1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004, 2005, 5 * Bosko Milekic <bmilekic@FreeBSD.org>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_param.h" 34 #include "opt_kern_tls.h" 35 36 #include <sys/param.h> 37 #include <sys/conf.h> 38 #include <sys/domainset.h> 39 #include <sys/malloc.h> 40 #include <sys/systm.h> 41 #include <sys/mbuf.h> 42 #include <sys/domain.h> 43 #include <sys/eventhandler.h> 44 #include <sys/kernel.h> 45 #include <sys/ktls.h> 46 #include <sys/limits.h> 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/protosw.h> 50 #include <sys/refcount.h> 51 #include <sys/sf_buf.h> 52 #include <sys/smp.h> 53 #include <sys/socket.h> 54 #include <sys/sysctl.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 59 #include <vm/vm.h> 60 #include <vm/vm_extern.h> 61 #include <vm/vm_kern.h> 62 #include <vm/vm_page.h> 63 #include <vm/vm_map.h> 64 #include <vm/uma.h> 65 #include <vm/uma_dbg.h> 66 67 /* 68 * In FreeBSD, Mbufs and Mbuf Clusters are allocated from UMA 69 * Zones. 70 * 71 * Mbuf Clusters (2K, contiguous) are allocated from the Cluster 72 * Zone. The Zone can be capped at kern.ipc.nmbclusters, if the 73 * administrator so desires. 74 * 75 * Mbufs are allocated from a UMA Master Zone called the Mbuf 76 * Zone. 77 * 78 * Additionally, FreeBSD provides a Packet Zone, which it 79 * configures as a Secondary Zone to the Mbuf Master Zone, 80 * thus sharing backend Slab kegs with the Mbuf Master Zone. 81 * 82 * Thus common-case allocations and locking are simplified: 83 * 84 * m_clget() m_getcl() 85 * | | 86 * | .------------>[(Packet Cache)] m_get(), m_gethdr() 87 * | | [ Packet ] | 88 * [(Cluster Cache)] [ Secondary ] [ (Mbuf Cache) ] 89 * [ Cluster Zone ] [ Zone ] [ Mbuf Master Zone ] 90 * | \________ | 91 * [ Cluster Keg ] \ / 92 * | [ Mbuf Keg ] 93 * [ Cluster Slabs ] | 94 * | [ Mbuf Slabs ] 95 * \____________(VM)_________________/ 96 * 97 * 98 * Whenever an object is allocated with uma_zalloc() out of 99 * one of the Zones its _ctor_ function is executed. The same 100 * for any deallocation through uma_zfree() the _dtor_ function 101 * is executed. 102 * 103 * Caches are per-CPU and are filled from the Master Zone. 104 * 105 * Whenever an object is allocated from the underlying global 106 * memory pool it gets pre-initialized with the _zinit_ functions. 107 * When the Keg's are overfull objects get decommissioned with 108 * _zfini_ functions and free'd back to the global memory pool. 109 * 110 */ 111 112 int nmbufs; /* limits number of mbufs */ 113 int nmbclusters; /* limits number of mbuf clusters */ 114 int nmbjumbop; /* limits number of page size jumbo clusters */ 115 int nmbjumbo9; /* limits number of 9k jumbo clusters */ 116 int nmbjumbo16; /* limits number of 16k jumbo clusters */ 117 118 bool mb_use_ext_pgs; /* use EXT_PGS mbufs for sendfile & TLS */ 119 SYSCTL_BOOL(_kern_ipc, OID_AUTO, mb_use_ext_pgs, CTLFLAG_RWTUN, 120 &mb_use_ext_pgs, 0, 121 "Use unmapped mbufs for sendfile(2) and TLS offload"); 122 123 static quad_t maxmbufmem; /* overall real memory limit for all mbufs */ 124 125 SYSCTL_QUAD(_kern_ipc, OID_AUTO, maxmbufmem, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &maxmbufmem, 0, 126 "Maximum real memory allocatable to various mbuf types"); 127 128 static counter_u64_t snd_tag_count; 129 SYSCTL_COUNTER_U64(_kern_ipc, OID_AUTO, num_snd_tags, CTLFLAG_RW, 130 &snd_tag_count, "# of active mbuf send tags"); 131 132 /* 133 * tunable_mbinit() has to be run before any mbuf allocations are done. 134 */ 135 static void 136 tunable_mbinit(void *dummy) 137 { 138 quad_t realmem; 139 140 /* 141 * The default limit for all mbuf related memory is 1/2 of all 142 * available kernel memory (physical or kmem). 143 * At most it can be 3/4 of available kernel memory. 144 */ 145 realmem = qmin((quad_t)physmem * PAGE_SIZE, vm_kmem_size); 146 maxmbufmem = realmem / 2; 147 TUNABLE_QUAD_FETCH("kern.ipc.maxmbufmem", &maxmbufmem); 148 if (maxmbufmem > realmem / 4 * 3) 149 maxmbufmem = realmem / 4 * 3; 150 151 TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters); 152 if (nmbclusters == 0) 153 nmbclusters = maxmbufmem / MCLBYTES / 4; 154 155 TUNABLE_INT_FETCH("kern.ipc.nmbjumbop", &nmbjumbop); 156 if (nmbjumbop == 0) 157 nmbjumbop = maxmbufmem / MJUMPAGESIZE / 4; 158 159 TUNABLE_INT_FETCH("kern.ipc.nmbjumbo9", &nmbjumbo9); 160 if (nmbjumbo9 == 0) 161 nmbjumbo9 = maxmbufmem / MJUM9BYTES / 6; 162 163 TUNABLE_INT_FETCH("kern.ipc.nmbjumbo16", &nmbjumbo16); 164 if (nmbjumbo16 == 0) 165 nmbjumbo16 = maxmbufmem / MJUM16BYTES / 6; 166 167 /* 168 * We need at least as many mbufs as we have clusters of 169 * the various types added together. 170 */ 171 TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs); 172 if (nmbufs < nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) 173 nmbufs = lmax(maxmbufmem / MSIZE / 5, 174 nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16); 175 } 176 SYSINIT(tunable_mbinit, SI_SUB_KMEM, SI_ORDER_MIDDLE, tunable_mbinit, NULL); 177 178 static int 179 sysctl_nmbclusters(SYSCTL_HANDLER_ARGS) 180 { 181 int error, newnmbclusters; 182 183 newnmbclusters = nmbclusters; 184 error = sysctl_handle_int(oidp, &newnmbclusters, 0, req); 185 if (error == 0 && req->newptr && newnmbclusters != nmbclusters) { 186 if (newnmbclusters > nmbclusters && 187 nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) { 188 nmbclusters = newnmbclusters; 189 nmbclusters = uma_zone_set_max(zone_clust, nmbclusters); 190 EVENTHANDLER_INVOKE(nmbclusters_change); 191 } else 192 error = EINVAL; 193 } 194 return (error); 195 } 196 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbclusters, CTLTYPE_INT|CTLFLAG_RW, 197 &nmbclusters, 0, sysctl_nmbclusters, "IU", 198 "Maximum number of mbuf clusters allowed"); 199 200 static int 201 sysctl_nmbjumbop(SYSCTL_HANDLER_ARGS) 202 { 203 int error, newnmbjumbop; 204 205 newnmbjumbop = nmbjumbop; 206 error = sysctl_handle_int(oidp, &newnmbjumbop, 0, req); 207 if (error == 0 && req->newptr && newnmbjumbop != nmbjumbop) { 208 if (newnmbjumbop > nmbjumbop && 209 nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) { 210 nmbjumbop = newnmbjumbop; 211 nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop); 212 } else 213 error = EINVAL; 214 } 215 return (error); 216 } 217 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbop, CTLTYPE_INT|CTLFLAG_RW, 218 &nmbjumbop, 0, sysctl_nmbjumbop, "IU", 219 "Maximum number of mbuf page size jumbo clusters allowed"); 220 221 static int 222 sysctl_nmbjumbo9(SYSCTL_HANDLER_ARGS) 223 { 224 int error, newnmbjumbo9; 225 226 newnmbjumbo9 = nmbjumbo9; 227 error = sysctl_handle_int(oidp, &newnmbjumbo9, 0, req); 228 if (error == 0 && req->newptr && newnmbjumbo9 != nmbjumbo9) { 229 if (newnmbjumbo9 > nmbjumbo9 && 230 nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) { 231 nmbjumbo9 = newnmbjumbo9; 232 nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9); 233 } else 234 error = EINVAL; 235 } 236 return (error); 237 } 238 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo9, CTLTYPE_INT|CTLFLAG_RW, 239 &nmbjumbo9, 0, sysctl_nmbjumbo9, "IU", 240 "Maximum number of mbuf 9k jumbo clusters allowed"); 241 242 static int 243 sysctl_nmbjumbo16(SYSCTL_HANDLER_ARGS) 244 { 245 int error, newnmbjumbo16; 246 247 newnmbjumbo16 = nmbjumbo16; 248 error = sysctl_handle_int(oidp, &newnmbjumbo16, 0, req); 249 if (error == 0 && req->newptr && newnmbjumbo16 != nmbjumbo16) { 250 if (newnmbjumbo16 > nmbjumbo16 && 251 nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) { 252 nmbjumbo16 = newnmbjumbo16; 253 nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16); 254 } else 255 error = EINVAL; 256 } 257 return (error); 258 } 259 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo16, CTLTYPE_INT|CTLFLAG_RW, 260 &nmbjumbo16, 0, sysctl_nmbjumbo16, "IU", 261 "Maximum number of mbuf 16k jumbo clusters allowed"); 262 263 static int 264 sysctl_nmbufs(SYSCTL_HANDLER_ARGS) 265 { 266 int error, newnmbufs; 267 268 newnmbufs = nmbufs; 269 error = sysctl_handle_int(oidp, &newnmbufs, 0, req); 270 if (error == 0 && req->newptr && newnmbufs != nmbufs) { 271 if (newnmbufs > nmbufs) { 272 nmbufs = newnmbufs; 273 nmbufs = uma_zone_set_max(zone_mbuf, nmbufs); 274 EVENTHANDLER_INVOKE(nmbufs_change); 275 } else 276 error = EINVAL; 277 } 278 return (error); 279 } 280 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs, CTLTYPE_INT|CTLFLAG_RW, 281 &nmbufs, 0, sysctl_nmbufs, "IU", 282 "Maximum number of mbufs allowed"); 283 284 /* 285 * Zones from which we allocate. 286 */ 287 uma_zone_t zone_mbuf; 288 uma_zone_t zone_clust; 289 uma_zone_t zone_pack; 290 uma_zone_t zone_jumbop; 291 uma_zone_t zone_jumbo9; 292 uma_zone_t zone_jumbo16; 293 uma_zone_t zone_extpgs; 294 295 /* 296 * Local prototypes. 297 */ 298 static int mb_ctor_mbuf(void *, int, void *, int); 299 static int mb_ctor_clust(void *, int, void *, int); 300 static int mb_ctor_pack(void *, int, void *, int); 301 static void mb_dtor_mbuf(void *, int, void *); 302 static void mb_dtor_pack(void *, int, void *); 303 static int mb_zinit_pack(void *, int, int); 304 static void mb_zfini_pack(void *, int); 305 static void mb_reclaim(uma_zone_t, int); 306 307 /* Ensure that MSIZE is a power of 2. */ 308 CTASSERT((((MSIZE - 1) ^ MSIZE) + 1) >> 1 == MSIZE); 309 310 _Static_assert(sizeof(struct mbuf_ext_pgs) == 256, 311 "mbuf_ext_pgs size mismatch"); 312 313 /* 314 * Initialize FreeBSD Network buffer allocation. 315 */ 316 static void 317 mbuf_init(void *dummy) 318 { 319 320 /* 321 * Configure UMA zones for Mbufs, Clusters, and Packets. 322 */ 323 zone_mbuf = uma_zcreate(MBUF_MEM_NAME, MSIZE, 324 mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL, 325 MSIZE - 1, UMA_ZONE_CONTIG | UMA_ZONE_MAXBUCKET); 326 if (nmbufs > 0) 327 nmbufs = uma_zone_set_max(zone_mbuf, nmbufs); 328 uma_zone_set_warning(zone_mbuf, "kern.ipc.nmbufs limit reached"); 329 uma_zone_set_maxaction(zone_mbuf, mb_reclaim); 330 331 zone_clust = uma_zcreate(MBUF_CLUSTER_MEM_NAME, MCLBYTES, 332 mb_ctor_clust, NULL, NULL, NULL, 333 UMA_ALIGN_PTR, UMA_ZONE_CONTIG); 334 if (nmbclusters > 0) 335 nmbclusters = uma_zone_set_max(zone_clust, nmbclusters); 336 uma_zone_set_warning(zone_clust, "kern.ipc.nmbclusters limit reached"); 337 uma_zone_set_maxaction(zone_clust, mb_reclaim); 338 339 zone_pack = uma_zsecond_create(MBUF_PACKET_MEM_NAME, mb_ctor_pack, 340 mb_dtor_pack, mb_zinit_pack, mb_zfini_pack, zone_mbuf); 341 342 /* Make jumbo frame zone too. Page size, 9k and 16k. */ 343 zone_jumbop = uma_zcreate(MBUF_JUMBOP_MEM_NAME, MJUMPAGESIZE, 344 mb_ctor_clust, NULL, NULL, NULL, 345 UMA_ALIGN_PTR, UMA_ZONE_CONTIG); 346 if (nmbjumbop > 0) 347 nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop); 348 uma_zone_set_warning(zone_jumbop, "kern.ipc.nmbjumbop limit reached"); 349 uma_zone_set_maxaction(zone_jumbop, mb_reclaim); 350 351 zone_jumbo9 = uma_zcreate(MBUF_JUMBO9_MEM_NAME, MJUM9BYTES, 352 mb_ctor_clust, NULL, NULL, NULL, 353 UMA_ALIGN_PTR, UMA_ZONE_CONTIG); 354 if (nmbjumbo9 > 0) 355 nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9); 356 uma_zone_set_warning(zone_jumbo9, "kern.ipc.nmbjumbo9 limit reached"); 357 uma_zone_set_maxaction(zone_jumbo9, mb_reclaim); 358 359 zone_jumbo16 = uma_zcreate(MBUF_JUMBO16_MEM_NAME, MJUM16BYTES, 360 mb_ctor_clust, NULL, NULL, NULL, 361 UMA_ALIGN_PTR, UMA_ZONE_CONTIG); 362 if (nmbjumbo16 > 0) 363 nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16); 364 uma_zone_set_warning(zone_jumbo16, "kern.ipc.nmbjumbo16 limit reached"); 365 uma_zone_set_maxaction(zone_jumbo16, mb_reclaim); 366 367 zone_extpgs = uma_zcreate(MBUF_EXTPGS_MEM_NAME, 368 sizeof(struct mbuf_ext_pgs), 369 NULL, NULL, NULL, NULL, 370 UMA_ALIGN_CACHE, 0); 371 372 /* 373 * Hook event handler for low-memory situation, used to 374 * drain protocols and push data back to the caches (UMA 375 * later pushes it back to VM). 376 */ 377 EVENTHANDLER_REGISTER(vm_lowmem, mb_reclaim, NULL, 378 EVENTHANDLER_PRI_FIRST); 379 380 snd_tag_count = counter_u64_alloc(M_WAITOK); 381 } 382 SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbuf_init, NULL); 383 384 #ifdef DEBUGNET 385 /* 386 * debugnet makes use of a pre-allocated pool of mbufs and clusters. When 387 * debugnet is configured, we initialize a set of UMA cache zones which return 388 * items from this pool. At panic-time, the regular UMA zone pointers are 389 * overwritten with those of the cache zones so that drivers may allocate and 390 * free mbufs and clusters without attempting to allocate physical memory. 391 * 392 * We keep mbufs and clusters in a pair of mbuf queues. In particular, for 393 * the purpose of caching clusters, we treat them as mbufs. 394 */ 395 static struct mbufq dn_mbufq = 396 { STAILQ_HEAD_INITIALIZER(dn_mbufq.mq_head), 0, INT_MAX }; 397 static struct mbufq dn_clustq = 398 { STAILQ_HEAD_INITIALIZER(dn_clustq.mq_head), 0, INT_MAX }; 399 400 static int dn_clsize; 401 static uma_zone_t dn_zone_mbuf; 402 static uma_zone_t dn_zone_clust; 403 static uma_zone_t dn_zone_pack; 404 405 static struct debugnet_saved_zones { 406 uma_zone_t dsz_mbuf; 407 uma_zone_t dsz_clust; 408 uma_zone_t dsz_pack; 409 uma_zone_t dsz_jumbop; 410 uma_zone_t dsz_jumbo9; 411 uma_zone_t dsz_jumbo16; 412 bool dsz_debugnet_zones_enabled; 413 } dn_saved_zones; 414 415 static int 416 dn_buf_import(void *arg, void **store, int count, int domain __unused, 417 int flags) 418 { 419 struct mbufq *q; 420 struct mbuf *m; 421 int i; 422 423 q = arg; 424 425 for (i = 0; i < count; i++) { 426 m = mbufq_dequeue(q); 427 if (m == NULL) 428 break; 429 trash_init(m, q == &dn_mbufq ? MSIZE : dn_clsize, flags); 430 store[i] = m; 431 } 432 KASSERT((flags & M_WAITOK) == 0 || i == count, 433 ("%s: ran out of pre-allocated mbufs", __func__)); 434 return (i); 435 } 436 437 static void 438 dn_buf_release(void *arg, void **store, int count) 439 { 440 struct mbufq *q; 441 struct mbuf *m; 442 int i; 443 444 q = arg; 445 446 for (i = 0; i < count; i++) { 447 m = store[i]; 448 (void)mbufq_enqueue(q, m); 449 } 450 } 451 452 static int 453 dn_pack_import(void *arg __unused, void **store, int count, int domain __unused, 454 int flags __unused) 455 { 456 struct mbuf *m; 457 void *clust; 458 int i; 459 460 for (i = 0; i < count; i++) { 461 m = m_get(MT_DATA, M_NOWAIT); 462 if (m == NULL) 463 break; 464 clust = uma_zalloc(dn_zone_clust, M_NOWAIT); 465 if (clust == NULL) { 466 m_free(m); 467 break; 468 } 469 mb_ctor_clust(clust, dn_clsize, m, 0); 470 store[i] = m; 471 } 472 KASSERT((flags & M_WAITOK) == 0 || i == count, 473 ("%s: ran out of pre-allocated mbufs", __func__)); 474 return (i); 475 } 476 477 static void 478 dn_pack_release(void *arg __unused, void **store, int count) 479 { 480 struct mbuf *m; 481 void *clust; 482 int i; 483 484 for (i = 0; i < count; i++) { 485 m = store[i]; 486 clust = m->m_ext.ext_buf; 487 uma_zfree(dn_zone_clust, clust); 488 uma_zfree(dn_zone_mbuf, m); 489 } 490 } 491 492 /* 493 * Free the pre-allocated mbufs and clusters reserved for debugnet, and destroy 494 * the corresponding UMA cache zones. 495 */ 496 void 497 debugnet_mbuf_drain(void) 498 { 499 struct mbuf *m; 500 void *item; 501 502 if (dn_zone_mbuf != NULL) { 503 uma_zdestroy(dn_zone_mbuf); 504 dn_zone_mbuf = NULL; 505 } 506 if (dn_zone_clust != NULL) { 507 uma_zdestroy(dn_zone_clust); 508 dn_zone_clust = NULL; 509 } 510 if (dn_zone_pack != NULL) { 511 uma_zdestroy(dn_zone_pack); 512 dn_zone_pack = NULL; 513 } 514 515 while ((m = mbufq_dequeue(&dn_mbufq)) != NULL) 516 m_free(m); 517 while ((item = mbufq_dequeue(&dn_clustq)) != NULL) 518 uma_zfree(m_getzone(dn_clsize), item); 519 } 520 521 /* 522 * Callback invoked immediately prior to starting a debugnet connection. 523 */ 524 void 525 debugnet_mbuf_start(void) 526 { 527 528 MPASS(!dn_saved_zones.dsz_debugnet_zones_enabled); 529 530 /* Save the old zone pointers to restore when debugnet is closed. */ 531 dn_saved_zones = (struct debugnet_saved_zones) { 532 .dsz_debugnet_zones_enabled = true, 533 .dsz_mbuf = zone_mbuf, 534 .dsz_clust = zone_clust, 535 .dsz_pack = zone_pack, 536 .dsz_jumbop = zone_jumbop, 537 .dsz_jumbo9 = zone_jumbo9, 538 .dsz_jumbo16 = zone_jumbo16, 539 }; 540 541 /* 542 * All cluster zones return buffers of the size requested by the 543 * drivers. It's up to the driver to reinitialize the zones if the 544 * MTU of a debugnet-enabled interface changes. 545 */ 546 printf("debugnet: overwriting mbuf zone pointers\n"); 547 zone_mbuf = dn_zone_mbuf; 548 zone_clust = dn_zone_clust; 549 zone_pack = dn_zone_pack; 550 zone_jumbop = dn_zone_clust; 551 zone_jumbo9 = dn_zone_clust; 552 zone_jumbo16 = dn_zone_clust; 553 } 554 555 /* 556 * Callback invoked when a debugnet connection is closed/finished. 557 */ 558 void 559 debugnet_mbuf_finish(void) 560 { 561 562 MPASS(dn_saved_zones.dsz_debugnet_zones_enabled); 563 564 printf("debugnet: restoring mbuf zone pointers\n"); 565 zone_mbuf = dn_saved_zones.dsz_mbuf; 566 zone_clust = dn_saved_zones.dsz_clust; 567 zone_pack = dn_saved_zones.dsz_pack; 568 zone_jumbop = dn_saved_zones.dsz_jumbop; 569 zone_jumbo9 = dn_saved_zones.dsz_jumbo9; 570 zone_jumbo16 = dn_saved_zones.dsz_jumbo16; 571 572 memset(&dn_saved_zones, 0, sizeof(dn_saved_zones)); 573 } 574 575 /* 576 * Reinitialize the debugnet mbuf+cluster pool and cache zones. 577 */ 578 void 579 debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize) 580 { 581 struct mbuf *m; 582 void *item; 583 584 debugnet_mbuf_drain(); 585 586 dn_clsize = clsize; 587 588 dn_zone_mbuf = uma_zcache_create("debugnet_" MBUF_MEM_NAME, 589 MSIZE, mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL, 590 dn_buf_import, dn_buf_release, 591 &dn_mbufq, UMA_ZONE_NOBUCKET); 592 593 dn_zone_clust = uma_zcache_create("debugnet_" MBUF_CLUSTER_MEM_NAME, 594 clsize, mb_ctor_clust, NULL, NULL, NULL, 595 dn_buf_import, dn_buf_release, 596 &dn_clustq, UMA_ZONE_NOBUCKET); 597 598 dn_zone_pack = uma_zcache_create("debugnet_" MBUF_PACKET_MEM_NAME, 599 MCLBYTES, mb_ctor_pack, mb_dtor_pack, NULL, NULL, 600 dn_pack_import, dn_pack_release, 601 NULL, UMA_ZONE_NOBUCKET); 602 603 while (nmbuf-- > 0) { 604 m = m_get(MT_DATA, M_WAITOK); 605 uma_zfree(dn_zone_mbuf, m); 606 } 607 while (nclust-- > 0) { 608 item = uma_zalloc(m_getzone(dn_clsize), M_WAITOK); 609 uma_zfree(dn_zone_clust, item); 610 } 611 } 612 #endif /* DEBUGNET */ 613 614 /* 615 * Constructor for Mbuf master zone. 616 * 617 * The 'arg' pointer points to a mb_args structure which 618 * contains call-specific information required to support the 619 * mbuf allocation API. See mbuf.h. 620 */ 621 static int 622 mb_ctor_mbuf(void *mem, int size, void *arg, int how) 623 { 624 struct mbuf *m; 625 struct mb_args *args; 626 int error; 627 int flags; 628 short type; 629 630 args = (struct mb_args *)arg; 631 type = args->type; 632 633 /* 634 * The mbuf is initialized later. The caller has the 635 * responsibility to set up any MAC labels too. 636 */ 637 if (type == MT_NOINIT) 638 return (0); 639 640 m = (struct mbuf *)mem; 641 flags = args->flags; 642 MPASS((flags & M_NOFREE) == 0); 643 644 error = m_init(m, how, type, flags); 645 646 return (error); 647 } 648 649 /* 650 * The Mbuf master zone destructor. 651 */ 652 static void 653 mb_dtor_mbuf(void *mem, int size, void *arg) 654 { 655 struct mbuf *m; 656 unsigned long flags; 657 658 m = (struct mbuf *)mem; 659 flags = (unsigned long)arg; 660 661 KASSERT((m->m_flags & M_NOFREE) == 0, ("%s: M_NOFREE set", __func__)); 662 if (!(flags & MB_DTOR_SKIP) && (m->m_flags & M_PKTHDR) && !SLIST_EMPTY(&m->m_pkthdr.tags)) 663 m_tag_delete_chain(m, NULL); 664 } 665 666 /* 667 * The Mbuf Packet zone destructor. 668 */ 669 static void 670 mb_dtor_pack(void *mem, int size, void *arg) 671 { 672 struct mbuf *m; 673 674 m = (struct mbuf *)mem; 675 if ((m->m_flags & M_PKTHDR) != 0) 676 m_tag_delete_chain(m, NULL); 677 678 /* Make sure we've got a clean cluster back. */ 679 KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__)); 680 KASSERT(m->m_ext.ext_buf != NULL, ("%s: ext_buf == NULL", __func__)); 681 KASSERT(m->m_ext.ext_free == NULL, ("%s: ext_free != NULL", __func__)); 682 KASSERT(m->m_ext.ext_arg1 == NULL, ("%s: ext_arg1 != NULL", __func__)); 683 KASSERT(m->m_ext.ext_arg2 == NULL, ("%s: ext_arg2 != NULL", __func__)); 684 KASSERT(m->m_ext.ext_size == MCLBYTES, ("%s: ext_size != MCLBYTES", __func__)); 685 KASSERT(m->m_ext.ext_type == EXT_PACKET, ("%s: ext_type != EXT_PACKET", __func__)); 686 #ifdef INVARIANTS 687 trash_dtor(m->m_ext.ext_buf, MCLBYTES, arg); 688 #endif 689 /* 690 * If there are processes blocked on zone_clust, waiting for pages 691 * to be freed up, cause them to be woken up by draining the 692 * packet zone. We are exposed to a race here (in the check for 693 * the UMA_ZFLAG_FULL) where we might miss the flag set, but that 694 * is deliberate. We don't want to acquire the zone lock for every 695 * mbuf free. 696 */ 697 if (uma_zone_exhausted(zone_clust)) 698 uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN); 699 } 700 701 /* 702 * The Cluster and Jumbo[PAGESIZE|9|16] zone constructor. 703 * 704 * Here the 'arg' pointer points to the Mbuf which we 705 * are configuring cluster storage for. If 'arg' is 706 * empty we allocate just the cluster without setting 707 * the mbuf to it. See mbuf.h. 708 */ 709 static int 710 mb_ctor_clust(void *mem, int size, void *arg, int how) 711 { 712 struct mbuf *m; 713 714 m = (struct mbuf *)arg; 715 if (m != NULL) { 716 m->m_ext.ext_buf = (char *)mem; 717 m->m_data = m->m_ext.ext_buf; 718 m->m_flags |= M_EXT; 719 m->m_ext.ext_free = NULL; 720 m->m_ext.ext_arg1 = NULL; 721 m->m_ext.ext_arg2 = NULL; 722 m->m_ext.ext_size = size; 723 m->m_ext.ext_type = m_gettype(size); 724 m->m_ext.ext_flags = EXT_FLAG_EMBREF; 725 m->m_ext.ext_count = 1; 726 } 727 728 return (0); 729 } 730 731 /* 732 * The Packet secondary zone's init routine, executed on the 733 * object's transition from mbuf keg slab to zone cache. 734 */ 735 static int 736 mb_zinit_pack(void *mem, int size, int how) 737 { 738 struct mbuf *m; 739 740 m = (struct mbuf *)mem; /* m is virgin. */ 741 if (uma_zalloc_arg(zone_clust, m, how) == NULL || 742 m->m_ext.ext_buf == NULL) 743 return (ENOMEM); 744 m->m_ext.ext_type = EXT_PACKET; /* Override. */ 745 #ifdef INVARIANTS 746 trash_init(m->m_ext.ext_buf, MCLBYTES, how); 747 #endif 748 return (0); 749 } 750 751 /* 752 * The Packet secondary zone's fini routine, executed on the 753 * object's transition from zone cache to keg slab. 754 */ 755 static void 756 mb_zfini_pack(void *mem, int size) 757 { 758 struct mbuf *m; 759 760 m = (struct mbuf *)mem; 761 #ifdef INVARIANTS 762 trash_fini(m->m_ext.ext_buf, MCLBYTES); 763 #endif 764 uma_zfree_arg(zone_clust, m->m_ext.ext_buf, NULL); 765 #ifdef INVARIANTS 766 trash_dtor(mem, size, NULL); 767 #endif 768 } 769 770 /* 771 * The "packet" keg constructor. 772 */ 773 static int 774 mb_ctor_pack(void *mem, int size, void *arg, int how) 775 { 776 struct mbuf *m; 777 struct mb_args *args; 778 int error, flags; 779 short type; 780 781 m = (struct mbuf *)mem; 782 args = (struct mb_args *)arg; 783 flags = args->flags; 784 type = args->type; 785 MPASS((flags & M_NOFREE) == 0); 786 787 #ifdef INVARIANTS 788 trash_ctor(m->m_ext.ext_buf, MCLBYTES, arg, how); 789 #endif 790 791 error = m_init(m, how, type, flags); 792 793 /* m_ext is already initialized. */ 794 m->m_data = m->m_ext.ext_buf; 795 m->m_flags = (flags | M_EXT); 796 797 return (error); 798 } 799 800 /* 801 * This is the protocol drain routine. Called by UMA whenever any of the 802 * mbuf zones is closed to its limit. 803 * 804 * No locks should be held when this is called. The drain routines have to 805 * presently acquire some locks which raises the possibility of lock order 806 * reversal. 807 */ 808 static void 809 mb_reclaim(uma_zone_t zone __unused, int pending __unused) 810 { 811 struct epoch_tracker et; 812 struct domain *dp; 813 struct protosw *pr; 814 815 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK | WARN_PANIC, NULL, __func__); 816 817 NET_EPOCH_ENTER(et); 818 for (dp = domains; dp != NULL; dp = dp->dom_next) 819 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) 820 if (pr->pr_drain != NULL) 821 (*pr->pr_drain)(); 822 NET_EPOCH_EXIT(et); 823 } 824 825 /* 826 * Free "count" units of I/O from an mbuf chain. They could be held 827 * in EXT_PGS or just as a normal mbuf. This code is intended to be 828 * called in an error path (I/O error, closed connection, etc). 829 */ 830 void 831 mb_free_notready(struct mbuf *m, int count) 832 { 833 int i; 834 835 for (i = 0; i < count && m != NULL; i++) { 836 if ((m->m_flags & M_EXT) != 0 && 837 m->m_ext.ext_type == EXT_PGS) { 838 m->m_ext.ext_pgs->nrdy--; 839 if (m->m_ext.ext_pgs->nrdy != 0) 840 continue; 841 } 842 m = m_free(m); 843 } 844 KASSERT(i == count, ("Removed only %d items from %p", i, m)); 845 } 846 847 /* 848 * Compress an unmapped mbuf into a simple mbuf when it holds a small 849 * amount of data. This is used as a DOS defense to avoid having 850 * small packets tie up wired pages, an ext_pgs structure, and an 851 * mbuf. Since this converts the existing mbuf in place, it can only 852 * be used if there are no other references to 'm'. 853 */ 854 int 855 mb_unmapped_compress(struct mbuf *m) 856 { 857 volatile u_int *refcnt; 858 struct mbuf m_temp; 859 860 /* 861 * Assert that 'm' does not have a packet header. If 'm' had 862 * a packet header, it would only be able to hold MHLEN bytes 863 * and m_data would have to be initialized differently. 864 */ 865 KASSERT((m->m_flags & M_PKTHDR) == 0 && (m->m_flags & M_EXT) && 866 m->m_ext.ext_type == EXT_PGS, 867 ("%s: m %p !M_EXT or !EXT_PGS or M_PKTHDR", __func__, m)); 868 KASSERT(m->m_len <= MLEN, ("m_len too large %p", m)); 869 870 if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) { 871 refcnt = &m->m_ext.ext_count; 872 } else { 873 KASSERT(m->m_ext.ext_cnt != NULL, 874 ("%s: no refcounting pointer on %p", __func__, m)); 875 refcnt = m->m_ext.ext_cnt; 876 } 877 878 if (*refcnt != 1) 879 return (EBUSY); 880 881 /* 882 * Copy mbuf header and m_ext portion of 'm' to 'm_temp' to 883 * create a "fake" EXT_PGS mbuf that can be used with 884 * m_copydata() as well as the ext_free callback. 885 */ 886 memcpy(&m_temp, m, offsetof(struct mbuf, m_ext) + sizeof (m->m_ext)); 887 m_temp.m_next = NULL; 888 m_temp.m_nextpkt = NULL; 889 890 /* Turn 'm' into a "normal" mbuf. */ 891 m->m_flags &= ~(M_EXT | M_RDONLY | M_NOMAP); 892 m->m_data = m->m_dat; 893 894 /* Copy data from template's ext_pgs. */ 895 m_copydata(&m_temp, 0, m_temp.m_len, mtod(m, caddr_t)); 896 897 /* Free the backing pages. */ 898 m_temp.m_ext.ext_free(&m_temp); 899 900 /* Finally, free the ext_pgs struct. */ 901 uma_zfree(zone_extpgs, m_temp.m_ext.ext_pgs); 902 return (0); 903 } 904 905 /* 906 * These next few routines are used to permit downgrading an unmapped 907 * mbuf to a chain of mapped mbufs. This is used when an interface 908 * doesn't supported unmapped mbufs or if checksums need to be 909 * computed in software. 910 * 911 * Each unmapped mbuf is converted to a chain of mbufs. First, any 912 * TLS header data is stored in a regular mbuf. Second, each page of 913 * unmapped data is stored in an mbuf with an EXT_SFBUF external 914 * cluster. These mbufs use an sf_buf to provide a valid KVA for the 915 * associated physical page. They also hold a reference on the 916 * original EXT_PGS mbuf to ensure the physical page doesn't go away. 917 * Finally, any TLS trailer data is stored in a regular mbuf. 918 * 919 * mb_unmapped_free_mext() is the ext_free handler for the EXT_SFBUF 920 * mbufs. It frees the associated sf_buf and releases its reference 921 * on the original EXT_PGS mbuf. 922 * 923 * _mb_unmapped_to_ext() is a helper function that converts a single 924 * unmapped mbuf into a chain of mbufs. 925 * 926 * mb_unmapped_to_ext() is the public function that walks an mbuf 927 * chain converting any unmapped mbufs to mapped mbufs. It returns 928 * the new chain of unmapped mbufs on success. On failure it frees 929 * the original mbuf chain and returns NULL. 930 */ 931 static void 932 mb_unmapped_free_mext(struct mbuf *m) 933 { 934 struct sf_buf *sf; 935 struct mbuf *old_m; 936 937 sf = m->m_ext.ext_arg1; 938 sf_buf_free(sf); 939 940 /* Drop the reference on the backing EXT_PGS mbuf. */ 941 old_m = m->m_ext.ext_arg2; 942 mb_free_ext(old_m); 943 } 944 945 static struct mbuf * 946 _mb_unmapped_to_ext(struct mbuf *m) 947 { 948 struct mbuf_ext_pgs *ext_pgs; 949 struct mbuf *m_new, *top, *prev, *mref; 950 struct sf_buf *sf; 951 vm_page_t pg; 952 int i, len, off, pglen, pgoff, seglen, segoff; 953 volatile u_int *refcnt; 954 u_int ref_inc = 0; 955 956 MBUF_EXT_PGS_ASSERT(m); 957 ext_pgs = m->m_ext.ext_pgs; 958 len = m->m_len; 959 KASSERT(ext_pgs->tls == NULL, ("%s: can't convert TLS mbuf %p", 960 __func__, m)); 961 962 /* See if this is the mbuf that holds the embedded refcount. */ 963 if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) { 964 refcnt = &m->m_ext.ext_count; 965 mref = m; 966 } else { 967 KASSERT(m->m_ext.ext_cnt != NULL, 968 ("%s: no refcounting pointer on %p", __func__, m)); 969 refcnt = m->m_ext.ext_cnt; 970 mref = __containerof(refcnt, struct mbuf, m_ext.ext_count); 971 } 972 973 /* Skip over any data removed from the front. */ 974 off = mtod(m, vm_offset_t); 975 976 top = NULL; 977 if (ext_pgs->hdr_len != 0) { 978 if (off >= ext_pgs->hdr_len) { 979 off -= ext_pgs->hdr_len; 980 } else { 981 seglen = ext_pgs->hdr_len - off; 982 segoff = off; 983 seglen = min(seglen, len); 984 off = 0; 985 len -= seglen; 986 m_new = m_get(M_NOWAIT, MT_DATA); 987 if (m_new == NULL) 988 goto fail; 989 m_new->m_len = seglen; 990 prev = top = m_new; 991 memcpy(mtod(m_new, void *), &ext_pgs->hdr[segoff], 992 seglen); 993 } 994 } 995 pgoff = ext_pgs->first_pg_off; 996 for (i = 0; i < ext_pgs->npgs && len > 0; i++) { 997 pglen = mbuf_ext_pg_len(ext_pgs, i, pgoff); 998 if (off >= pglen) { 999 off -= pglen; 1000 pgoff = 0; 1001 continue; 1002 } 1003 seglen = pglen - off; 1004 segoff = pgoff + off; 1005 off = 0; 1006 seglen = min(seglen, len); 1007 len -= seglen; 1008 1009 pg = PHYS_TO_VM_PAGE(ext_pgs->pa[i]); 1010 m_new = m_get(M_NOWAIT, MT_DATA); 1011 if (m_new == NULL) 1012 goto fail; 1013 if (top == NULL) { 1014 top = prev = m_new; 1015 } else { 1016 prev->m_next = m_new; 1017 prev = m_new; 1018 } 1019 sf = sf_buf_alloc(pg, SFB_NOWAIT); 1020 if (sf == NULL) 1021 goto fail; 1022 1023 ref_inc++; 1024 m_extadd(m_new, (char *)sf_buf_kva(sf), PAGE_SIZE, 1025 mb_unmapped_free_mext, sf, mref, M_RDONLY, EXT_SFBUF); 1026 m_new->m_data += segoff; 1027 m_new->m_len = seglen; 1028 1029 pgoff = 0; 1030 }; 1031 if (len != 0) { 1032 KASSERT((off + len) <= ext_pgs->trail_len, 1033 ("off + len > trail (%d + %d > %d)", off, len, 1034 ext_pgs->trail_len)); 1035 m_new = m_get(M_NOWAIT, MT_DATA); 1036 if (m_new == NULL) 1037 goto fail; 1038 if (top == NULL) 1039 top = m_new; 1040 else 1041 prev->m_next = m_new; 1042 m_new->m_len = len; 1043 memcpy(mtod(m_new, void *), &ext_pgs->trail[off], len); 1044 } 1045 1046 if (ref_inc != 0) { 1047 /* 1048 * Obtain an additional reference on the old mbuf for 1049 * each created EXT_SFBUF mbuf. They will be dropped 1050 * in mb_unmapped_free_mext(). 1051 */ 1052 if (*refcnt == 1) 1053 *refcnt += ref_inc; 1054 else 1055 atomic_add_int(refcnt, ref_inc); 1056 } 1057 m_free(m); 1058 return (top); 1059 1060 fail: 1061 if (ref_inc != 0) { 1062 /* 1063 * Obtain an additional reference on the old mbuf for 1064 * each created EXT_SFBUF mbuf. They will be 1065 * immediately dropped when these mbufs are freed 1066 * below. 1067 */ 1068 if (*refcnt == 1) 1069 *refcnt += ref_inc; 1070 else 1071 atomic_add_int(refcnt, ref_inc); 1072 } 1073 m_free(m); 1074 m_freem(top); 1075 return (NULL); 1076 } 1077 1078 struct mbuf * 1079 mb_unmapped_to_ext(struct mbuf *top) 1080 { 1081 struct mbuf *m, *next, *prev = NULL; 1082 1083 prev = NULL; 1084 for (m = top; m != NULL; m = next) { 1085 /* m might be freed, so cache the next pointer. */ 1086 next = m->m_next; 1087 if (m->m_flags & M_NOMAP) { 1088 if (prev != NULL) { 1089 /* 1090 * Remove 'm' from the new chain so 1091 * that the 'top' chain terminates 1092 * before 'm' in case 'top' is freed 1093 * due to an error. 1094 */ 1095 prev->m_next = NULL; 1096 } 1097 m = _mb_unmapped_to_ext(m); 1098 if (m == NULL) { 1099 m_freem(top); 1100 m_freem(next); 1101 return (NULL); 1102 } 1103 if (prev == NULL) { 1104 top = m; 1105 } else { 1106 prev->m_next = m; 1107 } 1108 1109 /* 1110 * Replaced one mbuf with a chain, so we must 1111 * find the end of chain. 1112 */ 1113 prev = m_last(m); 1114 } else { 1115 if (prev != NULL) { 1116 prev->m_next = m; 1117 } 1118 prev = m; 1119 } 1120 } 1121 return (top); 1122 } 1123 1124 /* 1125 * Allocate an empty EXT_PGS mbuf. The ext_free routine is 1126 * responsible for freeing any pages backing this mbuf when it is 1127 * freed. 1128 */ 1129 struct mbuf * 1130 mb_alloc_ext_pgs(int how, bool pkthdr, m_ext_free_t ext_free) 1131 { 1132 struct mbuf *m; 1133 struct mbuf_ext_pgs *ext_pgs; 1134 1135 if (pkthdr) 1136 m = m_gethdr(how, MT_DATA); 1137 else 1138 m = m_get(how, MT_DATA); 1139 if (m == NULL) 1140 return (NULL); 1141 1142 ext_pgs = uma_zalloc(zone_extpgs, how); 1143 if (ext_pgs == NULL) { 1144 m_free(m); 1145 return (NULL); 1146 } 1147 ext_pgs->npgs = 0; 1148 ext_pgs->nrdy = 0; 1149 ext_pgs->first_pg_off = 0; 1150 ext_pgs->last_pg_len = 0; 1151 ext_pgs->flags = 0; 1152 ext_pgs->hdr_len = 0; 1153 ext_pgs->trail_len = 0; 1154 ext_pgs->tls = NULL; 1155 ext_pgs->so = NULL; 1156 m->m_data = NULL; 1157 m->m_flags |= (M_EXT | M_RDONLY | M_NOMAP); 1158 m->m_ext.ext_type = EXT_PGS; 1159 m->m_ext.ext_flags = EXT_FLAG_EMBREF; 1160 m->m_ext.ext_count = 1; 1161 m->m_ext.ext_pgs = ext_pgs; 1162 m->m_ext.ext_size = 0; 1163 m->m_ext.ext_free = ext_free; 1164 return (m); 1165 } 1166 1167 #ifdef INVARIANT_SUPPORT 1168 void 1169 mb_ext_pgs_check(struct mbuf_ext_pgs *ext_pgs) 1170 { 1171 1172 /* 1173 * NB: This expects a non-empty buffer (npgs > 0 and 1174 * last_pg_len > 0). 1175 */ 1176 KASSERT(ext_pgs->npgs > 0, 1177 ("ext_pgs with no valid pages: %p", ext_pgs)); 1178 KASSERT(ext_pgs->npgs <= nitems(ext_pgs->pa), 1179 ("ext_pgs with too many pages: %p", ext_pgs)); 1180 KASSERT(ext_pgs->nrdy <= ext_pgs->npgs, 1181 ("ext_pgs with too many ready pages: %p", ext_pgs)); 1182 KASSERT(ext_pgs->first_pg_off < PAGE_SIZE, 1183 ("ext_pgs with too large page offset: %p", ext_pgs)); 1184 KASSERT(ext_pgs->last_pg_len > 0, 1185 ("ext_pgs with zero last page length: %p", ext_pgs)); 1186 KASSERT(ext_pgs->last_pg_len <= PAGE_SIZE, 1187 ("ext_pgs with too large last page length: %p", ext_pgs)); 1188 if (ext_pgs->npgs == 1) { 1189 KASSERT(ext_pgs->first_pg_off + ext_pgs->last_pg_len <= 1190 PAGE_SIZE, ("ext_pgs with single page too large: %p", 1191 ext_pgs)); 1192 } 1193 KASSERT(ext_pgs->hdr_len <= sizeof(ext_pgs->hdr), 1194 ("ext_pgs with too large header length: %p", ext_pgs)); 1195 KASSERT(ext_pgs->trail_len <= sizeof(ext_pgs->trail), 1196 ("ext_pgs with too large header length: %p", ext_pgs)); 1197 } 1198 #endif 1199 1200 /* 1201 * Clean up after mbufs with M_EXT storage attached to them if the 1202 * reference count hits 1. 1203 */ 1204 void 1205 mb_free_ext(struct mbuf *m) 1206 { 1207 volatile u_int *refcnt; 1208 struct mbuf *mref; 1209 int freembuf; 1210 1211 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m)); 1212 1213 /* See if this is the mbuf that holds the embedded refcount. */ 1214 if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) { 1215 refcnt = &m->m_ext.ext_count; 1216 mref = m; 1217 } else { 1218 KASSERT(m->m_ext.ext_cnt != NULL, 1219 ("%s: no refcounting pointer on %p", __func__, m)); 1220 refcnt = m->m_ext.ext_cnt; 1221 mref = __containerof(refcnt, struct mbuf, m_ext.ext_count); 1222 } 1223 1224 /* 1225 * Check if the header is embedded in the cluster. It is 1226 * important that we can't touch any of the mbuf fields 1227 * after we have freed the external storage, since mbuf 1228 * could have been embedded in it. For now, the mbufs 1229 * embedded into the cluster are always of type EXT_EXTREF, 1230 * and for this type we won't free the mref. 1231 */ 1232 if (m->m_flags & M_NOFREE) { 1233 freembuf = 0; 1234 KASSERT(m->m_ext.ext_type == EXT_EXTREF || 1235 m->m_ext.ext_type == EXT_RXRING, 1236 ("%s: no-free mbuf %p has wrong type", __func__, m)); 1237 } else 1238 freembuf = 1; 1239 1240 /* Free attached storage if this mbuf is the only reference to it. */ 1241 if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) { 1242 switch (m->m_ext.ext_type) { 1243 case EXT_PACKET: 1244 /* The packet zone is special. */ 1245 if (*refcnt == 0) 1246 *refcnt = 1; 1247 uma_zfree(zone_pack, mref); 1248 break; 1249 case EXT_CLUSTER: 1250 uma_zfree(zone_clust, m->m_ext.ext_buf); 1251 uma_zfree(zone_mbuf, mref); 1252 break; 1253 case EXT_JUMBOP: 1254 uma_zfree(zone_jumbop, m->m_ext.ext_buf); 1255 uma_zfree(zone_mbuf, mref); 1256 break; 1257 case EXT_JUMBO9: 1258 uma_zfree(zone_jumbo9, m->m_ext.ext_buf); 1259 uma_zfree(zone_mbuf, mref); 1260 break; 1261 case EXT_JUMBO16: 1262 uma_zfree(zone_jumbo16, m->m_ext.ext_buf); 1263 uma_zfree(zone_mbuf, mref); 1264 break; 1265 case EXT_PGS: { 1266 #ifdef KERN_TLS 1267 struct mbuf_ext_pgs *pgs; 1268 struct ktls_session *tls; 1269 #endif 1270 1271 KASSERT(mref->m_ext.ext_free != NULL, 1272 ("%s: ext_free not set", __func__)); 1273 mref->m_ext.ext_free(mref); 1274 #ifdef KERN_TLS 1275 pgs = mref->m_ext.ext_pgs; 1276 tls = pgs->tls; 1277 if (tls != NULL && 1278 !refcount_release_if_not_last(&tls->refcount)) 1279 ktls_enqueue_to_free(pgs); 1280 else 1281 #endif 1282 uma_zfree(zone_extpgs, mref->m_ext.ext_pgs); 1283 uma_zfree(zone_mbuf, mref); 1284 break; 1285 } 1286 case EXT_SFBUF: 1287 case EXT_NET_DRV: 1288 case EXT_MOD_TYPE: 1289 case EXT_DISPOSABLE: 1290 KASSERT(mref->m_ext.ext_free != NULL, 1291 ("%s: ext_free not set", __func__)); 1292 mref->m_ext.ext_free(mref); 1293 uma_zfree(zone_mbuf, mref); 1294 break; 1295 case EXT_EXTREF: 1296 KASSERT(m->m_ext.ext_free != NULL, 1297 ("%s: ext_free not set", __func__)); 1298 m->m_ext.ext_free(m); 1299 break; 1300 case EXT_RXRING: 1301 KASSERT(m->m_ext.ext_free == NULL, 1302 ("%s: ext_free is set", __func__)); 1303 break; 1304 default: 1305 KASSERT(m->m_ext.ext_type == 0, 1306 ("%s: unknown ext_type", __func__)); 1307 } 1308 } 1309 1310 if (freembuf && m != mref) 1311 uma_zfree(zone_mbuf, m); 1312 } 1313 1314 /* 1315 * Official mbuf(9) allocation KPI for stack and drivers: 1316 * 1317 * m_get() - a single mbuf without any attachments, sys/mbuf.h. 1318 * m_gethdr() - a single mbuf initialized as M_PKTHDR, sys/mbuf.h. 1319 * m_getcl() - an mbuf + 2k cluster, sys/mbuf.h. 1320 * m_clget() - attach cluster to already allocated mbuf. 1321 * m_cljget() - attach jumbo cluster to already allocated mbuf. 1322 * m_get2() - allocate minimum mbuf that would fit size argument. 1323 * m_getm2() - allocate a chain of mbufs/clusters. 1324 * m_extadd() - attach external cluster to mbuf. 1325 * 1326 * m_free() - free single mbuf with its tags and ext, sys/mbuf.h. 1327 * m_freem() - free chain of mbufs. 1328 */ 1329 1330 int 1331 m_clget(struct mbuf *m, int how) 1332 { 1333 1334 KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT", 1335 __func__, m)); 1336 m->m_ext.ext_buf = (char *)NULL; 1337 uma_zalloc_arg(zone_clust, m, how); 1338 /* 1339 * On a cluster allocation failure, drain the packet zone and retry, 1340 * we might be able to loosen a few clusters up on the drain. 1341 */ 1342 if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) { 1343 uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN); 1344 uma_zalloc_arg(zone_clust, m, how); 1345 } 1346 MBUF_PROBE2(m__clget, m, how); 1347 return (m->m_flags & M_EXT); 1348 } 1349 1350 /* 1351 * m_cljget() is different from m_clget() as it can allocate clusters without 1352 * attaching them to an mbuf. In that case the return value is the pointer 1353 * to the cluster of the requested size. If an mbuf was specified, it gets 1354 * the cluster attached to it and the return value can be safely ignored. 1355 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES. 1356 */ 1357 void * 1358 m_cljget(struct mbuf *m, int how, int size) 1359 { 1360 uma_zone_t zone; 1361 void *retval; 1362 1363 if (m != NULL) { 1364 KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT", 1365 __func__, m)); 1366 m->m_ext.ext_buf = NULL; 1367 } 1368 1369 zone = m_getzone(size); 1370 retval = uma_zalloc_arg(zone, m, how); 1371 1372 MBUF_PROBE4(m__cljget, m, how, size, retval); 1373 1374 return (retval); 1375 } 1376 1377 /* 1378 * m_get2() allocates minimum mbuf that would fit "size" argument. 1379 */ 1380 struct mbuf * 1381 m_get2(int size, int how, short type, int flags) 1382 { 1383 struct mb_args args; 1384 struct mbuf *m, *n; 1385 1386 args.flags = flags; 1387 args.type = type; 1388 1389 if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0)) 1390 return (uma_zalloc_arg(zone_mbuf, &args, how)); 1391 if (size <= MCLBYTES) 1392 return (uma_zalloc_arg(zone_pack, &args, how)); 1393 1394 if (size > MJUMPAGESIZE) 1395 return (NULL); 1396 1397 m = uma_zalloc_arg(zone_mbuf, &args, how); 1398 if (m == NULL) 1399 return (NULL); 1400 1401 n = uma_zalloc_arg(zone_jumbop, m, how); 1402 if (n == NULL) { 1403 uma_zfree(zone_mbuf, m); 1404 return (NULL); 1405 } 1406 1407 return (m); 1408 } 1409 1410 /* 1411 * m_getjcl() returns an mbuf with a cluster of the specified size attached. 1412 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES. 1413 */ 1414 struct mbuf * 1415 m_getjcl(int how, short type, int flags, int size) 1416 { 1417 struct mb_args args; 1418 struct mbuf *m, *n; 1419 uma_zone_t zone; 1420 1421 if (size == MCLBYTES) 1422 return m_getcl(how, type, flags); 1423 1424 args.flags = flags; 1425 args.type = type; 1426 1427 m = uma_zalloc_arg(zone_mbuf, &args, how); 1428 if (m == NULL) 1429 return (NULL); 1430 1431 zone = m_getzone(size); 1432 n = uma_zalloc_arg(zone, m, how); 1433 if (n == NULL) { 1434 uma_zfree(zone_mbuf, m); 1435 return (NULL); 1436 } 1437 return (m); 1438 } 1439 1440 /* 1441 * Allocate a given length worth of mbufs and/or clusters (whatever fits 1442 * best) and return a pointer to the top of the allocated chain. If an 1443 * existing mbuf chain is provided, then we will append the new chain 1444 * to the existing one and return a pointer to the provided mbuf. 1445 */ 1446 struct mbuf * 1447 m_getm2(struct mbuf *m, int len, int how, short type, int flags) 1448 { 1449 struct mbuf *mb, *nm = NULL, *mtail = NULL; 1450 1451 KASSERT(len >= 0, ("%s: len is < 0", __func__)); 1452 1453 /* Validate flags. */ 1454 flags &= (M_PKTHDR | M_EOR); 1455 1456 /* Packet header mbuf must be first in chain. */ 1457 if ((flags & M_PKTHDR) && m != NULL) 1458 flags &= ~M_PKTHDR; 1459 1460 /* Loop and append maximum sized mbufs to the chain tail. */ 1461 while (len > 0) { 1462 if (len > MCLBYTES) 1463 mb = m_getjcl(how, type, (flags & M_PKTHDR), 1464 MJUMPAGESIZE); 1465 else if (len >= MINCLSIZE) 1466 mb = m_getcl(how, type, (flags & M_PKTHDR)); 1467 else if (flags & M_PKTHDR) 1468 mb = m_gethdr(how, type); 1469 else 1470 mb = m_get(how, type); 1471 1472 /* Fail the whole operation if one mbuf can't be allocated. */ 1473 if (mb == NULL) { 1474 if (nm != NULL) 1475 m_freem(nm); 1476 return (NULL); 1477 } 1478 1479 /* Book keeping. */ 1480 len -= M_SIZE(mb); 1481 if (mtail != NULL) 1482 mtail->m_next = mb; 1483 else 1484 nm = mb; 1485 mtail = mb; 1486 flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */ 1487 } 1488 if (flags & M_EOR) 1489 mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */ 1490 1491 /* If mbuf was supplied, append new chain to the end of it. */ 1492 if (m != NULL) { 1493 for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next) 1494 ; 1495 mtail->m_next = nm; 1496 mtail->m_flags &= ~M_EOR; 1497 } else 1498 m = nm; 1499 1500 return (m); 1501 } 1502 1503 /*- 1504 * Configure a provided mbuf to refer to the provided external storage 1505 * buffer and setup a reference count for said buffer. 1506 * 1507 * Arguments: 1508 * mb The existing mbuf to which to attach the provided buffer. 1509 * buf The address of the provided external storage buffer. 1510 * size The size of the provided buffer. 1511 * freef A pointer to a routine that is responsible for freeing the 1512 * provided external storage buffer. 1513 * args A pointer to an argument structure (of any type) to be passed 1514 * to the provided freef routine (may be NULL). 1515 * flags Any other flags to be passed to the provided mbuf. 1516 * type The type that the external storage buffer should be 1517 * labeled with. 1518 * 1519 * Returns: 1520 * Nothing. 1521 */ 1522 void 1523 m_extadd(struct mbuf *mb, char *buf, u_int size, m_ext_free_t freef, 1524 void *arg1, void *arg2, int flags, int type) 1525 { 1526 1527 KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__)); 1528 1529 mb->m_flags |= (M_EXT | flags); 1530 mb->m_ext.ext_buf = buf; 1531 mb->m_data = mb->m_ext.ext_buf; 1532 mb->m_ext.ext_size = size; 1533 mb->m_ext.ext_free = freef; 1534 mb->m_ext.ext_arg1 = arg1; 1535 mb->m_ext.ext_arg2 = arg2; 1536 mb->m_ext.ext_type = type; 1537 1538 if (type != EXT_EXTREF) { 1539 mb->m_ext.ext_count = 1; 1540 mb->m_ext.ext_flags = EXT_FLAG_EMBREF; 1541 } else 1542 mb->m_ext.ext_flags = 0; 1543 } 1544 1545 /* 1546 * Free an entire chain of mbufs and associated external buffers, if 1547 * applicable. 1548 */ 1549 void 1550 m_freem(struct mbuf *mb) 1551 { 1552 1553 MBUF_PROBE1(m__freem, mb); 1554 while (mb != NULL) 1555 mb = m_free(mb); 1556 } 1557 1558 void 1559 m_snd_tag_init(struct m_snd_tag *mst, struct ifnet *ifp) 1560 { 1561 1562 if_ref(ifp); 1563 mst->ifp = ifp; 1564 refcount_init(&mst->refcount, 1); 1565 counter_u64_add(snd_tag_count, 1); 1566 } 1567 1568 void 1569 m_snd_tag_destroy(struct m_snd_tag *mst) 1570 { 1571 struct ifnet *ifp; 1572 1573 ifp = mst->ifp; 1574 ifp->if_snd_tag_free(mst); 1575 if_rele(ifp); 1576 counter_u64_add(snd_tag_count, -1); 1577 } 1578