xref: /freebsd/sys/kern/kern_mbuf.c (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004, 2005,
5  *	Bosko Milekic <bmilekic@FreeBSD.org>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_param.h"
34 #include "opt_kern_tls.h"
35 
36 #include <sys/param.h>
37 #include <sys/conf.h>
38 #include <sys/domainset.h>
39 #include <sys/malloc.h>
40 #include <sys/systm.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/eventhandler.h>
44 #include <sys/kernel.h>
45 #include <sys/ktls.h>
46 #include <sys/limits.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/protosw.h>
50 #include <sys/refcount.h>
51 #include <sys/sf_buf.h>
52 #include <sys/smp.h>
53 #include <sys/socket.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/if.h>
57 #include <net/if_var.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_extern.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/uma.h>
65 #include <vm/uma_dbg.h>
66 
67 /*
68  * In FreeBSD, Mbufs and Mbuf Clusters are allocated from UMA
69  * Zones.
70  *
71  * Mbuf Clusters (2K, contiguous) are allocated from the Cluster
72  * Zone.  The Zone can be capped at kern.ipc.nmbclusters, if the
73  * administrator so desires.
74  *
75  * Mbufs are allocated from a UMA Master Zone called the Mbuf
76  * Zone.
77  *
78  * Additionally, FreeBSD provides a Packet Zone, which it
79  * configures as a Secondary Zone to the Mbuf Master Zone,
80  * thus sharing backend Slab kegs with the Mbuf Master Zone.
81  *
82  * Thus common-case allocations and locking are simplified:
83  *
84  *  m_clget()                m_getcl()
85  *    |                         |
86  *    |   .------------>[(Packet Cache)]    m_get(), m_gethdr()
87  *    |   |             [     Packet   ]            |
88  *  [(Cluster Cache)]   [    Secondary ]   [ (Mbuf Cache)     ]
89  *  [ Cluster Zone  ]   [     Zone     ]   [ Mbuf Master Zone ]
90  *        |                       \________         |
91  *  [ Cluster Keg   ]                      \       /
92  *        |	                         [ Mbuf Keg   ]
93  *  [ Cluster Slabs ]                         |
94  *        |                              [ Mbuf Slabs ]
95  *         \____________(VM)_________________/
96  *
97  *
98  * Whenever an object is allocated with uma_zalloc() out of
99  * one of the Zones its _ctor_ function is executed.  The same
100  * for any deallocation through uma_zfree() the _dtor_ function
101  * is executed.
102  *
103  * Caches are per-CPU and are filled from the Master Zone.
104  *
105  * Whenever an object is allocated from the underlying global
106  * memory pool it gets pre-initialized with the _zinit_ functions.
107  * When the Keg's are overfull objects get decommissioned with
108  * _zfini_ functions and free'd back to the global memory pool.
109  *
110  */
111 
112 int nmbufs;			/* limits number of mbufs */
113 int nmbclusters;		/* limits number of mbuf clusters */
114 int nmbjumbop;			/* limits number of page size jumbo clusters */
115 int nmbjumbo9;			/* limits number of 9k jumbo clusters */
116 int nmbjumbo16;			/* limits number of 16k jumbo clusters */
117 
118 bool mb_use_ext_pgs;		/* use EXT_PGS mbufs for sendfile & TLS */
119 SYSCTL_BOOL(_kern_ipc, OID_AUTO, mb_use_ext_pgs, CTLFLAG_RWTUN,
120     &mb_use_ext_pgs, 0,
121     "Use unmapped mbufs for sendfile(2) and TLS offload");
122 
123 static quad_t maxmbufmem;	/* overall real memory limit for all mbufs */
124 
125 SYSCTL_QUAD(_kern_ipc, OID_AUTO, maxmbufmem, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &maxmbufmem, 0,
126     "Maximum real memory allocatable to various mbuf types");
127 
128 static counter_u64_t snd_tag_count;
129 SYSCTL_COUNTER_U64(_kern_ipc, OID_AUTO, num_snd_tags, CTLFLAG_RW,
130     &snd_tag_count, "# of active mbuf send tags");
131 
132 /*
133  * tunable_mbinit() has to be run before any mbuf allocations are done.
134  */
135 static void
136 tunable_mbinit(void *dummy)
137 {
138 	quad_t realmem;
139 
140 	/*
141 	 * The default limit for all mbuf related memory is 1/2 of all
142 	 * available kernel memory (physical or kmem).
143 	 * At most it can be 3/4 of available kernel memory.
144 	 */
145 	realmem = qmin((quad_t)physmem * PAGE_SIZE, vm_kmem_size);
146 	maxmbufmem = realmem / 2;
147 	TUNABLE_QUAD_FETCH("kern.ipc.maxmbufmem", &maxmbufmem);
148 	if (maxmbufmem > realmem / 4 * 3)
149 		maxmbufmem = realmem / 4 * 3;
150 
151 	TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
152 	if (nmbclusters == 0)
153 		nmbclusters = maxmbufmem / MCLBYTES / 4;
154 
155 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbop", &nmbjumbop);
156 	if (nmbjumbop == 0)
157 		nmbjumbop = maxmbufmem / MJUMPAGESIZE / 4;
158 
159 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbo9", &nmbjumbo9);
160 	if (nmbjumbo9 == 0)
161 		nmbjumbo9 = maxmbufmem / MJUM9BYTES / 6;
162 
163 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbo16", &nmbjumbo16);
164 	if (nmbjumbo16 == 0)
165 		nmbjumbo16 = maxmbufmem / MJUM16BYTES / 6;
166 
167 	/*
168 	 * We need at least as many mbufs as we have clusters of
169 	 * the various types added together.
170 	 */
171 	TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
172 	if (nmbufs < nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16)
173 		nmbufs = lmax(maxmbufmem / MSIZE / 5,
174 		    nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16);
175 }
176 SYSINIT(tunable_mbinit, SI_SUB_KMEM, SI_ORDER_MIDDLE, tunable_mbinit, NULL);
177 
178 static int
179 sysctl_nmbclusters(SYSCTL_HANDLER_ARGS)
180 {
181 	int error, newnmbclusters;
182 
183 	newnmbclusters = nmbclusters;
184 	error = sysctl_handle_int(oidp, &newnmbclusters, 0, req);
185 	if (error == 0 && req->newptr && newnmbclusters != nmbclusters) {
186 		if (newnmbclusters > nmbclusters &&
187 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
188 			nmbclusters = newnmbclusters;
189 			nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
190 			EVENTHANDLER_INVOKE(nmbclusters_change);
191 		} else
192 			error = EINVAL;
193 	}
194 	return (error);
195 }
196 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbclusters,
197     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbclusters, 0,
198     sysctl_nmbclusters, "IU",
199     "Maximum number of mbuf clusters allowed");
200 
201 static int
202 sysctl_nmbjumbop(SYSCTL_HANDLER_ARGS)
203 {
204 	int error, newnmbjumbop;
205 
206 	newnmbjumbop = nmbjumbop;
207 	error = sysctl_handle_int(oidp, &newnmbjumbop, 0, req);
208 	if (error == 0 && req->newptr && newnmbjumbop != nmbjumbop) {
209 		if (newnmbjumbop > nmbjumbop &&
210 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
211 			nmbjumbop = newnmbjumbop;
212 			nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
213 		} else
214 			error = EINVAL;
215 	}
216 	return (error);
217 }
218 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbop,
219     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbjumbop, 0,
220     sysctl_nmbjumbop, "IU",
221     "Maximum number of mbuf page size jumbo clusters allowed");
222 
223 static int
224 sysctl_nmbjumbo9(SYSCTL_HANDLER_ARGS)
225 {
226 	int error, newnmbjumbo9;
227 
228 	newnmbjumbo9 = nmbjumbo9;
229 	error = sysctl_handle_int(oidp, &newnmbjumbo9, 0, req);
230 	if (error == 0 && req->newptr && newnmbjumbo9 != nmbjumbo9) {
231 		if (newnmbjumbo9 > nmbjumbo9 &&
232 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
233 			nmbjumbo9 = newnmbjumbo9;
234 			nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
235 		} else
236 			error = EINVAL;
237 	}
238 	return (error);
239 }
240 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo9,
241     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbjumbo9, 0,
242     sysctl_nmbjumbo9, "IU",
243     "Maximum number of mbuf 9k jumbo clusters allowed");
244 
245 static int
246 sysctl_nmbjumbo16(SYSCTL_HANDLER_ARGS)
247 {
248 	int error, newnmbjumbo16;
249 
250 	newnmbjumbo16 = nmbjumbo16;
251 	error = sysctl_handle_int(oidp, &newnmbjumbo16, 0, req);
252 	if (error == 0 && req->newptr && newnmbjumbo16 != nmbjumbo16) {
253 		if (newnmbjumbo16 > nmbjumbo16 &&
254 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
255 			nmbjumbo16 = newnmbjumbo16;
256 			nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
257 		} else
258 			error = EINVAL;
259 	}
260 	return (error);
261 }
262 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo16,
263     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbjumbo16, 0,
264     sysctl_nmbjumbo16, "IU",
265     "Maximum number of mbuf 16k jumbo clusters allowed");
266 
267 static int
268 sysctl_nmbufs(SYSCTL_HANDLER_ARGS)
269 {
270 	int error, newnmbufs;
271 
272 	newnmbufs = nmbufs;
273 	error = sysctl_handle_int(oidp, &newnmbufs, 0, req);
274 	if (error == 0 && req->newptr && newnmbufs != nmbufs) {
275 		if (newnmbufs > nmbufs) {
276 			nmbufs = newnmbufs;
277 			nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
278 			EVENTHANDLER_INVOKE(nmbufs_change);
279 		} else
280 			error = EINVAL;
281 	}
282 	return (error);
283 }
284 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs,
285     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
286     &nmbufs, 0, sysctl_nmbufs, "IU",
287     "Maximum number of mbufs allowed");
288 
289 /*
290  * Zones from which we allocate.
291  */
292 uma_zone_t	zone_mbuf;
293 uma_zone_t	zone_clust;
294 uma_zone_t	zone_pack;
295 uma_zone_t	zone_jumbop;
296 uma_zone_t	zone_jumbo9;
297 uma_zone_t	zone_jumbo16;
298 
299 /*
300  * Local prototypes.
301  */
302 static int	mb_ctor_mbuf(void *, int, void *, int);
303 static int	mb_ctor_clust(void *, int, void *, int);
304 static int	mb_ctor_pack(void *, int, void *, int);
305 static void	mb_dtor_mbuf(void *, int, void *);
306 static void	mb_dtor_pack(void *, int, void *);
307 static int	mb_zinit_pack(void *, int, int);
308 static void	mb_zfini_pack(void *, int);
309 static void	mb_reclaim(uma_zone_t, int);
310 
311 /* Ensure that MSIZE is a power of 2. */
312 CTASSERT((((MSIZE - 1) ^ MSIZE) + 1) >> 1 == MSIZE);
313 
314 _Static_assert(offsetof(struct mbuf, m_ext) ==
315     offsetof(struct mbuf, m_ext_pgs.m_ext),
316     "m_ext offset mismatch between mbuf and ext_pgs");
317 _Static_assert(sizeof(struct mbuf) <= MSIZE,
318     "size of mbuf exceeds MSIZE");
319 /*
320  * Initialize FreeBSD Network buffer allocation.
321  */
322 static void
323 mbuf_init(void *dummy)
324 {
325 
326 	/*
327 	 * Configure UMA zones for Mbufs, Clusters, and Packets.
328 	 */
329 	zone_mbuf = uma_zcreate(MBUF_MEM_NAME, MSIZE,
330 	    mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL,
331 	    MSIZE - 1, UMA_ZONE_CONTIG | UMA_ZONE_MAXBUCKET);
332 	if (nmbufs > 0)
333 		nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
334 	uma_zone_set_warning(zone_mbuf, "kern.ipc.nmbufs limit reached");
335 	uma_zone_set_maxaction(zone_mbuf, mb_reclaim);
336 
337 	zone_clust = uma_zcreate(MBUF_CLUSTER_MEM_NAME, MCLBYTES,
338 	    mb_ctor_clust, NULL, NULL, NULL,
339 	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
340 	if (nmbclusters > 0)
341 		nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
342 	uma_zone_set_warning(zone_clust, "kern.ipc.nmbclusters limit reached");
343 	uma_zone_set_maxaction(zone_clust, mb_reclaim);
344 
345 	zone_pack = uma_zsecond_create(MBUF_PACKET_MEM_NAME, mb_ctor_pack,
346 	    mb_dtor_pack, mb_zinit_pack, mb_zfini_pack, zone_mbuf);
347 
348 	/* Make jumbo frame zone too. Page size, 9k and 16k. */
349 	zone_jumbop = uma_zcreate(MBUF_JUMBOP_MEM_NAME, MJUMPAGESIZE,
350 	    mb_ctor_clust, NULL, NULL, NULL,
351 	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
352 	if (nmbjumbop > 0)
353 		nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
354 	uma_zone_set_warning(zone_jumbop, "kern.ipc.nmbjumbop limit reached");
355 	uma_zone_set_maxaction(zone_jumbop, mb_reclaim);
356 
357 	zone_jumbo9 = uma_zcreate(MBUF_JUMBO9_MEM_NAME, MJUM9BYTES,
358 	    mb_ctor_clust, NULL, NULL, NULL,
359 	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
360 	if (nmbjumbo9 > 0)
361 		nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
362 	uma_zone_set_warning(zone_jumbo9, "kern.ipc.nmbjumbo9 limit reached");
363 	uma_zone_set_maxaction(zone_jumbo9, mb_reclaim);
364 
365 	zone_jumbo16 = uma_zcreate(MBUF_JUMBO16_MEM_NAME, MJUM16BYTES,
366 	    mb_ctor_clust, NULL, NULL, NULL,
367 	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
368 	if (nmbjumbo16 > 0)
369 		nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
370 	uma_zone_set_warning(zone_jumbo16, "kern.ipc.nmbjumbo16 limit reached");
371 	uma_zone_set_maxaction(zone_jumbo16, mb_reclaim);
372 
373 	/*
374 	 * Hook event handler for low-memory situation, used to
375 	 * drain protocols and push data back to the caches (UMA
376 	 * later pushes it back to VM).
377 	 */
378 	EVENTHANDLER_REGISTER(vm_lowmem, mb_reclaim, NULL,
379 	    EVENTHANDLER_PRI_FIRST);
380 
381 	snd_tag_count = counter_u64_alloc(M_WAITOK);
382 }
383 SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbuf_init, NULL);
384 
385 #ifdef DEBUGNET
386 /*
387  * debugnet makes use of a pre-allocated pool of mbufs and clusters.  When
388  * debugnet is configured, we initialize a set of UMA cache zones which return
389  * items from this pool.  At panic-time, the regular UMA zone pointers are
390  * overwritten with those of the cache zones so that drivers may allocate and
391  * free mbufs and clusters without attempting to allocate physical memory.
392  *
393  * We keep mbufs and clusters in a pair of mbuf queues.  In particular, for
394  * the purpose of caching clusters, we treat them as mbufs.
395  */
396 static struct mbufq dn_mbufq =
397     { STAILQ_HEAD_INITIALIZER(dn_mbufq.mq_head), 0, INT_MAX };
398 static struct mbufq dn_clustq =
399     { STAILQ_HEAD_INITIALIZER(dn_clustq.mq_head), 0, INT_MAX };
400 
401 static int dn_clsize;
402 static uma_zone_t dn_zone_mbuf;
403 static uma_zone_t dn_zone_clust;
404 static uma_zone_t dn_zone_pack;
405 
406 static struct debugnet_saved_zones {
407 	uma_zone_t dsz_mbuf;
408 	uma_zone_t dsz_clust;
409 	uma_zone_t dsz_pack;
410 	uma_zone_t dsz_jumbop;
411 	uma_zone_t dsz_jumbo9;
412 	uma_zone_t dsz_jumbo16;
413 	bool dsz_debugnet_zones_enabled;
414 } dn_saved_zones;
415 
416 static int
417 dn_buf_import(void *arg, void **store, int count, int domain __unused,
418     int flags)
419 {
420 	struct mbufq *q;
421 	struct mbuf *m;
422 	int i;
423 
424 	q = arg;
425 
426 	for (i = 0; i < count; i++) {
427 		m = mbufq_dequeue(q);
428 		if (m == NULL)
429 			break;
430 		trash_init(m, q == &dn_mbufq ? MSIZE : dn_clsize, flags);
431 		store[i] = m;
432 	}
433 	KASSERT((flags & M_WAITOK) == 0 || i == count,
434 	    ("%s: ran out of pre-allocated mbufs", __func__));
435 	return (i);
436 }
437 
438 static void
439 dn_buf_release(void *arg, void **store, int count)
440 {
441 	struct mbufq *q;
442 	struct mbuf *m;
443 	int i;
444 
445 	q = arg;
446 
447 	for (i = 0; i < count; i++) {
448 		m = store[i];
449 		(void)mbufq_enqueue(q, m);
450 	}
451 }
452 
453 static int
454 dn_pack_import(void *arg __unused, void **store, int count, int domain __unused,
455     int flags __unused)
456 {
457 	struct mbuf *m;
458 	void *clust;
459 	int i;
460 
461 	for (i = 0; i < count; i++) {
462 		m = m_get(MT_DATA, M_NOWAIT);
463 		if (m == NULL)
464 			break;
465 		clust = uma_zalloc(dn_zone_clust, M_NOWAIT);
466 		if (clust == NULL) {
467 			m_free(m);
468 			break;
469 		}
470 		mb_ctor_clust(clust, dn_clsize, m, 0);
471 		store[i] = m;
472 	}
473 	KASSERT((flags & M_WAITOK) == 0 || i == count,
474 	    ("%s: ran out of pre-allocated mbufs", __func__));
475 	return (i);
476 }
477 
478 static void
479 dn_pack_release(void *arg __unused, void **store, int count)
480 {
481 	struct mbuf *m;
482 	void *clust;
483 	int i;
484 
485 	for (i = 0; i < count; i++) {
486 		m = store[i];
487 		clust = m->m_ext.ext_buf;
488 		uma_zfree(dn_zone_clust, clust);
489 		uma_zfree(dn_zone_mbuf, m);
490 	}
491 }
492 
493 /*
494  * Free the pre-allocated mbufs and clusters reserved for debugnet, and destroy
495  * the corresponding UMA cache zones.
496  */
497 void
498 debugnet_mbuf_drain(void)
499 {
500 	struct mbuf *m;
501 	void *item;
502 
503 	if (dn_zone_mbuf != NULL) {
504 		uma_zdestroy(dn_zone_mbuf);
505 		dn_zone_mbuf = NULL;
506 	}
507 	if (dn_zone_clust != NULL) {
508 		uma_zdestroy(dn_zone_clust);
509 		dn_zone_clust = NULL;
510 	}
511 	if (dn_zone_pack != NULL) {
512 		uma_zdestroy(dn_zone_pack);
513 		dn_zone_pack = NULL;
514 	}
515 
516 	while ((m = mbufq_dequeue(&dn_mbufq)) != NULL)
517 		m_free(m);
518 	while ((item = mbufq_dequeue(&dn_clustq)) != NULL)
519 		uma_zfree(m_getzone(dn_clsize), item);
520 }
521 
522 /*
523  * Callback invoked immediately prior to starting a debugnet connection.
524  */
525 void
526 debugnet_mbuf_start(void)
527 {
528 
529 	MPASS(!dn_saved_zones.dsz_debugnet_zones_enabled);
530 
531 	/* Save the old zone pointers to restore when debugnet is closed. */
532 	dn_saved_zones = (struct debugnet_saved_zones) {
533 		.dsz_debugnet_zones_enabled = true,
534 		.dsz_mbuf = zone_mbuf,
535 		.dsz_clust = zone_clust,
536 		.dsz_pack = zone_pack,
537 		.dsz_jumbop = zone_jumbop,
538 		.dsz_jumbo9 = zone_jumbo9,
539 		.dsz_jumbo16 = zone_jumbo16,
540 	};
541 
542 	/*
543 	 * All cluster zones return buffers of the size requested by the
544 	 * drivers.  It's up to the driver to reinitialize the zones if the
545 	 * MTU of a debugnet-enabled interface changes.
546 	 */
547 	printf("debugnet: overwriting mbuf zone pointers\n");
548 	zone_mbuf = dn_zone_mbuf;
549 	zone_clust = dn_zone_clust;
550 	zone_pack = dn_zone_pack;
551 	zone_jumbop = dn_zone_clust;
552 	zone_jumbo9 = dn_zone_clust;
553 	zone_jumbo16 = dn_zone_clust;
554 }
555 
556 /*
557  * Callback invoked when a debugnet connection is closed/finished.
558  */
559 void
560 debugnet_mbuf_finish(void)
561 {
562 
563 	MPASS(dn_saved_zones.dsz_debugnet_zones_enabled);
564 
565 	printf("debugnet: restoring mbuf zone pointers\n");
566 	zone_mbuf = dn_saved_zones.dsz_mbuf;
567 	zone_clust = dn_saved_zones.dsz_clust;
568 	zone_pack = dn_saved_zones.dsz_pack;
569 	zone_jumbop = dn_saved_zones.dsz_jumbop;
570 	zone_jumbo9 = dn_saved_zones.dsz_jumbo9;
571 	zone_jumbo16 = dn_saved_zones.dsz_jumbo16;
572 
573 	memset(&dn_saved_zones, 0, sizeof(dn_saved_zones));
574 }
575 
576 /*
577  * Reinitialize the debugnet mbuf+cluster pool and cache zones.
578  */
579 void
580 debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize)
581 {
582 	struct mbuf *m;
583 	void *item;
584 
585 	debugnet_mbuf_drain();
586 
587 	dn_clsize = clsize;
588 
589 	dn_zone_mbuf = uma_zcache_create("debugnet_" MBUF_MEM_NAME,
590 	    MSIZE, mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL,
591 	    dn_buf_import, dn_buf_release,
592 	    &dn_mbufq, UMA_ZONE_NOBUCKET);
593 
594 	dn_zone_clust = uma_zcache_create("debugnet_" MBUF_CLUSTER_MEM_NAME,
595 	    clsize, mb_ctor_clust, NULL, NULL, NULL,
596 	    dn_buf_import, dn_buf_release,
597 	    &dn_clustq, UMA_ZONE_NOBUCKET);
598 
599 	dn_zone_pack = uma_zcache_create("debugnet_" MBUF_PACKET_MEM_NAME,
600 	    MCLBYTES, mb_ctor_pack, mb_dtor_pack, NULL, NULL,
601 	    dn_pack_import, dn_pack_release,
602 	    NULL, UMA_ZONE_NOBUCKET);
603 
604 	while (nmbuf-- > 0) {
605 		m = m_get(MT_DATA, M_WAITOK);
606 		uma_zfree(dn_zone_mbuf, m);
607 	}
608 	while (nclust-- > 0) {
609 		item = uma_zalloc(m_getzone(dn_clsize), M_WAITOK);
610 		uma_zfree(dn_zone_clust, item);
611 	}
612 }
613 #endif /* DEBUGNET */
614 
615 /*
616  * Constructor for Mbuf master zone.
617  *
618  * The 'arg' pointer points to a mb_args structure which
619  * contains call-specific information required to support the
620  * mbuf allocation API.  See mbuf.h.
621  */
622 static int
623 mb_ctor_mbuf(void *mem, int size, void *arg, int how)
624 {
625 	struct mbuf *m;
626 	struct mb_args *args;
627 	int error;
628 	int flags;
629 	short type;
630 
631 	args = (struct mb_args *)arg;
632 	type = args->type;
633 
634 	/*
635 	 * The mbuf is initialized later.  The caller has the
636 	 * responsibility to set up any MAC labels too.
637 	 */
638 	if (type == MT_NOINIT)
639 		return (0);
640 
641 	m = (struct mbuf *)mem;
642 	flags = args->flags;
643 	MPASS((flags & M_NOFREE) == 0);
644 
645 	error = m_init(m, how, type, flags);
646 
647 	return (error);
648 }
649 
650 /*
651  * The Mbuf master zone destructor.
652  */
653 static void
654 mb_dtor_mbuf(void *mem, int size, void *arg)
655 {
656 	struct mbuf *m;
657 	unsigned long flags;
658 
659 	m = (struct mbuf *)mem;
660 	flags = (unsigned long)arg;
661 
662 	KASSERT((m->m_flags & M_NOFREE) == 0, ("%s: M_NOFREE set", __func__));
663 	if (!(flags & MB_DTOR_SKIP) && (m->m_flags & M_PKTHDR) && !SLIST_EMPTY(&m->m_pkthdr.tags))
664 		m_tag_delete_chain(m, NULL);
665 }
666 
667 /*
668  * The Mbuf Packet zone destructor.
669  */
670 static void
671 mb_dtor_pack(void *mem, int size, void *arg)
672 {
673 	struct mbuf *m;
674 
675 	m = (struct mbuf *)mem;
676 	if ((m->m_flags & M_PKTHDR) != 0)
677 		m_tag_delete_chain(m, NULL);
678 
679 	/* Make sure we've got a clean cluster back. */
680 	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
681 	KASSERT(m->m_ext.ext_buf != NULL, ("%s: ext_buf == NULL", __func__));
682 	KASSERT(m->m_ext.ext_free == NULL, ("%s: ext_free != NULL", __func__));
683 	KASSERT(m->m_ext.ext_arg1 == NULL, ("%s: ext_arg1 != NULL", __func__));
684 	KASSERT(m->m_ext.ext_arg2 == NULL, ("%s: ext_arg2 != NULL", __func__));
685 	KASSERT(m->m_ext.ext_size == MCLBYTES, ("%s: ext_size != MCLBYTES", __func__));
686 	KASSERT(m->m_ext.ext_type == EXT_PACKET, ("%s: ext_type != EXT_PACKET", __func__));
687 #ifdef INVARIANTS
688 	trash_dtor(m->m_ext.ext_buf, MCLBYTES, arg);
689 #endif
690 	/*
691 	 * If there are processes blocked on zone_clust, waiting for pages
692 	 * to be freed up, cause them to be woken up by draining the
693 	 * packet zone.  We are exposed to a race here (in the check for
694 	 * the UMA_ZFLAG_FULL) where we might miss the flag set, but that
695 	 * is deliberate. We don't want to acquire the zone lock for every
696 	 * mbuf free.
697 	 */
698 	if (uma_zone_exhausted(zone_clust))
699 		uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN);
700 }
701 
702 /*
703  * The Cluster and Jumbo[PAGESIZE|9|16] zone constructor.
704  *
705  * Here the 'arg' pointer points to the Mbuf which we
706  * are configuring cluster storage for.  If 'arg' is
707  * empty we allocate just the cluster without setting
708  * the mbuf to it.  See mbuf.h.
709  */
710 static int
711 mb_ctor_clust(void *mem, int size, void *arg, int how)
712 {
713 	struct mbuf *m;
714 
715 	m = (struct mbuf *)arg;
716 	if (m != NULL) {
717 		m->m_ext.ext_buf = (char *)mem;
718 		m->m_data = m->m_ext.ext_buf;
719 		m->m_flags |= M_EXT;
720 		m->m_ext.ext_free = NULL;
721 		m->m_ext.ext_arg1 = NULL;
722 		m->m_ext.ext_arg2 = NULL;
723 		m->m_ext.ext_size = size;
724 		m->m_ext.ext_type = m_gettype(size);
725 		m->m_ext.ext_flags = EXT_FLAG_EMBREF;
726 		m->m_ext.ext_count = 1;
727 	}
728 
729 	return (0);
730 }
731 
732 /*
733  * The Packet secondary zone's init routine, executed on the
734  * object's transition from mbuf keg slab to zone cache.
735  */
736 static int
737 mb_zinit_pack(void *mem, int size, int how)
738 {
739 	struct mbuf *m;
740 
741 	m = (struct mbuf *)mem;		/* m is virgin. */
742 	if (uma_zalloc_arg(zone_clust, m, how) == NULL ||
743 	    m->m_ext.ext_buf == NULL)
744 		return (ENOMEM);
745 	m->m_ext.ext_type = EXT_PACKET;	/* Override. */
746 #ifdef INVARIANTS
747 	trash_init(m->m_ext.ext_buf, MCLBYTES, how);
748 #endif
749 	return (0);
750 }
751 
752 /*
753  * The Packet secondary zone's fini routine, executed on the
754  * object's transition from zone cache to keg slab.
755  */
756 static void
757 mb_zfini_pack(void *mem, int size)
758 {
759 	struct mbuf *m;
760 
761 	m = (struct mbuf *)mem;
762 #ifdef INVARIANTS
763 	trash_fini(m->m_ext.ext_buf, MCLBYTES);
764 #endif
765 	uma_zfree_arg(zone_clust, m->m_ext.ext_buf, NULL);
766 #ifdef INVARIANTS
767 	trash_dtor(mem, size, NULL);
768 #endif
769 }
770 
771 /*
772  * The "packet" keg constructor.
773  */
774 static int
775 mb_ctor_pack(void *mem, int size, void *arg, int how)
776 {
777 	struct mbuf *m;
778 	struct mb_args *args;
779 	int error, flags;
780 	short type;
781 
782 	m = (struct mbuf *)mem;
783 	args = (struct mb_args *)arg;
784 	flags = args->flags;
785 	type = args->type;
786 	MPASS((flags & M_NOFREE) == 0);
787 
788 #ifdef INVARIANTS
789 	trash_ctor(m->m_ext.ext_buf, MCLBYTES, arg, how);
790 #endif
791 
792 	error = m_init(m, how, type, flags);
793 
794 	/* m_ext is already initialized. */
795 	m->m_data = m->m_ext.ext_buf;
796  	m->m_flags = (flags | M_EXT);
797 
798 	return (error);
799 }
800 
801 /*
802  * This is the protocol drain routine.  Called by UMA whenever any of the
803  * mbuf zones is closed to its limit.
804  *
805  * No locks should be held when this is called.  The drain routines have to
806  * presently acquire some locks which raises the possibility of lock order
807  * reversal.
808  */
809 static void
810 mb_reclaim(uma_zone_t zone __unused, int pending __unused)
811 {
812 	struct epoch_tracker et;
813 	struct domain *dp;
814 	struct protosw *pr;
815 
816 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK | WARN_PANIC, NULL, __func__);
817 
818 	NET_EPOCH_ENTER(et);
819 	for (dp = domains; dp != NULL; dp = dp->dom_next)
820 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
821 			if (pr->pr_drain != NULL)
822 				(*pr->pr_drain)();
823 	NET_EPOCH_EXIT(et);
824 }
825 
826 /*
827  * Free "count" units of I/O from an mbuf chain.  They could be held
828  * in EXT_PGS or just as a normal mbuf.  This code is intended to be
829  * called in an error path (I/O error, closed connection, etc).
830  */
831 void
832 mb_free_notready(struct mbuf *m, int count)
833 {
834 	int i;
835 
836 	for (i = 0; i < count && m != NULL; i++) {
837 		if ((m->m_flags & M_EXT) != 0 &&
838 		    m->m_ext.ext_type == EXT_PGS) {
839 			m->m_ext_pgs.nrdy--;
840 			if (m->m_ext_pgs.nrdy != 0)
841 				continue;
842 		}
843 		m = m_free(m);
844 	}
845 	KASSERT(i == count, ("Removed only %d items from %p", i, m));
846 }
847 
848 /*
849  * Compress an unmapped mbuf into a simple mbuf when it holds a small
850  * amount of data.  This is used as a DOS defense to avoid having
851  * small packets tie up wired pages, an ext_pgs structure, and an
852  * mbuf.  Since this converts the existing mbuf in place, it can only
853  * be used if there are no other references to 'm'.
854  */
855 int
856 mb_unmapped_compress(struct mbuf *m)
857 {
858 	volatile u_int *refcnt;
859 	struct mbuf m_temp;
860 
861 	/*
862 	 * Assert that 'm' does not have a packet header.  If 'm' had
863 	 * a packet header, it would only be able to hold MHLEN bytes
864 	 * and m_data would have to be initialized differently.
865 	 */
866 	KASSERT((m->m_flags & M_PKTHDR) == 0 && (m->m_flags & M_EXT) &&
867 	    m->m_ext.ext_type == EXT_PGS,
868             ("%s: m %p !M_EXT or !EXT_PGS or M_PKTHDR", __func__, m));
869 	KASSERT(m->m_len <= MLEN, ("m_len too large %p", m));
870 
871 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
872 		refcnt = &m->m_ext.ext_count;
873 	} else {
874 		KASSERT(m->m_ext.ext_cnt != NULL,
875 		    ("%s: no refcounting pointer on %p", __func__, m));
876 		refcnt = m->m_ext.ext_cnt;
877 	}
878 
879 	if (*refcnt != 1)
880 		return (EBUSY);
881 
882 	m_init(&m_temp, M_NOWAIT, MT_DATA, 0);
883 
884 	/* copy data out of old mbuf */
885 	m_copydata(m, 0, m->m_len, mtod(&m_temp, char *));
886 	m_temp.m_len = m->m_len;
887 
888 	/* Free the backing pages. */
889 	m->m_ext.ext_free(m);
890 
891 	/* Turn 'm' into a "normal" mbuf. */
892 	m->m_flags &= ~(M_EXT | M_RDONLY | M_NOMAP);
893 	m->m_data = m->m_dat;
894 
895 	/* copy data back into m */
896 	m_copydata(&m_temp, 0, m_temp.m_len, mtod(m, char *));
897 
898 	return (0);
899 }
900 
901 /*
902  * These next few routines are used to permit downgrading an unmapped
903  * mbuf to a chain of mapped mbufs.  This is used when an interface
904  * doesn't supported unmapped mbufs or if checksums need to be
905  * computed in software.
906  *
907  * Each unmapped mbuf is converted to a chain of mbufs.  First, any
908  * TLS header data is stored in a regular mbuf.  Second, each page of
909  * unmapped data is stored in an mbuf with an EXT_SFBUF external
910  * cluster.  These mbufs use an sf_buf to provide a valid KVA for the
911  * associated physical page.  They also hold a reference on the
912  * original EXT_PGS mbuf to ensure the physical page doesn't go away.
913  * Finally, any TLS trailer data is stored in a regular mbuf.
914  *
915  * mb_unmapped_free_mext() is the ext_free handler for the EXT_SFBUF
916  * mbufs.  It frees the associated sf_buf and releases its reference
917  * on the original EXT_PGS mbuf.
918  *
919  * _mb_unmapped_to_ext() is a helper function that converts a single
920  * unmapped mbuf into a chain of mbufs.
921  *
922  * mb_unmapped_to_ext() is the public function that walks an mbuf
923  * chain converting any unmapped mbufs to mapped mbufs.  It returns
924  * the new chain of unmapped mbufs on success.  On failure it frees
925  * the original mbuf chain and returns NULL.
926  */
927 static void
928 mb_unmapped_free_mext(struct mbuf *m)
929 {
930 	struct sf_buf *sf;
931 	struct mbuf *old_m;
932 
933 	sf = m->m_ext.ext_arg1;
934 	sf_buf_free(sf);
935 
936 	/* Drop the reference on the backing EXT_PGS mbuf. */
937 	old_m = m->m_ext.ext_arg2;
938 	mb_free_ext(old_m);
939 }
940 
941 static struct mbuf *
942 _mb_unmapped_to_ext(struct mbuf *m)
943 {
944 	struct mbuf_ext_pgs *ext_pgs;
945 	struct mbuf *m_new, *top, *prev, *mref;
946 	struct sf_buf *sf;
947 	vm_page_t pg;
948 	int i, len, off, pglen, pgoff, seglen, segoff;
949 	volatile u_int *refcnt;
950 	u_int ref_inc = 0;
951 
952 	MBUF_EXT_PGS_ASSERT(m);
953 	ext_pgs = &m->m_ext_pgs;
954 	len = m->m_len;
955 	KASSERT(ext_pgs->tls == NULL, ("%s: can't convert TLS mbuf %p",
956 	    __func__, m));
957 
958 	/* See if this is the mbuf that holds the embedded refcount. */
959 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
960 		refcnt = &m->m_ext.ext_count;
961 		mref = m;
962 	} else {
963 		KASSERT(m->m_ext.ext_cnt != NULL,
964 		    ("%s: no refcounting pointer on %p", __func__, m));
965 		refcnt = m->m_ext.ext_cnt;
966 		mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
967 	}
968 
969 	/* Skip over any data removed from the front. */
970 	off = mtod(m, vm_offset_t);
971 
972 	top = NULL;
973 	if (ext_pgs->hdr_len != 0) {
974 		if (off >= ext_pgs->hdr_len) {
975 			off -= ext_pgs->hdr_len;
976 		} else {
977 			seglen = ext_pgs->hdr_len - off;
978 			segoff = off;
979 			seglen = min(seglen, len);
980 			off = 0;
981 			len -= seglen;
982 			m_new = m_get(M_NOWAIT, MT_DATA);
983 			if (m_new == NULL)
984 				goto fail;
985 			m_new->m_len = seglen;
986 			prev = top = m_new;
987 			memcpy(mtod(m_new, void *), &ext_pgs->m_epg_hdr[segoff],
988 			    seglen);
989 		}
990 	}
991 	pgoff = ext_pgs->first_pg_off;
992 	for (i = 0; i < ext_pgs->npgs && len > 0; i++) {
993 		pglen = mbuf_ext_pg_len(ext_pgs, i, pgoff);
994 		if (off >= pglen) {
995 			off -= pglen;
996 			pgoff = 0;
997 			continue;
998 		}
999 		seglen = pglen - off;
1000 		segoff = pgoff + off;
1001 		off = 0;
1002 		seglen = min(seglen, len);
1003 		len -= seglen;
1004 
1005 		pg = PHYS_TO_VM_PAGE(ext_pgs->m_epg_pa[i]);
1006 		m_new = m_get(M_NOWAIT, MT_DATA);
1007 		if (m_new == NULL)
1008 			goto fail;
1009 		if (top == NULL) {
1010 			top = prev = m_new;
1011 		} else {
1012 			prev->m_next = m_new;
1013 			prev = m_new;
1014 		}
1015 		sf = sf_buf_alloc(pg, SFB_NOWAIT);
1016 		if (sf == NULL)
1017 			goto fail;
1018 
1019 		ref_inc++;
1020 		m_extadd(m_new, (char *)sf_buf_kva(sf), PAGE_SIZE,
1021 		    mb_unmapped_free_mext, sf, mref, M_RDONLY, EXT_SFBUF);
1022 		m_new->m_data += segoff;
1023 		m_new->m_len = seglen;
1024 
1025 		pgoff = 0;
1026 	};
1027 	if (len != 0) {
1028 		KASSERT((off + len) <= ext_pgs->trail_len,
1029 		    ("off + len > trail (%d + %d > %d)", off, len,
1030 		    ext_pgs->trail_len));
1031 		m_new = m_get(M_NOWAIT, MT_DATA);
1032 		if (m_new == NULL)
1033 			goto fail;
1034 		if (top == NULL)
1035 			top = m_new;
1036 		else
1037 			prev->m_next = m_new;
1038 		m_new->m_len = len;
1039 		memcpy(mtod(m_new, void *), &ext_pgs->m_epg_trail[off], len);
1040 	}
1041 
1042 	if (ref_inc != 0) {
1043 		/*
1044 		 * Obtain an additional reference on the old mbuf for
1045 		 * each created EXT_SFBUF mbuf.  They will be dropped
1046 		 * in mb_unmapped_free_mext().
1047 		 */
1048 		if (*refcnt == 1)
1049 			*refcnt += ref_inc;
1050 		else
1051 			atomic_add_int(refcnt, ref_inc);
1052 	}
1053 	m_free(m);
1054 	return (top);
1055 
1056 fail:
1057 	if (ref_inc != 0) {
1058 		/*
1059 		 * Obtain an additional reference on the old mbuf for
1060 		 * each created EXT_SFBUF mbuf.  They will be
1061 		 * immediately dropped when these mbufs are freed
1062 		 * below.
1063 		 */
1064 		if (*refcnt == 1)
1065 			*refcnt += ref_inc;
1066 		else
1067 			atomic_add_int(refcnt, ref_inc);
1068 	}
1069 	m_free(m);
1070 	m_freem(top);
1071 	return (NULL);
1072 }
1073 
1074 struct mbuf *
1075 mb_unmapped_to_ext(struct mbuf *top)
1076 {
1077 	struct mbuf *m, *next, *prev = NULL;
1078 
1079 	prev = NULL;
1080 	for (m = top; m != NULL; m = next) {
1081 		/* m might be freed, so cache the next pointer. */
1082 		next = m->m_next;
1083 		if (m->m_flags & M_NOMAP) {
1084 			if (prev != NULL) {
1085 				/*
1086 				 * Remove 'm' from the new chain so
1087 				 * that the 'top' chain terminates
1088 				 * before 'm' in case 'top' is freed
1089 				 * due to an error.
1090 				 */
1091 				prev->m_next = NULL;
1092 			}
1093 			m = _mb_unmapped_to_ext(m);
1094 			if (m == NULL) {
1095 				m_freem(top);
1096 				m_freem(next);
1097 				return (NULL);
1098 			}
1099 			if (prev == NULL) {
1100 				top = m;
1101 			} else {
1102 				prev->m_next = m;
1103 			}
1104 
1105 			/*
1106 			 * Replaced one mbuf with a chain, so we must
1107 			 * find the end of chain.
1108 			 */
1109 			prev = m_last(m);
1110 		} else {
1111 			if (prev != NULL) {
1112 				prev->m_next = m;
1113 			}
1114 			prev = m;
1115 		}
1116 	}
1117 	return (top);
1118 }
1119 
1120 /*
1121  * Allocate an empty EXT_PGS mbuf.  The ext_free routine is
1122  * responsible for freeing any pages backing this mbuf when it is
1123  * freed.
1124  */
1125 struct mbuf *
1126 mb_alloc_ext_pgs(int how, m_ext_free_t ext_free)
1127 {
1128 	struct mbuf *m;
1129 	struct mbuf_ext_pgs *ext_pgs;
1130 
1131 	m = m_get(how, MT_DATA);
1132 	if (m == NULL)
1133 		return (NULL);
1134 
1135 	ext_pgs = &m->m_ext_pgs;
1136 	ext_pgs->npgs = 0;
1137 	ext_pgs->nrdy = 0;
1138 	ext_pgs->first_pg_off = 0;
1139 	ext_pgs->last_pg_len = 0;
1140 	ext_pgs->flags = 0;
1141 	ext_pgs->hdr_len = 0;
1142 	ext_pgs->trail_len = 0;
1143 	ext_pgs->tls = NULL;
1144 	ext_pgs->so = NULL;
1145 	m->m_data = NULL;
1146 	m->m_flags |= (M_EXT | M_RDONLY | M_NOMAP);
1147 	m->m_ext.ext_type = EXT_PGS;
1148 	m->m_ext.ext_flags = EXT_FLAG_EMBREF;
1149 	m->m_ext.ext_count = 1;
1150 	m->m_ext.ext_size = 0;
1151 	m->m_ext.ext_free = ext_free;
1152 	return (m);
1153 }
1154 
1155 #ifdef INVARIANT_SUPPORT
1156 void
1157 mb_ext_pgs_check(struct mbuf_ext_pgs *ext_pgs)
1158 {
1159 
1160 	/*
1161 	 * NB: This expects a non-empty buffer (npgs > 0 and
1162 	 * last_pg_len > 0).
1163 	 */
1164 	KASSERT(ext_pgs->npgs > 0,
1165 	    ("ext_pgs with no valid pages: %p", ext_pgs));
1166 	KASSERT(ext_pgs->npgs <= nitems(ext_pgs->m_epg_pa),
1167 	    ("ext_pgs with too many pages: %p", ext_pgs));
1168 	KASSERT(ext_pgs->nrdy <= ext_pgs->npgs,
1169 	    ("ext_pgs with too many ready pages: %p", ext_pgs));
1170 	KASSERT(ext_pgs->first_pg_off < PAGE_SIZE,
1171 	    ("ext_pgs with too large page offset: %p", ext_pgs));
1172 	KASSERT(ext_pgs->last_pg_len > 0,
1173 	    ("ext_pgs with zero last page length: %p", ext_pgs));
1174 	KASSERT(ext_pgs->last_pg_len <= PAGE_SIZE,
1175 	    ("ext_pgs with too large last page length: %p", ext_pgs));
1176 	if (ext_pgs->npgs == 1) {
1177 		KASSERT(ext_pgs->first_pg_off + ext_pgs->last_pg_len <=
1178 		    PAGE_SIZE, ("ext_pgs with single page too large: %p",
1179 		    ext_pgs));
1180 	}
1181 	KASSERT(ext_pgs->hdr_len <= sizeof(ext_pgs->m_epg_hdr),
1182 	    ("ext_pgs with too large header length: %p", ext_pgs));
1183 	KASSERT(ext_pgs->trail_len <= sizeof(ext_pgs->m_epg_trail),
1184 	    ("ext_pgs with too large header length: %p", ext_pgs));
1185 }
1186 #endif
1187 
1188 /*
1189  * Clean up after mbufs with M_EXT storage attached to them if the
1190  * reference count hits 1.
1191  */
1192 void
1193 mb_free_ext(struct mbuf *m)
1194 {
1195 	volatile u_int *refcnt;
1196 	struct mbuf *mref;
1197 	int freembuf;
1198 
1199 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
1200 
1201 	/* See if this is the mbuf that holds the embedded refcount. */
1202 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
1203 		refcnt = &m->m_ext.ext_count;
1204 		mref = m;
1205 	} else {
1206 		KASSERT(m->m_ext.ext_cnt != NULL,
1207 		    ("%s: no refcounting pointer on %p", __func__, m));
1208 		refcnt = m->m_ext.ext_cnt;
1209 		mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
1210 	}
1211 
1212 	/*
1213 	 * Check if the header is embedded in the cluster.  It is
1214 	 * important that we can't touch any of the mbuf fields
1215 	 * after we have freed the external storage, since mbuf
1216 	 * could have been embedded in it.  For now, the mbufs
1217 	 * embedded into the cluster are always of type EXT_EXTREF,
1218 	 * and for this type we won't free the mref.
1219 	 */
1220 	if (m->m_flags & M_NOFREE) {
1221 		freembuf = 0;
1222 		KASSERT(m->m_ext.ext_type == EXT_EXTREF ||
1223 		    m->m_ext.ext_type == EXT_RXRING,
1224 		    ("%s: no-free mbuf %p has wrong type", __func__, m));
1225 	} else
1226 		freembuf = 1;
1227 
1228 	/* Free attached storage if this mbuf is the only reference to it. */
1229 	if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
1230 		switch (m->m_ext.ext_type) {
1231 		case EXT_PACKET:
1232 			/* The packet zone is special. */
1233 			if (*refcnt == 0)
1234 				*refcnt = 1;
1235 			uma_zfree(zone_pack, mref);
1236 			break;
1237 		case EXT_CLUSTER:
1238 			uma_zfree(zone_clust, m->m_ext.ext_buf);
1239 			uma_zfree(zone_mbuf, mref);
1240 			break;
1241 		case EXT_JUMBOP:
1242 			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
1243 			uma_zfree(zone_mbuf, mref);
1244 			break;
1245 		case EXT_JUMBO9:
1246 			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
1247 			uma_zfree(zone_mbuf, mref);
1248 			break;
1249 		case EXT_JUMBO16:
1250 			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
1251 			uma_zfree(zone_mbuf, mref);
1252 			break;
1253 		case EXT_PGS: {
1254 #ifdef KERN_TLS
1255 			struct mbuf_ext_pgs *pgs;
1256 			struct ktls_session *tls;
1257 #endif
1258 
1259 			KASSERT(mref->m_ext.ext_free != NULL,
1260 			    ("%s: ext_free not set", __func__));
1261 			mref->m_ext.ext_free(mref);
1262 #ifdef KERN_TLS
1263 			pgs = &mref->m_ext_pgs;
1264 			tls = pgs->tls;
1265 			if (tls != NULL &&
1266 			    !refcount_release_if_not_last(&tls->refcount))
1267 				ktls_enqueue_to_free(pgs);
1268 			else
1269 #endif
1270 				uma_zfree(zone_mbuf, mref);
1271 			break;
1272 		}
1273 		case EXT_SFBUF:
1274 		case EXT_NET_DRV:
1275 		case EXT_MOD_TYPE:
1276 		case EXT_DISPOSABLE:
1277 			KASSERT(mref->m_ext.ext_free != NULL,
1278 			    ("%s: ext_free not set", __func__));
1279 			mref->m_ext.ext_free(mref);
1280 			uma_zfree(zone_mbuf, mref);
1281 			break;
1282 		case EXT_EXTREF:
1283 			KASSERT(m->m_ext.ext_free != NULL,
1284 			    ("%s: ext_free not set", __func__));
1285 			m->m_ext.ext_free(m);
1286 			break;
1287 		case EXT_RXRING:
1288 			KASSERT(m->m_ext.ext_free == NULL,
1289 			    ("%s: ext_free is set", __func__));
1290 			break;
1291 		default:
1292 			KASSERT(m->m_ext.ext_type == 0,
1293 			    ("%s: unknown ext_type", __func__));
1294 		}
1295 	}
1296 
1297 	if (freembuf && m != mref)
1298 		uma_zfree(zone_mbuf, m);
1299 }
1300 
1301 /*
1302  * Official mbuf(9) allocation KPI for stack and drivers:
1303  *
1304  * m_get()	- a single mbuf without any attachments, sys/mbuf.h.
1305  * m_gethdr()	- a single mbuf initialized as M_PKTHDR, sys/mbuf.h.
1306  * m_getcl()	- an mbuf + 2k cluster, sys/mbuf.h.
1307  * m_clget()	- attach cluster to already allocated mbuf.
1308  * m_cljget()	- attach jumbo cluster to already allocated mbuf.
1309  * m_get2()	- allocate minimum mbuf that would fit size argument.
1310  * m_getm2()	- allocate a chain of mbufs/clusters.
1311  * m_extadd()	- attach external cluster to mbuf.
1312  *
1313  * m_free()	- free single mbuf with its tags and ext, sys/mbuf.h.
1314  * m_freem()	- free chain of mbufs.
1315  */
1316 
1317 int
1318 m_clget(struct mbuf *m, int how)
1319 {
1320 
1321 	KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
1322 	    __func__, m));
1323 	m->m_ext.ext_buf = (char *)NULL;
1324 	uma_zalloc_arg(zone_clust, m, how);
1325 	/*
1326 	 * On a cluster allocation failure, drain the packet zone and retry,
1327 	 * we might be able to loosen a few clusters up on the drain.
1328 	 */
1329 	if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) {
1330 		uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN);
1331 		uma_zalloc_arg(zone_clust, m, how);
1332 	}
1333 	MBUF_PROBE2(m__clget, m, how);
1334 	return (m->m_flags & M_EXT);
1335 }
1336 
1337 /*
1338  * m_cljget() is different from m_clget() as it can allocate clusters without
1339  * attaching them to an mbuf.  In that case the return value is the pointer
1340  * to the cluster of the requested size.  If an mbuf was specified, it gets
1341  * the cluster attached to it and the return value can be safely ignored.
1342  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
1343  */
1344 void *
1345 m_cljget(struct mbuf *m, int how, int size)
1346 {
1347 	uma_zone_t zone;
1348 	void *retval;
1349 
1350 	if (m != NULL) {
1351 		KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
1352 		    __func__, m));
1353 		m->m_ext.ext_buf = NULL;
1354 	}
1355 
1356 	zone = m_getzone(size);
1357 	retval = uma_zalloc_arg(zone, m, how);
1358 
1359 	MBUF_PROBE4(m__cljget, m, how, size, retval);
1360 
1361 	return (retval);
1362 }
1363 
1364 /*
1365  * m_get2() allocates minimum mbuf that would fit "size" argument.
1366  */
1367 struct mbuf *
1368 m_get2(int size, int how, short type, int flags)
1369 {
1370 	struct mb_args args;
1371 	struct mbuf *m, *n;
1372 
1373 	args.flags = flags;
1374 	args.type = type;
1375 
1376 	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
1377 		return (uma_zalloc_arg(zone_mbuf, &args, how));
1378 	if (size <= MCLBYTES)
1379 		return (uma_zalloc_arg(zone_pack, &args, how));
1380 
1381 	if (size > MJUMPAGESIZE)
1382 		return (NULL);
1383 
1384 	m = uma_zalloc_arg(zone_mbuf, &args, how);
1385 	if (m == NULL)
1386 		return (NULL);
1387 
1388 	n = uma_zalloc_arg(zone_jumbop, m, how);
1389 	if (n == NULL) {
1390 		uma_zfree(zone_mbuf, m);
1391 		return (NULL);
1392 	}
1393 
1394 	return (m);
1395 }
1396 
1397 /*
1398  * m_getjcl() returns an mbuf with a cluster of the specified size attached.
1399  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
1400  */
1401 struct mbuf *
1402 m_getjcl(int how, short type, int flags, int size)
1403 {
1404 	struct mb_args args;
1405 	struct mbuf *m, *n;
1406 	uma_zone_t zone;
1407 
1408 	if (size == MCLBYTES)
1409 		return m_getcl(how, type, flags);
1410 
1411 	args.flags = flags;
1412 	args.type = type;
1413 
1414 	m = uma_zalloc_arg(zone_mbuf, &args, how);
1415 	if (m == NULL)
1416 		return (NULL);
1417 
1418 	zone = m_getzone(size);
1419 	n = uma_zalloc_arg(zone, m, how);
1420 	if (n == NULL) {
1421 		uma_zfree(zone_mbuf, m);
1422 		return (NULL);
1423 	}
1424 	return (m);
1425 }
1426 
1427 /*
1428  * Allocate a given length worth of mbufs and/or clusters (whatever fits
1429  * best) and return a pointer to the top of the allocated chain.  If an
1430  * existing mbuf chain is provided, then we will append the new chain
1431  * to the existing one and return a pointer to the provided mbuf.
1432  */
1433 struct mbuf *
1434 m_getm2(struct mbuf *m, int len, int how, short type, int flags)
1435 {
1436 	struct mbuf *mb, *nm = NULL, *mtail = NULL;
1437 
1438 	KASSERT(len >= 0, ("%s: len is < 0", __func__));
1439 
1440 	/* Validate flags. */
1441 	flags &= (M_PKTHDR | M_EOR);
1442 
1443 	/* Packet header mbuf must be first in chain. */
1444 	if ((flags & M_PKTHDR) && m != NULL)
1445 		flags &= ~M_PKTHDR;
1446 
1447 	/* Loop and append maximum sized mbufs to the chain tail. */
1448 	while (len > 0) {
1449 		if (len > MCLBYTES)
1450 			mb = m_getjcl(how, type, (flags & M_PKTHDR),
1451 			    MJUMPAGESIZE);
1452 		else if (len >= MINCLSIZE)
1453 			mb = m_getcl(how, type, (flags & M_PKTHDR));
1454 		else if (flags & M_PKTHDR)
1455 			mb = m_gethdr(how, type);
1456 		else
1457 			mb = m_get(how, type);
1458 
1459 		/* Fail the whole operation if one mbuf can't be allocated. */
1460 		if (mb == NULL) {
1461 			if (nm != NULL)
1462 				m_freem(nm);
1463 			return (NULL);
1464 		}
1465 
1466 		/* Book keeping. */
1467 		len -= M_SIZE(mb);
1468 		if (mtail != NULL)
1469 			mtail->m_next = mb;
1470 		else
1471 			nm = mb;
1472 		mtail = mb;
1473 		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
1474 	}
1475 	if (flags & M_EOR)
1476 		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
1477 
1478 	/* If mbuf was supplied, append new chain to the end of it. */
1479 	if (m != NULL) {
1480 		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
1481 			;
1482 		mtail->m_next = nm;
1483 		mtail->m_flags &= ~M_EOR;
1484 	} else
1485 		m = nm;
1486 
1487 	return (m);
1488 }
1489 
1490 /*-
1491  * Configure a provided mbuf to refer to the provided external storage
1492  * buffer and setup a reference count for said buffer.
1493  *
1494  * Arguments:
1495  *    mb     The existing mbuf to which to attach the provided buffer.
1496  *    buf    The address of the provided external storage buffer.
1497  *    size   The size of the provided buffer.
1498  *    freef  A pointer to a routine that is responsible for freeing the
1499  *           provided external storage buffer.
1500  *    args   A pointer to an argument structure (of any type) to be passed
1501  *           to the provided freef routine (may be NULL).
1502  *    flags  Any other flags to be passed to the provided mbuf.
1503  *    type   The type that the external storage buffer should be
1504  *           labeled with.
1505  *
1506  * Returns:
1507  *    Nothing.
1508  */
1509 void
1510 m_extadd(struct mbuf *mb, char *buf, u_int size, m_ext_free_t freef,
1511     void *arg1, void *arg2, int flags, int type)
1512 {
1513 
1514 	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
1515 
1516 	mb->m_flags |= (M_EXT | flags);
1517 	mb->m_ext.ext_buf = buf;
1518 	mb->m_data = mb->m_ext.ext_buf;
1519 	mb->m_ext.ext_size = size;
1520 	mb->m_ext.ext_free = freef;
1521 	mb->m_ext.ext_arg1 = arg1;
1522 	mb->m_ext.ext_arg2 = arg2;
1523 	mb->m_ext.ext_type = type;
1524 
1525 	if (type != EXT_EXTREF) {
1526 		mb->m_ext.ext_count = 1;
1527 		mb->m_ext.ext_flags = EXT_FLAG_EMBREF;
1528 	} else
1529 		mb->m_ext.ext_flags = 0;
1530 }
1531 
1532 /*
1533  * Free an entire chain of mbufs and associated external buffers, if
1534  * applicable.
1535  */
1536 void
1537 m_freem(struct mbuf *mb)
1538 {
1539 
1540 	MBUF_PROBE1(m__freem, mb);
1541 	while (mb != NULL)
1542 		mb = m_free(mb);
1543 }
1544 
1545 void
1546 m_snd_tag_init(struct m_snd_tag *mst, struct ifnet *ifp)
1547 {
1548 
1549 	if_ref(ifp);
1550 	mst->ifp = ifp;
1551 	refcount_init(&mst->refcount, 1);
1552 	counter_u64_add(snd_tag_count, 1);
1553 }
1554 
1555 void
1556 m_snd_tag_destroy(struct m_snd_tag *mst)
1557 {
1558 	struct ifnet *ifp;
1559 
1560 	ifp = mst->ifp;
1561 	ifp->if_snd_tag_free(mst);
1562 	if_rele(ifp);
1563 	counter_u64_add(snd_tag_count, -1);
1564 }
1565