d items from %p", i, m));
845 }
846 
847 /*
848  * Compress an unmapped mbuf into a simple mbuf when it holds a small
849  * amount of data.  This is used as a DOS defense to avoid having
850  * small packets tie up wired pages, an ext_pgs structure, and an
851  * mbuf.  Since this converts the existing mbuf in place, it can only
852  * be used if there are no other references to 'm'.
853  */
854 int
855 mb_unmapped_compress(struct mbuf *m)
856 {
857 	volatile u_int *refcnt;
858 	struct mbuf m_temp;
859 
860 	/*
861 	 * Assert that 'm' does not have a packet header.  If 'm' had
862 	 * a packet header, it would only be able to hold MHLEN bytes
863 	 * and m_data would have to be initialized differently.
864 	 */
865 	KASSERT((m->m_flags & M_PKTHDR) == 0 && (m->m_flags & M_EXT) &&
866 	    m->m_ext.ext_type == EXT_PGS,
867             ("%s: m %p !M_EXT or !EXT_PGS or M_PKTHDR", __func__, m));
868 	KASSERT(m->m_len <= MLEN, ("m_len too large %p", m));
869 
870 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
871 		refcnt = &m->m_ext.ext_count;
872 	} else {
873 		KASSERT(m->m_ext.ext_cnt != NULL,
874 		    ("%s: no refcounting pointer on %p", __func__, m));
875 		refcnt = m->m_ext.ext_cnt;
876 	}
877 
878 	if (*refcnt != 1)
879 		return (EBUSY);
880 
881 	/*
882 	 * Copy mbuf header and m_ext portion of 'm' to 'm_temp' to
883 	 * create a "fake" EXT_PGS mbuf that can be used with
884 	 * m_copydata() as well as the ext_free callback.
885 	 */
886 	memcpy(&m_temp, m, offsetof(struct mbuf, m_ext) + sizeof (m->m_ext));
887 	m_temp.m_next = NULL;
888 	m_temp.m_nextpkt = NULL;
889 
890 	/* Turn 'm' into a "normal" mbuf. */
891 	m->m_flags &= ~(M_EXT | M_RDONLY | M_NOMAP);
892 	m->m_data = m->m_dat;
893 
894 	/* Copy data from template's ext_pgs. */
895 	m_copydata(&m_temp, 0, m_temp.m_len, mtod(m, caddr_t));
896 
897 	/* Free the backing pages. */
898 	m_temp.m_ext.ext_free(&m_temp);
899 
900 	/* Finally, free the ext_pgs struct. */
901 	uma_zfree(zone_extpgs, m_temp.m_ext.ext_pgs);
902 	return (0);
903 }
904 
905 /*
906  * These next few routines are used to permit downgrading an unmapped
907  * mbuf to a chain of mapped mbufs.  This is used when an interface
908  * doesn't supported unmapped mbufs or if checksums need to be
909  * computed in software.
910  *
911  * Each unmapped mbuf is converted to a chain of mbufs.  First, any
912  * TLS header data is stored in a regular mbuf.  Second, each page of
913  * unmapped data is stored in an mbuf with an EXT_SFBUF external
914  * cluster.  These mbufs use an sf_buf to provide a valid KVA for the
915  * associated physical page.  They also hold a reference on the
916  * original EXT_PGS mbuf to ensure the physical page doesn't go away.
917  * Finally, any TLS trailer data is stored in a regular mbuf.
918  *
919  * mb_unmapped_free_mext() is the ext_free handler for the EXT_SFBUF
920  * mbufs.  It frees the associated sf_buf and releases its reference
921  * on the original EXT_PGS mbuf.
922  *
923  * _mb_unmapped_to_ext() is a helper function that converts a single
924  * unmapped mbuf into a chain of mbufs.
925  *
926  * mb_unmapped_to_ext() is the public function that walks an mbuf
927  * chain converting any unmapped mbufs to mapped mbufs.  It returns
928  * the new chain of unmapped mbufs on success.  On failure it frees
929  * the original mbuf chain and returns NULL.
930  */
931 static void
932 mb_unmapped_free_mext(struct mbuf *m)
933 {
934 	struct sf_buf *sf;
935 	struct mbuf *old_m;
936 
937 	sf = m->m_ext.ext_arg1;
938 	sf_buf_free(sf);
939 
940 	/* Drop the reference on the backing EXT_PGS mbuf. */
941 	old_m = m->m_ext.ext_arg2;
942 	mb_free_ext(old_m);
943 }
944 
945 static struct mbuf *
946 _mb_unmapped_to_ext(struct mbuf *m)
947 {
948 	struct mbuf_ext_pgs *ext_pgs;
949 	struct mbuf *m_new, *top, *prev, *mref;
950 	struct sf_buf *sf;
951 	vm_page_t pg;
952 	int i, len, off, pglen, pgoff, seglen, segoff;
953 	volatile u_int *refcnt;
954 	u_int ref_inc = 0;
955 
956 	MBUF_EXT_PGS_ASSERT(m);
957 	ext_pgs = m->m_ext.ext_pgs;
958 	len = m->m_len;
959 	KASSERT(ext_pgs->tls == NULL, ("%s: can't convert TLS mbuf %p",
960 	    __func__, m));
961 
962 	/* See if this is the mbuf that holds the embedded refcount. */
963 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
964 		refcnt = &m->m_ext.ext_count;
965 		mref = m;
966 	} else {
967 		KASSERT(m->m_ext.ext_cnt != NULL,
968 		    ("%s: no refcounting pointer on %p", __func__, m));
969 		refcnt = m->m_ext.ext_cnt;
970 		mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
971 	}
972 
973 	/* Skip over any data removed from the front. */
974 	off = mtod(m, vm_offset_t);
975 
976 	top = NULL;
977 	if (ext_pgs->hdr_len != 0) {
978 		if (off >= ext_pgs->hdr_len) {
979 			off -= ext_pgs->hdr_len;
980 		} else {
981 			seglen = ext_pgs->hdr_len - off;
982 			segoff = off;
983 			seglen = min(seglen, len);
984 			off = 0;
985 			len -= seglen;
986 			m_new = m_get(M_NOWAIT, MT_DATA);
987 			if (m_new == NULL)
988 				goto fail;
989 			m_new->m_len = seglen;
990 			prev = top = m_new;
991 			memcpy(mtod(m_new, void *), &ext_pgs->hdr[segoff],
992 			    seglen);
993 		}
994 	}
995 	pgoff = ext_pgs->first_pg_off;
996 	for (i = 0; i < ext_pgs->npgs && len > 0; i++) {
997 		pglen = mbuf_ext_pg_len(ext_pgs, i, pgoff);
998 		if (off >= pglen) {
999 			off -= pglen;
1000 			pgoff = 0;
1001 			continue;
1002 		}
1003 		seglen = pglen - off;
1004 		segoff = pgoff + off;
1005 		off = 0;
1006 		seglen = min(seglen, len);
1007 		len -= seglen;
1008 
1009 		pg = PHYS_TO_VM_PAGE(ext_pgs->pa[i]);
1010 		m_new = m_get(M_NOWAIT, MT_DATA);
1011 		if (m_new == NULL)
1012 			goto fail;
1013 		if (top == NULL) {
1014 			top = prev = m_new;
1015 		} else {
1016 			prev->m_next = m_new;
1017 			prev = m_new;
1018 		}
1019 		sf = sf_buf_alloc(pg, SFB_NOWAIT);
1020 		if (sf == NULL)
1021 			goto fail;
1022 
1023 		ref_inc++;
1024 		m_extadd(m_new, (char *)sf_buf_kva(sf), PAGE_SIZE,
1025 		    mb_unmapped_free_mext, sf, mref, M_RDONLY, EXT_SFBUF);
1026 		m_new->m_data += segoff;
1027 		m_new->m_len = seglen;
1028 
1029 		pgoff = 0;
1030 	};
1031 	if (len != 0) {
1032 		KASSERT((off + len) <= ext_pgs->trail_len,
1033 		    ("off + len > trail (%d + %d > %d)", off, len,
1034 		    ext_pgs->trail_len));
1035 		m_new = m_get(M_NOWAIT, MT_DATA);
1036 		if (m_new == NULL)
1037 			goto fail;
1038 		if (top == NULL)
1039 			top = m_new;
1040 		else
1041 			prev->m_next = m_new;
1042 		m_new->m_len = len;
1043 		memcpy(mtod(m_new, void *), &ext_pgs->trail[off], len);
1044 	}
1045 
1046 	if (ref_inc != 0) {
1047 		/*
1048 		 * Obtain an additional reference on the old mbuf for
1049 		 * each created EXT_SFBUF mbuf.  They will be dropped
1050 		 * in mb_unmapped_free_mext().
1051 		 */
1052 		if (*refcnt == 1)
1053 			*refcnt += ref_inc;
1054 		else
1055 			atomic_add_int(refcnt, ref_inc);
1056 	}
1057 	m_free(m);
1058 	return (top);
1059 
1060 fail:
1061 	if (ref_inc != 0) {
1062 		/*
1063 		 * Obtain an additional reference on the old mbuf for
1064 		 * each created EXT_SFBUF mbuf.  They will be
1065 		 * immediately dropped when these mbufs are freed
1066 		 * below.
1067 		 */
1068 		if (*refcnt == 1)
1069 			*refcnt += ref_inc;
1070 		else
1071 			atomic_add_int(refcnt, ref_inc);
1072 	}
1073 	m_free(m);
1074 	m_freem(top);
1075 	return (NULL);
1076 }
1077 
1078 struct mbuf *
1079 mb_unmapped_to_ext(struct mbuf *top)
1080 {
1081 	struct mbuf *m, *next, *prev = NULL;
1082 
1083 	prev = NULL;
1084 	for (m = top; m != NULL; m = next) {
1085 		/* m might be freed, so cache the next pointer. */
1086 		next = m->m_next;
1087 		if (m->m_flags & M_NOMAP) {
1088 			if (prev != NULL) {
1089 				/*
1090 				 * Remove 'm' from the new chain so
1091 				 * that the 'top' chain terminates
1092 				 * before 'm' in case 'top' is freed
1093 				 * due to an error.
1094 				 */
1095 				prev->m_next = NULL;
1096 			}
1097 			m = _mb_unmapped_to_ext(m);
1098 			if (m == NULL) {
1099 				m_freem(top);
1100 				m_freem(next);
1101 				return (NULL);
1102 			}
1103 			if (prev == NULL) {
1104 				top = m;
1105 			} else {
1106 				prev->m_next = m;
1107 			}
1108 
1109 			/*
1110 			 * Replaced one mbuf with a chain, so we must
1111 			 * find the end of chain.
1112 			 */
1113 			prev = m_last(m);
1114 		} else {
1115 			if (prev != NULL) {
1116 				prev->m_next = m;
1117 			}
1118 			prev = m;
1119 		}
1120 	}
1121 	return (top);
1122 }
1123 
1124 /*
1125  * Allocate an empty EXT_PGS mbuf.  The ext_free routine is
1126  * responsible for freeing any pages backing this mbuf when it is
1127  * freed.
1128  */
1129 struct mbuf *
1130 mb_alloc_ext_pgs(int how, bool pkthdr, m_ext_free_t ext_free)
1131 {
1132 	struct mbuf *m;
1133 	struct mbuf_ext_pgs *ext_pgs;
1134 
1135 	if (pkthdr)
1136 		m = m_gethdr(how, MT_DATA);
1137 	else
1138 		m = m_get(how, MT_DATA);
1139 	if (m == NULL)
1140 		return (NULL);
1141 
1142 	ext_pgs = uma_zalloc(zone_extpgs, how);
1143 	if (ext_pgs == NULL) {
1144 		m_free(m);
1145 		return (NULL);
1146 	}
1147 	ext_pgs->npgs = 0;
1148 	ext_pgs->nrdy = 0;
1149 	ext_pgs->first_pg_off = 0;
1150 	ext_pgs->last_pg_len = 0;
1151 	ext_pgs->flags = 0;
1152 	ext_pgs->hdr_len = 0;
1153 	ext_pgs->trail_len = 0;
1154 	ext_pgs->tls = NULL;
1155 	ext_pgs->so = NULL;
1156 	m->m_data = NULL;
1157 	m->m_flags |= (M_EXT | M_RDONLY | M_NOMAP);
1158 	m->m_ext.ext_type = EXT_PGS;
1159 	m->m_ext.ext_flags = EXT_FLAG_EMBREF;
1160 	m->m_ext.ext_count = 1;
1161 	m->m_ext.ext_pgs = ext_pgs;
1162 	m->m_ext.ext_size = 0;
1163 	m->m_ext.ext_free = ext_free;
1164 	return (m);
1165 }
1166 
1167 #ifdef INVARIANT_SUPPORT
1168 void
1169 mb_ext_pgs_check(struct mbuf_ext_pgs *ext_pgs)
1170 {
1171 
1172 	/*
1173 	 * NB: This expects a non-empty buffer (npgs > 0 and
1174 	 * last_pg_len > 0).
1175 	 */
1176 	KASSERT(ext_pgs->npgs > 0,
1177 	    ("ext_pgs with no valid pages: %p", ext_pgs));
1178 	KASSERT(ext_pgs->npgs <= nitems(ext_pgs->pa),
1179 	    ("ext_pgs with too many pages: %p", ext_pgs));
1180 	KASSERT(ext_pgs->nrdy <= ext_pgs->npgs,
1181 	    ("ext_pgs with too many ready pages: %p", ext_pgs));
1182 	KASSERT(ext_pgs->first_pg_off < PAGE_SIZE,
1183 	    ("ext_pgs with too large page offset: %p", ext_pgs));
1184 	KASSERT(ext_pgs->last_pg_len > 0,
1185 	    ("ext_pgs with zero last page length: %p", ext_pgs));
1186 	KASSERT(ext_pgs->last_pg_len <= PAGE_SIZE,
1187 	    ("ext_pgs with too large last page length: %p", ext_pgs));
1188 	if (ext_pgs->npgs == 1) {
1189 		KASSERT(ext_pgs->first_pg_off + ext_pgs->last_pg_len <=
1190 		    PAGE_SIZE, ("ext_pgs with single page too large: %p",
1191 		    ext_pgs));
1192 	}
1193 	KASSERT(ext_pgs->hdr_len <= sizeof(ext_pgs->hdr),
1194 	    ("ext_pgs with too large header length: %p", ext_pgs));
1195 	KASSERT(ext_pgs->trail_len <= sizeof(ext_pgs->trail),
1196 	    ("ext_pgs with too large header length: %p", ext_pgs));
1197 }
1198 #endif
1199 
1200 /*
1201  * Clean up after mbufs with M_EXT storage attached to them if the
1202  * reference count hits 1.
1203  */
1204 void
1205 mb_free_ext(struct mbuf *m)
1206 {
1207 	volatile u_int *refcnt;
1208 	struct mbuf *mref;
1209 	int freembuf;
1210 
1211 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
1212 
1213 	/* See if this is the mbuf that holds the embedded refcount. */
1214 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
1215 		refcnt = &m->m_ext.ext_count;
1216 		mref = m;
1217 	} else {
1218 		KASSERT(m->m_ext.ext_cnt != NULL,
1219 		    ("%s: no refcounting pointer on %p", __func__, m));
1220 		refcnt = m->m_ext.ext_cnt;
1221 		mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
1222 	}
1223 
1224 	/*
1225 	 * Check if the header is embedded in the cluster.  It is
1226 	 * important that we can't touch any of the mbuf fields
1227 	 * after we have freed the external storage, since mbuf
1228 	 * could have been embedded in it.  For now, the mbufs
1229 	 * embedded into the cluster are always of type EXT_EXTREF,
1230 	 * and for this type we won't free the mref.
1231 	 */
1232 	if (m->m_flags & M_NOFREE) {
1233 		freembuf = 0;
1234 		KASSERT(m->m_ext.ext_type == EXT_EXTREF ||
1235 		    m->m_ext.ext_type == EXT_RXRING,
1236 		    ("%s: no-free mbuf %p has wrong type", __func__, m));
1237 	} else
1238 		freembuf = 1;
1239 
1240 	/* Free attached storage if this mbuf is the only reference to it. */
1241 	if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
1242 		switch (m->m_ext.ext_type) {
1243 		case EXT_PACKET:
1244 			/* The packet zone is special. */
1245 			if (*refcnt == 0)
1246 				*refcnt = 1;
1247 			uma_zfree(zone_pack, mref);
1248 			break;
1249 		case EXT_CLUSTER:
1250 			uma_zfree(zone_clust, m->m_ext.ext_buf);
1251 			uma_zfree(zone_mbuf, mref);
1252 			break;
1253 		case EXT_JUMBOP:
1254 			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
1255 			uma_zfree(zone_mbuf, mref);
1256 			break;
1257 		case EXT_JUMBO9:
1258 			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
1259 			uma_zfree(zone_mbuf, mref);
1260 			break;
1261 		case EXT_JUMBO16:
1262 			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
1263 			uma_zfree(zone_mbuf, mref);
1264 			break;
1265 		case EXT_PGS: {
1266 #ifdef KERN_TLS
1267 			struct mbuf_ext_pgs *pgs;
1268 			struct ktls_session *tls;
1269 #endif
1270 
1271 			KASSERT(mref->m_ext.ext_free != NULL,
1272 			    ("%s: ext_free not set", __func__));
1273 			mref->m_ext.ext_free(mref);
1274 #ifdef KERN_TLS
1275 			pgs = mref->m_ext.ext_pgs;
1276 			tls = pgs->tls;
1277 			if (tls != NULL &&
1278 			    !refcount_release_if_not_last(&tls->refcount))
1279 				ktls_enqueue_to_free(pgs);
1280 			else
1281 #endif
1282 				uma_zfree(zone_extpgs, mref->m_ext.ext_pgs);
1283 			uma_zfree(zone_mbuf, mref);
1284 			break;
1285 		}
1286 		case EXT_SFBUF:
1287 		case EXT_NET_DRV:
1288 		case EXT_MOD_TYPE:
1289 		case EXT_DISPOSABLE:
1290 			KASSERT(mref->m_ext.ext_free != NULL,
1291 			    ("%s: ext_free not set", __func__));
1292 			mref->m_ext.ext_free(mref);
1293 			uma_zfree(zone_mbuf, mref);
1294 			break;
1295 		case EXT_EXTREF:
1296 			KASSERT(m->m_ext.ext_free != NULL,
1297 			    ("%s: ext_free not set", __func__));
1298 			m->m_ext.ext_free(m);
1299 			break;
1300 		case EXT_RXRING:
1301 			KASSERT(m->m_ext.ext_free == NULL,
1302 			    ("%s: ext_free is set", __func__));
1303 			break;
1304 		default:
1305 			KASSERT(m->m_ext.ext_type == 0,
1306 			    ("%s: unknown ext_type", __func__));
1307 		}
1308 	}
1309 
1310 	if (freembuf && m != mref)
1311 		uma_zfree(zone_mbuf, m);
1312 }
1313 
1314 /*
1315  * Official mbuf(9) allocation KPI for stack and drivers:
1316  *
1317  * m_get()	- a single mbuf without any attachments, sys/mbuf.h.
1318  * m_gethdr()	- a single mbuf initialized as M_PKTHDR, sys/mbuf.h.
1319  * m_getcl()	- an mbuf + 2k cluster, sys/mbuf.h.
1320  * m_clget()	- attach cluster to already allocated mbuf.
1321  * m_cljget()	- attach jumbo cluster to already allocated mbuf.
1322  * m_get2()	- allocate minimum mbuf that would fit size argument.
1323  * m_getm2()	- allocate a chain of mbufs/clusters.
1324  * m_extadd()	- attach external cluster to mbuf.
1325  *
1326  * m_free()	- free single mbuf with its tags and ext, sys/mbuf.h.
1327  * m_freem()	- free chain of mbufs.
1328  */
1329 
1330 int
1331 m_clget(struct mbuf *m, int how)
1332 {
1333 
1334 	KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
1335 	    __func__, m));
1336 	m->m_ext.ext_buf = (char *)NULL;
1337 	uma_zalloc_arg(zone_clust, m, how);
1338 	/*
1339 	 * On a cluster allocation failure, drain the packet zone and retry,
1340 	 * we might be able to loosen a few clusters up on the drain.
1341 	 */
1342 	if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) {
1343 		uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN);
1344 		uma_zalloc_arg(zone_clust, m, how);
1345 	}
1346 	MBUF_PROBE2(m__clget, m, how);
1347 	return (m->m_flags & M_EXT);
1348 }
1349 
1350 /*
1351  * m_cljget() is different from m_clget() as it can allocate clusters without
1352  * attaching them to an mbuf.  In that case the return value is the pointer
1353  * to the cluster of the requested size.  If an mbuf was specified, it gets
1354  * the cluster attached to it and the return value can be safely ignored.
1355  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
1356  */
1357 void *
1358 m_cljget(struct mbuf *m, int how, int size)
1359 {
1360 	uma_zone_t zone;
1361 	void *retval;
1362 
1363 	if (m != NULL) {
1364 		KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
1365 		    __func__, m));
1366 		m->m_ext.ext_buf = NULL;
1367 	}
1368 
1369 	zone = m_getzone(size);
1370 	retval = uma_zalloc_arg(zone, m, how);
1371 
1372 	MBUF_PROBE4(m__cljget, m, how, size, retval);
1373 
1374 	return (retval);
1375 }
1376 
1377 /*
1378  * m_get2() allocates minimum mbuf that would fit "size" argument.
1379  */
1380 struct mbuf *
1381 m_get2(int size, int how, short type, int flags)
1382 {
1383 	struct mb_args args;
1384 	struct mbuf *m, *n;
1385 
1386 	args.flags = flags;
1387 	args.type = type;
1388 
1389 	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
1390 		return (uma_zalloc_arg(zone_mbuf, &args, how));
1391 	if (size <= MCLBYTES)
1392 		return (uma_zalloc_arg(zone_pack, &args, how));
1393 
1394 	if (size > MJUMPAGESIZE)
1395 		return (NULL);
1396 
1397 	m = uma_zalloc_arg(zone_mbuf, &args, how);
1398 	if (m == NULL)
1399 		return (NULL);
1400 
1401 	n = uma_zalloc_arg(zone_jumbop, m, how);
1402 	if (n == NULL) {
1403 		uma_zfree(zone_mbuf, m);
1404 		return (NULL);
1405 	}
1406 
1407 	return (m);
1408 }
1409 
1410 /*
1411  * m_getjcl() returns an mbuf with a cluster of the specified size attached.
1412  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
1413  */
1414 struct mbuf *
1415 m_getjcl(int how, short type, int flags, int size)
1416 {
1417 	struct mb_args args;
1418 	struct mbuf *m, *n;
1419 	uma_zone_t zone;
1420 
1421 	if (size == MCLBYTES)
1422 		return m_getcl(how, type, flags);
1423 
1424 	args.flags = flags;
1425 	args.type = type;
1426 
1427 	m = uma_zalloc_arg(zone_mbuf, &args, how);
1428 	if (m == NULL)
1429 		return (NULL);
1430 
1431 	zone = m_getzone(size);
1432 	n = uma_zalloc_arg(zone, m, how);
1433 	if (n == NULL) {
1434 		uma_zfree(zone_mbuf, m);
1435 		return (NULL);
1436 	}
1437 	return (m);
1438 }
1439 
1440 /*
1441  * Allocate a given length worth of mbufs and/or clusters (whatever fits
1442  * best) and return a pointer to the top of the allocated chain.  If an
1443  * existing mbuf chain is provided, then we will append the new chain
1444  * to the existing one and return a pointer to the provided mbuf.
1445  */
1446 struct mbuf *
1447 m_getm2(struct mbuf *m, int len, int how, short type, int flags)
1448 {
1449 	struct mbuf *mb, *nm = NULL, *mtail = NULL;
1450 
1451 	KASSERT(len >= 0, ("%s: len is < 0", __func__));
1452 
1453 	/* Validate flags. */
1454 	flags &= (M_PKTHDR | M_EOR);
1455 
1456 	/* Packet header mbuf must be first in chain. */
1457 	if ((flags & M_PKTHDR) && m != NULL)
1458 		flags &= ~M_PKTHDR;
1459 
1460 	/* Loop and append maximum sized mbufs to the chain tail. */
1461 	while (len > 0) {
1462 		if (len > MCLBYTES)
1463 			mb = m_getjcl(how, type, (flags & M_PKTHDR),
1464 			    MJUMPAGESIZE);
1465 		else if (len >= MINCLSIZE)
1466 			mb = m_getcl(how, type, (flags & M_PKTHDR));
1467 		else if (flags & M_PKTHDR)
1468 			mb = m_gethdr(how, type);
1469 		else
1470 			mb = m_get(how, type);
1471 
1472 		/* Fail the whole operation if one mbuf can't be allocated. */
1473 		if (mb == NULL) {
1474 			if (nm != NULL)
1475 				m_freem(nm);
1476 			return (NULL);
1477 		}
1478 
1479 		/* Book keeping. */
1480 		len -= M_SIZE(mb);
1481 		if (mtail != NULL)
1482 			mtail->m_next = mb;
1483 		else
1484 			nm = mb;
1485 		mtail = mb;
1486 		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
1487 	}
1488 	if (flags & M_EOR)
1489 		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
1490 
1491 	/* If mbuf was supplied, append new chain to the end of it. */
1492 	if (m != NULL) {
1493 		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
1494 			;
1495 		mtail->m_next = nm;
1496 		mtail->m_flags &= ~M_EOR;
1497 	} else
1498 		m = nm;
1499 
1500 	return (m);
1501 }
1502 
1503 /*-
1504  * Configure a provided mbuf to refer to the provided external storage
1505  * buffer and setup a reference count for said buffer.
1506  *
1507  * Arguments:
1508  *    mb     The existing mbuf to which to attach the provided buffer.
1509  *    buf    The address of the provided external storage buffer.
1510  *    size   The size of the provided buffer.
1511  *    freef  A pointer to a routine that is responsible for freeing the
1512  *           provided external storage buffer.
1513  *    args   A pointer to an argument structure (of any type) to be passed
1514  *           to the provided freef routine (may be NULL).
1515  *    flags  Any other flags to be passed to the provided mbuf.
1516  *    type   The type that the external storage buffer should be
1517  *           labeled with.
1518  *
1519  * Returns:
1520  *    Nothing.
1521  */
1522 void
1523 m_extadd(struct mbuf *mb, char *buf, u_int size, m_ext_free_t freef,
1524     void *arg1, void *arg2, int flags, int type)
1525 {
1526 
1527 	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
1528 
1529 	mb->m_flags |= (M_EXT | flags);
1530 	mb->m_ext.ext_buf = buf;
1531 	mb->m_data = mb->m_ext.ext_buf;
1532 	mb->m_ext.ext_size = size;
1533 	mb->m_ext.ext_free = freef;
1534 	mb->m_ext.ext_arg1 = arg1;
1535 	mb->m_ext.ext_arg2 = arg2;
1536 	mb->m_ext.ext_type = type;
1537 
1538 	if (type != EXT_EXTREF) {
1539 		mb->m_ext.ext_count = 1;
1540 		mb->m_ext.ext_flags = EXT_FLAG_EMBREF;
1541 	} else
1542 		mb->m_ext.ext_flags = 0;
1543 }
1544 
1545 /*
1546  * Free an entire chain of mbufs and associated external buffers, if
1547  * applicable.
1548  */
1549 void
1550 m_freem(struct mbuf *mb)
1551 {
1552 
1553 	MBUF_PROBE1(m__freem, mb);
1554 	while (mb != NULL)
1555 		mb = m_free(mb);
1556 }
1557 
1558 void
1559 m_snd_tag_init(struct m_snd_tag *mst, struct ifnet *ifp)
1560 {
1561 
1562 	if_ref(ifp);
1563 	mst->ifp = ifp;
1564 	refcount_init(&mst->refcount, 1);
1565 	counter_u64_add(snd_tag_count, 1);
1566 }
1567 
1568 void
1569 m_snd_tag_destroy(struct m_snd_tag *mst)
1570 {
1571 	struct ifnet *ifp;
1572 
1573 	ifp = mst->ifp;
1574 	ifp->if_snd_tag_free(mst);
1575 	if_rele(ifp);
1576 	counter_u64_add(snd_tag_count, -1);
1577 }
1578