xref: /freebsd/sys/kern/kern_mbuf.c (revision 559af1ec16576f9f3e41318d66147f4df4fb8e87)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004, 2005,
5  *	Bosko Milekic <bmilekic@FreeBSD.org>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_param.h"
34 
35 #include <sys/param.h>
36 #include <sys/conf.h>
37 #include <sys/domainset.h>
38 #include <sys/malloc.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/domain.h>
42 #include <sys/eventhandler.h>
43 #include <sys/kernel.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/protosw.h>
48 #include <sys/smp.h>
49 #include <sys/sysctl.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_kern.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_map.h>
56 #include <vm/uma.h>
57 #include <vm/uma_dbg.h>
58 
59 /*
60  * In FreeBSD, Mbufs and Mbuf Clusters are allocated from UMA
61  * Zones.
62  *
63  * Mbuf Clusters (2K, contiguous) are allocated from the Cluster
64  * Zone.  The Zone can be capped at kern.ipc.nmbclusters, if the
65  * administrator so desires.
66  *
67  * Mbufs are allocated from a UMA Master Zone called the Mbuf
68  * Zone.
69  *
70  * Additionally, FreeBSD provides a Packet Zone, which it
71  * configures as a Secondary Zone to the Mbuf Master Zone,
72  * thus sharing backend Slab kegs with the Mbuf Master Zone.
73  *
74  * Thus common-case allocations and locking are simplified:
75  *
76  *  m_clget()                m_getcl()
77  *    |                         |
78  *    |   .------------>[(Packet Cache)]    m_get(), m_gethdr()
79  *    |   |             [     Packet   ]            |
80  *  [(Cluster Cache)]   [    Secondary ]   [ (Mbuf Cache)     ]
81  *  [ Cluster Zone  ]   [     Zone     ]   [ Mbuf Master Zone ]
82  *        |                       \________         |
83  *  [ Cluster Keg   ]                      \       /
84  *        |	                         [ Mbuf Keg   ]
85  *  [ Cluster Slabs ]                         |
86  *        |                              [ Mbuf Slabs ]
87  *         \____________(VM)_________________/
88  *
89  *
90  * Whenever an object is allocated with uma_zalloc() out of
91  * one of the Zones its _ctor_ function is executed.  The same
92  * for any deallocation through uma_zfree() the _dtor_ function
93  * is executed.
94  *
95  * Caches are per-CPU and are filled from the Master Zone.
96  *
97  * Whenever an object is allocated from the underlying global
98  * memory pool it gets pre-initialized with the _zinit_ functions.
99  * When the Keg's are overfull objects get decommissioned with
100  * _zfini_ functions and free'd back to the global memory pool.
101  *
102  */
103 
104 int nmbufs;			/* limits number of mbufs */
105 int nmbclusters;		/* limits number of mbuf clusters */
106 int nmbjumbop;			/* limits number of page size jumbo clusters */
107 int nmbjumbo9;			/* limits number of 9k jumbo clusters */
108 int nmbjumbo16;			/* limits number of 16k jumbo clusters */
109 
110 static quad_t maxmbufmem;	/* overall real memory limit for all mbufs */
111 
112 SYSCTL_QUAD(_kern_ipc, OID_AUTO, maxmbufmem, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &maxmbufmem, 0,
113     "Maximum real memory allocatable to various mbuf types");
114 
115 /*
116  * tunable_mbinit() has to be run before any mbuf allocations are done.
117  */
118 static void
119 tunable_mbinit(void *dummy)
120 {
121 	quad_t realmem;
122 
123 	/*
124 	 * The default limit for all mbuf related memory is 1/2 of all
125 	 * available kernel memory (physical or kmem).
126 	 * At most it can be 3/4 of available kernel memory.
127 	 */
128 	realmem = qmin((quad_t)physmem * PAGE_SIZE, vm_kmem_size);
129 	maxmbufmem = realmem / 2;
130 	TUNABLE_QUAD_FETCH("kern.ipc.maxmbufmem", &maxmbufmem);
131 	if (maxmbufmem > realmem / 4 * 3)
132 		maxmbufmem = realmem / 4 * 3;
133 
134 	TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
135 	if (nmbclusters == 0)
136 		nmbclusters = maxmbufmem / MCLBYTES / 4;
137 
138 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbop", &nmbjumbop);
139 	if (nmbjumbop == 0)
140 		nmbjumbop = maxmbufmem / MJUMPAGESIZE / 4;
141 
142 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbo9", &nmbjumbo9);
143 	if (nmbjumbo9 == 0)
144 		nmbjumbo9 = maxmbufmem / MJUM9BYTES / 6;
145 
146 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbo16", &nmbjumbo16);
147 	if (nmbjumbo16 == 0)
148 		nmbjumbo16 = maxmbufmem / MJUM16BYTES / 6;
149 
150 	/*
151 	 * We need at least as many mbufs as we have clusters of
152 	 * the various types added together.
153 	 */
154 	TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
155 	if (nmbufs < nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16)
156 		nmbufs = lmax(maxmbufmem / MSIZE / 5,
157 		    nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16);
158 }
159 SYSINIT(tunable_mbinit, SI_SUB_KMEM, SI_ORDER_MIDDLE, tunable_mbinit, NULL);
160 
161 static int
162 sysctl_nmbclusters(SYSCTL_HANDLER_ARGS)
163 {
164 	int error, newnmbclusters;
165 
166 	newnmbclusters = nmbclusters;
167 	error = sysctl_handle_int(oidp, &newnmbclusters, 0, req);
168 	if (error == 0 && req->newptr && newnmbclusters != nmbclusters) {
169 		if (newnmbclusters > nmbclusters &&
170 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
171 			nmbclusters = newnmbclusters;
172 			nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
173 			EVENTHANDLER_INVOKE(nmbclusters_change);
174 		} else
175 			error = EINVAL;
176 	}
177 	return (error);
178 }
179 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbclusters, CTLTYPE_INT|CTLFLAG_RW,
180 &nmbclusters, 0, sysctl_nmbclusters, "IU",
181     "Maximum number of mbuf clusters allowed");
182 
183 static int
184 sysctl_nmbjumbop(SYSCTL_HANDLER_ARGS)
185 {
186 	int error, newnmbjumbop;
187 
188 	newnmbjumbop = nmbjumbop;
189 	error = sysctl_handle_int(oidp, &newnmbjumbop, 0, req);
190 	if (error == 0 && req->newptr && newnmbjumbop != nmbjumbop) {
191 		if (newnmbjumbop > nmbjumbop &&
192 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
193 			nmbjumbop = newnmbjumbop;
194 			nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
195 		} else
196 			error = EINVAL;
197 	}
198 	return (error);
199 }
200 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbop, CTLTYPE_INT|CTLFLAG_RW,
201 &nmbjumbop, 0, sysctl_nmbjumbop, "IU",
202     "Maximum number of mbuf page size jumbo clusters allowed");
203 
204 static int
205 sysctl_nmbjumbo9(SYSCTL_HANDLER_ARGS)
206 {
207 	int error, newnmbjumbo9;
208 
209 	newnmbjumbo9 = nmbjumbo9;
210 	error = sysctl_handle_int(oidp, &newnmbjumbo9, 0, req);
211 	if (error == 0 && req->newptr && newnmbjumbo9 != nmbjumbo9) {
212 		if (newnmbjumbo9 > nmbjumbo9 &&
213 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
214 			nmbjumbo9 = newnmbjumbo9;
215 			nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
216 		} else
217 			error = EINVAL;
218 	}
219 	return (error);
220 }
221 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo9, CTLTYPE_INT|CTLFLAG_RW,
222 &nmbjumbo9, 0, sysctl_nmbjumbo9, "IU",
223     "Maximum number of mbuf 9k jumbo clusters allowed");
224 
225 static int
226 sysctl_nmbjumbo16(SYSCTL_HANDLER_ARGS)
227 {
228 	int error, newnmbjumbo16;
229 
230 	newnmbjumbo16 = nmbjumbo16;
231 	error = sysctl_handle_int(oidp, &newnmbjumbo16, 0, req);
232 	if (error == 0 && req->newptr && newnmbjumbo16 != nmbjumbo16) {
233 		if (newnmbjumbo16 > nmbjumbo16 &&
234 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
235 			nmbjumbo16 = newnmbjumbo16;
236 			nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
237 		} else
238 			error = EINVAL;
239 	}
240 	return (error);
241 }
242 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo16, CTLTYPE_INT|CTLFLAG_RW,
243 &nmbjumbo16, 0, sysctl_nmbjumbo16, "IU",
244     "Maximum number of mbuf 16k jumbo clusters allowed");
245 
246 static int
247 sysctl_nmbufs(SYSCTL_HANDLER_ARGS)
248 {
249 	int error, newnmbufs;
250 
251 	newnmbufs = nmbufs;
252 	error = sysctl_handle_int(oidp, &newnmbufs, 0, req);
253 	if (error == 0 && req->newptr && newnmbufs != nmbufs) {
254 		if (newnmbufs > nmbufs) {
255 			nmbufs = newnmbufs;
256 			nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
257 			EVENTHANDLER_INVOKE(nmbufs_change);
258 		} else
259 			error = EINVAL;
260 	}
261 	return (error);
262 }
263 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs, CTLTYPE_INT|CTLFLAG_RW,
264 &nmbufs, 0, sysctl_nmbufs, "IU",
265     "Maximum number of mbufs allowed");
266 
267 /*
268  * Zones from which we allocate.
269  */
270 uma_zone_t	zone_mbuf;
271 uma_zone_t	zone_clust;
272 uma_zone_t	zone_pack;
273 uma_zone_t	zone_jumbop;
274 uma_zone_t	zone_jumbo9;
275 uma_zone_t	zone_jumbo16;
276 
277 /*
278  * Local prototypes.
279  */
280 static int	mb_ctor_mbuf(void *, int, void *, int);
281 static int	mb_ctor_clust(void *, int, void *, int);
282 static int	mb_ctor_pack(void *, int, void *, int);
283 static void	mb_dtor_mbuf(void *, int, void *);
284 static void	mb_dtor_pack(void *, int, void *);
285 static int	mb_zinit_pack(void *, int, int);
286 static void	mb_zfini_pack(void *, int);
287 static void	mb_reclaim(uma_zone_t, int);
288 static void    *mbuf_jumbo_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
289 
290 /* Ensure that MSIZE is a power of 2. */
291 CTASSERT((((MSIZE - 1) ^ MSIZE) + 1) >> 1 == MSIZE);
292 
293 /*
294  * Initialize FreeBSD Network buffer allocation.
295  */
296 static void
297 mbuf_init(void *dummy)
298 {
299 
300 	/*
301 	 * Configure UMA zones for Mbufs, Clusters, and Packets.
302 	 */
303 	zone_mbuf = uma_zcreate(MBUF_MEM_NAME, MSIZE,
304 	    mb_ctor_mbuf, mb_dtor_mbuf,
305 #ifdef INVARIANTS
306 	    trash_init, trash_fini,
307 #else
308 	    NULL, NULL,
309 #endif
310 	    MSIZE - 1, UMA_ZONE_MAXBUCKET);
311 	if (nmbufs > 0)
312 		nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
313 	uma_zone_set_warning(zone_mbuf, "kern.ipc.nmbufs limit reached");
314 	uma_zone_set_maxaction(zone_mbuf, mb_reclaim);
315 
316 	zone_clust = uma_zcreate(MBUF_CLUSTER_MEM_NAME, MCLBYTES,
317 	    mb_ctor_clust,
318 #ifdef INVARIANTS
319 	    trash_dtor, trash_init, trash_fini,
320 #else
321 	    NULL, NULL, NULL,
322 #endif
323 	    UMA_ALIGN_PTR, 0);
324 	if (nmbclusters > 0)
325 		nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
326 	uma_zone_set_warning(zone_clust, "kern.ipc.nmbclusters limit reached");
327 	uma_zone_set_maxaction(zone_clust, mb_reclaim);
328 
329 	zone_pack = uma_zsecond_create(MBUF_PACKET_MEM_NAME, mb_ctor_pack,
330 	    mb_dtor_pack, mb_zinit_pack, mb_zfini_pack, zone_mbuf);
331 
332 	/* Make jumbo frame zone too. Page size, 9k and 16k. */
333 	zone_jumbop = uma_zcreate(MBUF_JUMBOP_MEM_NAME, MJUMPAGESIZE,
334 	    mb_ctor_clust,
335 #ifdef INVARIANTS
336 	    trash_dtor, trash_init, trash_fini,
337 #else
338 	    NULL, NULL, NULL,
339 #endif
340 	    UMA_ALIGN_PTR, 0);
341 	if (nmbjumbop > 0)
342 		nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
343 	uma_zone_set_warning(zone_jumbop, "kern.ipc.nmbjumbop limit reached");
344 	uma_zone_set_maxaction(zone_jumbop, mb_reclaim);
345 
346 	zone_jumbo9 = uma_zcreate(MBUF_JUMBO9_MEM_NAME, MJUM9BYTES,
347 	    mb_ctor_clust,
348 #ifdef INVARIANTS
349 	    trash_dtor, trash_init, trash_fini,
350 #else
351 	    NULL, NULL, NULL,
352 #endif
353 	    UMA_ALIGN_PTR, 0);
354 	uma_zone_set_allocf(zone_jumbo9, mbuf_jumbo_alloc);
355 	if (nmbjumbo9 > 0)
356 		nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
357 	uma_zone_set_warning(zone_jumbo9, "kern.ipc.nmbjumbo9 limit reached");
358 	uma_zone_set_maxaction(zone_jumbo9, mb_reclaim);
359 
360 	zone_jumbo16 = uma_zcreate(MBUF_JUMBO16_MEM_NAME, MJUM16BYTES,
361 	    mb_ctor_clust,
362 #ifdef INVARIANTS
363 	    trash_dtor, trash_init, trash_fini,
364 #else
365 	    NULL, NULL, NULL,
366 #endif
367 	    UMA_ALIGN_PTR, 0);
368 	uma_zone_set_allocf(zone_jumbo16, mbuf_jumbo_alloc);
369 	if (nmbjumbo16 > 0)
370 		nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
371 	uma_zone_set_warning(zone_jumbo16, "kern.ipc.nmbjumbo16 limit reached");
372 	uma_zone_set_maxaction(zone_jumbo16, mb_reclaim);
373 
374 	/*
375 	 * Hook event handler for low-memory situation, used to
376 	 * drain protocols and push data back to the caches (UMA
377 	 * later pushes it back to VM).
378 	 */
379 	EVENTHANDLER_REGISTER(vm_lowmem, mb_reclaim, NULL,
380 	    EVENTHANDLER_PRI_FIRST);
381 }
382 SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbuf_init, NULL);
383 
384 #ifdef NETDUMP
385 /*
386  * netdump makes use of a pre-allocated pool of mbufs and clusters.  When
387  * netdump is configured, we initialize a set of UMA cache zones which return
388  * items from this pool.  At panic-time, the regular UMA zone pointers are
389  * overwritten with those of the cache zones so that drivers may allocate and
390  * free mbufs and clusters without attempting to allocate physical memory.
391  *
392  * We keep mbufs and clusters in a pair of mbuf queues.  In particular, for
393  * the purpose of caching clusters, we treat them as mbufs.
394  */
395 static struct mbufq nd_mbufq =
396     { STAILQ_HEAD_INITIALIZER(nd_mbufq.mq_head), 0, INT_MAX };
397 static struct mbufq nd_clustq =
398     { STAILQ_HEAD_INITIALIZER(nd_clustq.mq_head), 0, INT_MAX };
399 
400 static int nd_clsize;
401 static uma_zone_t nd_zone_mbuf;
402 static uma_zone_t nd_zone_clust;
403 static uma_zone_t nd_zone_pack;
404 
405 static int
406 nd_buf_import(void *arg, void **store, int count, int domain __unused,
407     int flags)
408 {
409 	struct mbufq *q;
410 	struct mbuf *m;
411 	int i;
412 
413 	q = arg;
414 
415 	for (i = 0; i < count; i++) {
416 		m = mbufq_dequeue(q);
417 		if (m == NULL)
418 			break;
419 		trash_init(m, q == &nd_mbufq ? MSIZE : nd_clsize, flags);
420 		store[i] = m;
421 	}
422 	KASSERT((flags & M_WAITOK) == 0 || i == count,
423 	    ("%s: ran out of pre-allocated mbufs", __func__));
424 	return (i);
425 }
426 
427 static void
428 nd_buf_release(void *arg, void **store, int count)
429 {
430 	struct mbufq *q;
431 	struct mbuf *m;
432 	int i;
433 
434 	q = arg;
435 
436 	for (i = 0; i < count; i++) {
437 		m = store[i];
438 		(void)mbufq_enqueue(q, m);
439 	}
440 }
441 
442 static int
443 nd_pack_import(void *arg __unused, void **store, int count, int domain __unused,
444     int flags __unused)
445 {
446 	struct mbuf *m;
447 	void *clust;
448 	int i;
449 
450 	for (i = 0; i < count; i++) {
451 		m = m_get(MT_DATA, M_NOWAIT);
452 		if (m == NULL)
453 			break;
454 		clust = uma_zalloc(nd_zone_clust, M_NOWAIT);
455 		if (clust == NULL) {
456 			m_free(m);
457 			break;
458 		}
459 		mb_ctor_clust(clust, nd_clsize, m, 0);
460 		store[i] = m;
461 	}
462 	KASSERT((flags & M_WAITOK) == 0 || i == count,
463 	    ("%s: ran out of pre-allocated mbufs", __func__));
464 	return (i);
465 }
466 
467 static void
468 nd_pack_release(void *arg __unused, void **store, int count)
469 {
470 	struct mbuf *m;
471 	void *clust;
472 	int i;
473 
474 	for (i = 0; i < count; i++) {
475 		m = store[i];
476 		clust = m->m_ext.ext_buf;
477 		uma_zfree(nd_zone_clust, clust);
478 		uma_zfree(nd_zone_mbuf, m);
479 	}
480 }
481 
482 /*
483  * Free the pre-allocated mbufs and clusters reserved for netdump, and destroy
484  * the corresponding UMA cache zones.
485  */
486 void
487 netdump_mbuf_drain(void)
488 {
489 	struct mbuf *m;
490 	void *item;
491 
492 	if (nd_zone_mbuf != NULL) {
493 		uma_zdestroy(nd_zone_mbuf);
494 		nd_zone_mbuf = NULL;
495 	}
496 	if (nd_zone_clust != NULL) {
497 		uma_zdestroy(nd_zone_clust);
498 		nd_zone_clust = NULL;
499 	}
500 	if (nd_zone_pack != NULL) {
501 		uma_zdestroy(nd_zone_pack);
502 		nd_zone_pack = NULL;
503 	}
504 
505 	while ((m = mbufq_dequeue(&nd_mbufq)) != NULL)
506 		m_free(m);
507 	while ((item = mbufq_dequeue(&nd_clustq)) != NULL)
508 		uma_zfree(m_getzone(nd_clsize), item);
509 }
510 
511 /*
512  * Callback invoked immediately prior to starting a netdump.
513  */
514 void
515 netdump_mbuf_dump(void)
516 {
517 
518 	/*
519 	 * All cluster zones return buffers of the size requested by the
520 	 * drivers.  It's up to the driver to reinitialize the zones if the
521 	 * MTU of a netdump-enabled interface changes.
522 	 */
523 	printf("netdump: overwriting mbuf zone pointers\n");
524 	zone_mbuf = nd_zone_mbuf;
525 	zone_clust = nd_zone_clust;
526 	zone_pack = nd_zone_pack;
527 	zone_jumbop = nd_zone_clust;
528 	zone_jumbo9 = nd_zone_clust;
529 	zone_jumbo16 = nd_zone_clust;
530 }
531 
532 /*
533  * Reinitialize the netdump mbuf+cluster pool and cache zones.
534  */
535 void
536 netdump_mbuf_reinit(int nmbuf, int nclust, int clsize)
537 {
538 	struct mbuf *m;
539 	void *item;
540 
541 	netdump_mbuf_drain();
542 
543 	nd_clsize = clsize;
544 
545 	nd_zone_mbuf = uma_zcache_create("netdump_" MBUF_MEM_NAME,
546 	    MSIZE, mb_ctor_mbuf, mb_dtor_mbuf,
547 #ifdef INVARIANTS
548 	    trash_init, trash_fini,
549 #else
550 	    NULL, NULL,
551 #endif
552 	    nd_buf_import, nd_buf_release,
553 	    &nd_mbufq, UMA_ZONE_NOBUCKET);
554 
555 	nd_zone_clust = uma_zcache_create("netdump_" MBUF_CLUSTER_MEM_NAME,
556 	    clsize, mb_ctor_clust,
557 #ifdef INVARIANTS
558 	    trash_dtor, trash_init, trash_fini,
559 #else
560 	    NULL, NULL, NULL,
561 #endif
562 	    nd_buf_import, nd_buf_release,
563 	    &nd_clustq, UMA_ZONE_NOBUCKET);
564 
565 	nd_zone_pack = uma_zcache_create("netdump_" MBUF_PACKET_MEM_NAME,
566 	    MCLBYTES, mb_ctor_pack, mb_dtor_pack, NULL, NULL,
567 	    nd_pack_import, nd_pack_release,
568 	    NULL, UMA_ZONE_NOBUCKET);
569 
570 	while (nmbuf-- > 0) {
571 		m = m_get(MT_DATA, M_WAITOK);
572 		uma_zfree(nd_zone_mbuf, m);
573 	}
574 	while (nclust-- > 0) {
575 		item = uma_zalloc(m_getzone(nd_clsize), M_WAITOK);
576 		uma_zfree(nd_zone_clust, item);
577 	}
578 }
579 #endif /* NETDUMP */
580 
581 /*
582  * UMA backend page allocator for the jumbo frame zones.
583  *
584  * Allocates kernel virtual memory that is backed by contiguous physical
585  * pages.
586  */
587 static void *
588 mbuf_jumbo_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
589     int wait)
590 {
591 
592 	/* Inform UMA that this allocator uses kernel_map/object. */
593 	*flags = UMA_SLAB_KERNEL;
594 	return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
595 	    bytes, wait, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0,
596 	    VM_MEMATTR_DEFAULT));
597 }
598 
599 /*
600  * Constructor for Mbuf master zone.
601  *
602  * The 'arg' pointer points to a mb_args structure which
603  * contains call-specific information required to support the
604  * mbuf allocation API.  See mbuf.h.
605  */
606 static int
607 mb_ctor_mbuf(void *mem, int size, void *arg, int how)
608 {
609 	struct mbuf *m;
610 	struct mb_args *args;
611 	int error;
612 	int flags;
613 	short type;
614 
615 #ifdef INVARIANTS
616 	trash_ctor(mem, size, arg, how);
617 #endif
618 	args = (struct mb_args *)arg;
619 	type = args->type;
620 
621 	/*
622 	 * The mbuf is initialized later.  The caller has the
623 	 * responsibility to set up any MAC labels too.
624 	 */
625 	if (type == MT_NOINIT)
626 		return (0);
627 
628 	m = (struct mbuf *)mem;
629 	flags = args->flags;
630 	MPASS((flags & M_NOFREE) == 0);
631 
632 	error = m_init(m, how, type, flags);
633 
634 	return (error);
635 }
636 
637 /*
638  * The Mbuf master zone destructor.
639  */
640 static void
641 mb_dtor_mbuf(void *mem, int size, void *arg)
642 {
643 	struct mbuf *m;
644 	unsigned long flags;
645 
646 	m = (struct mbuf *)mem;
647 	flags = (unsigned long)arg;
648 
649 	KASSERT((m->m_flags & M_NOFREE) == 0, ("%s: M_NOFREE set", __func__));
650 	if (!(flags & MB_DTOR_SKIP) && (m->m_flags & M_PKTHDR) && !SLIST_EMPTY(&m->m_pkthdr.tags))
651 		m_tag_delete_chain(m, NULL);
652 #ifdef INVARIANTS
653 	trash_dtor(mem, size, arg);
654 #endif
655 }
656 
657 /*
658  * The Mbuf Packet zone destructor.
659  */
660 static void
661 mb_dtor_pack(void *mem, int size, void *arg)
662 {
663 	struct mbuf *m;
664 
665 	m = (struct mbuf *)mem;
666 	if ((m->m_flags & M_PKTHDR) != 0)
667 		m_tag_delete_chain(m, NULL);
668 
669 	/* Make sure we've got a clean cluster back. */
670 	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
671 	KASSERT(m->m_ext.ext_buf != NULL, ("%s: ext_buf == NULL", __func__));
672 	KASSERT(m->m_ext.ext_free == NULL, ("%s: ext_free != NULL", __func__));
673 	KASSERT(m->m_ext.ext_arg1 == NULL, ("%s: ext_arg1 != NULL", __func__));
674 	KASSERT(m->m_ext.ext_arg2 == NULL, ("%s: ext_arg2 != NULL", __func__));
675 	KASSERT(m->m_ext.ext_size == MCLBYTES, ("%s: ext_size != MCLBYTES", __func__));
676 	KASSERT(m->m_ext.ext_type == EXT_PACKET, ("%s: ext_type != EXT_PACKET", __func__));
677 #ifdef INVARIANTS
678 	trash_dtor(m->m_ext.ext_buf, MCLBYTES, arg);
679 #endif
680 	/*
681 	 * If there are processes blocked on zone_clust, waiting for pages
682 	 * to be freed up, * cause them to be woken up by draining the
683 	 * packet zone.  We are exposed to a race here * (in the check for
684 	 * the UMA_ZFLAG_FULL) where we might miss the flag set, but that
685 	 * is deliberate. We don't want to acquire the zone lock for every
686 	 * mbuf free.
687 	 */
688 	if (uma_zone_exhausted_nolock(zone_clust))
689 		zone_drain(zone_pack);
690 }
691 
692 /*
693  * The Cluster and Jumbo[PAGESIZE|9|16] zone constructor.
694  *
695  * Here the 'arg' pointer points to the Mbuf which we
696  * are configuring cluster storage for.  If 'arg' is
697  * empty we allocate just the cluster without setting
698  * the mbuf to it.  See mbuf.h.
699  */
700 static int
701 mb_ctor_clust(void *mem, int size, void *arg, int how)
702 {
703 	struct mbuf *m;
704 
705 #ifdef INVARIANTS
706 	trash_ctor(mem, size, arg, how);
707 #endif
708 	m = (struct mbuf *)arg;
709 	if (m != NULL) {
710 		m->m_ext.ext_buf = (char *)mem;
711 		m->m_data = m->m_ext.ext_buf;
712 		m->m_flags |= M_EXT;
713 		m->m_ext.ext_free = NULL;
714 		m->m_ext.ext_arg1 = NULL;
715 		m->m_ext.ext_arg2 = NULL;
716 		m->m_ext.ext_size = size;
717 		m->m_ext.ext_type = m_gettype(size);
718 		m->m_ext.ext_flags = EXT_FLAG_EMBREF;
719 		m->m_ext.ext_count = 1;
720 	}
721 
722 	return (0);
723 }
724 
725 /*
726  * The Packet secondary zone's init routine, executed on the
727  * object's transition from mbuf keg slab to zone cache.
728  */
729 static int
730 mb_zinit_pack(void *mem, int size, int how)
731 {
732 	struct mbuf *m;
733 
734 	m = (struct mbuf *)mem;		/* m is virgin. */
735 	if (uma_zalloc_arg(zone_clust, m, how) == NULL ||
736 	    m->m_ext.ext_buf == NULL)
737 		return (ENOMEM);
738 	m->m_ext.ext_type = EXT_PACKET;	/* Override. */
739 #ifdef INVARIANTS
740 	trash_init(m->m_ext.ext_buf, MCLBYTES, how);
741 #endif
742 	return (0);
743 }
744 
745 /*
746  * The Packet secondary zone's fini routine, executed on the
747  * object's transition from zone cache to keg slab.
748  */
749 static void
750 mb_zfini_pack(void *mem, int size)
751 {
752 	struct mbuf *m;
753 
754 	m = (struct mbuf *)mem;
755 #ifdef INVARIANTS
756 	trash_fini(m->m_ext.ext_buf, MCLBYTES);
757 #endif
758 	uma_zfree_arg(zone_clust, m->m_ext.ext_buf, NULL);
759 #ifdef INVARIANTS
760 	trash_dtor(mem, size, NULL);
761 #endif
762 }
763 
764 /*
765  * The "packet" keg constructor.
766  */
767 static int
768 mb_ctor_pack(void *mem, int size, void *arg, int how)
769 {
770 	struct mbuf *m;
771 	struct mb_args *args;
772 	int error, flags;
773 	short type;
774 
775 	m = (struct mbuf *)mem;
776 	args = (struct mb_args *)arg;
777 	flags = args->flags;
778 	type = args->type;
779 	MPASS((flags & M_NOFREE) == 0);
780 
781 #ifdef INVARIANTS
782 	trash_ctor(m->m_ext.ext_buf, MCLBYTES, arg, how);
783 #endif
784 
785 	error = m_init(m, how, type, flags);
786 
787 	/* m_ext is already initialized. */
788 	m->m_data = m->m_ext.ext_buf;
789  	m->m_flags = (flags | M_EXT);
790 
791 	return (error);
792 }
793 
794 /*
795  * This is the protocol drain routine.  Called by UMA whenever any of the
796  * mbuf zones is closed to its limit.
797  *
798  * No locks should be held when this is called.  The drain routines have to
799  * presently acquire some locks which raises the possibility of lock order
800  * reversal.
801  */
802 static void
803 mb_reclaim(uma_zone_t zone __unused, int pending __unused)
804 {
805 	struct domain *dp;
806 	struct protosw *pr;
807 
808 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK | WARN_PANIC, NULL, __func__);
809 
810 	for (dp = domains; dp != NULL; dp = dp->dom_next)
811 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
812 			if (pr->pr_drain != NULL)
813 				(*pr->pr_drain)();
814 }
815 
816 /*
817  * Clean up after mbufs with M_EXT storage attached to them if the
818  * reference count hits 1.
819  */
820 void
821 mb_free_ext(struct mbuf *m)
822 {
823 	volatile u_int *refcnt;
824 	struct mbuf *mref;
825 	int freembuf;
826 
827 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
828 
829 	/* See if this is the mbuf that holds the embedded refcount. */
830 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
831 		refcnt = &m->m_ext.ext_count;
832 		mref = m;
833 	} else {
834 		KASSERT(m->m_ext.ext_cnt != NULL,
835 		    ("%s: no refcounting pointer on %p", __func__, m));
836 		refcnt = m->m_ext.ext_cnt;
837 		mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
838 	}
839 
840 	/*
841 	 * Check if the header is embedded in the cluster.  It is
842 	 * important that we can't touch any of the mbuf fields
843 	 * after we have freed the external storage, since mbuf
844 	 * could have been embedded in it.  For now, the mbufs
845 	 * embedded into the cluster are always of type EXT_EXTREF,
846 	 * and for this type we won't free the mref.
847 	 */
848 	if (m->m_flags & M_NOFREE) {
849 		freembuf = 0;
850 		KASSERT(m->m_ext.ext_type == EXT_EXTREF ||
851 		    m->m_ext.ext_type == EXT_RXRING,
852 		    ("%s: no-free mbuf %p has wrong type", __func__, m));
853 	} else
854 		freembuf = 1;
855 
856 	/* Free attached storage if this mbuf is the only reference to it. */
857 	if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
858 		switch (m->m_ext.ext_type) {
859 		case EXT_PACKET:
860 			/* The packet zone is special. */
861 			if (*refcnt == 0)
862 				*refcnt = 1;
863 			uma_zfree(zone_pack, mref);
864 			break;
865 		case EXT_CLUSTER:
866 			uma_zfree(zone_clust, m->m_ext.ext_buf);
867 			uma_zfree(zone_mbuf, mref);
868 			break;
869 		case EXT_JUMBOP:
870 			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
871 			uma_zfree(zone_mbuf, mref);
872 			break;
873 		case EXT_JUMBO9:
874 			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
875 			uma_zfree(zone_mbuf, mref);
876 			break;
877 		case EXT_JUMBO16:
878 			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
879 			uma_zfree(zone_mbuf, mref);
880 			break;
881 		case EXT_SFBUF:
882 		case EXT_NET_DRV:
883 		case EXT_MOD_TYPE:
884 		case EXT_DISPOSABLE:
885 			KASSERT(mref->m_ext.ext_free != NULL,
886 			    ("%s: ext_free not set", __func__));
887 			mref->m_ext.ext_free(mref);
888 			uma_zfree(zone_mbuf, mref);
889 			break;
890 		case EXT_EXTREF:
891 			KASSERT(m->m_ext.ext_free != NULL,
892 			    ("%s: ext_free not set", __func__));
893 			m->m_ext.ext_free(m);
894 			break;
895 		case EXT_RXRING:
896 			KASSERT(m->m_ext.ext_free == NULL,
897 			    ("%s: ext_free is set", __func__));
898 			break;
899 		default:
900 			KASSERT(m->m_ext.ext_type == 0,
901 			    ("%s: unknown ext_type", __func__));
902 		}
903 	}
904 
905 	if (freembuf && m != mref)
906 		uma_zfree(zone_mbuf, m);
907 }
908 
909 /*
910  * Official mbuf(9) allocation KPI for stack and drivers:
911  *
912  * m_get()	- a single mbuf without any attachments, sys/mbuf.h.
913  * m_gethdr()	- a single mbuf initialized as M_PKTHDR, sys/mbuf.h.
914  * m_getcl()	- an mbuf + 2k cluster, sys/mbuf.h.
915  * m_clget()	- attach cluster to already allocated mbuf.
916  * m_cljget()	- attach jumbo cluster to already allocated mbuf.
917  * m_get2()	- allocate minimum mbuf that would fit size argument.
918  * m_getm2()	- allocate a chain of mbufs/clusters.
919  * m_extadd()	- attach external cluster to mbuf.
920  *
921  * m_free()	- free single mbuf with its tags and ext, sys/mbuf.h.
922  * m_freem()	- free chain of mbufs.
923  */
924 
925 int
926 m_clget(struct mbuf *m, int how)
927 {
928 
929 	KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
930 	    __func__, m));
931 	m->m_ext.ext_buf = (char *)NULL;
932 	uma_zalloc_arg(zone_clust, m, how);
933 	/*
934 	 * On a cluster allocation failure, drain the packet zone and retry,
935 	 * we might be able to loosen a few clusters up on the drain.
936 	 */
937 	if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) {
938 		zone_drain(zone_pack);
939 		uma_zalloc_arg(zone_clust, m, how);
940 	}
941 	MBUF_PROBE2(m__clget, m, how);
942 	return (m->m_flags & M_EXT);
943 }
944 
945 /*
946  * m_cljget() is different from m_clget() as it can allocate clusters without
947  * attaching them to an mbuf.  In that case the return value is the pointer
948  * to the cluster of the requested size.  If an mbuf was specified, it gets
949  * the cluster attached to it and the return value can be safely ignored.
950  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
951  */
952 void *
953 m_cljget(struct mbuf *m, int how, int size)
954 {
955 	uma_zone_t zone;
956 	void *retval;
957 
958 	if (m != NULL) {
959 		KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
960 		    __func__, m));
961 		m->m_ext.ext_buf = NULL;
962 	}
963 
964 	zone = m_getzone(size);
965 	retval = uma_zalloc_arg(zone, m, how);
966 
967 	MBUF_PROBE4(m__cljget, m, how, size, retval);
968 
969 	return (retval);
970 }
971 
972 /*
973  * m_get2() allocates minimum mbuf that would fit "size" argument.
974  */
975 struct mbuf *
976 m_get2(int size, int how, short type, int flags)
977 {
978 	struct mb_args args;
979 	struct mbuf *m, *n;
980 
981 	args.flags = flags;
982 	args.type = type;
983 
984 	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
985 		return (uma_zalloc_arg(zone_mbuf, &args, how));
986 	if (size <= MCLBYTES)
987 		return (uma_zalloc_arg(zone_pack, &args, how));
988 
989 	if (size > MJUMPAGESIZE)
990 		return (NULL);
991 
992 	m = uma_zalloc_arg(zone_mbuf, &args, how);
993 	if (m == NULL)
994 		return (NULL);
995 
996 	n = uma_zalloc_arg(zone_jumbop, m, how);
997 	if (n == NULL) {
998 		uma_zfree(zone_mbuf, m);
999 		return (NULL);
1000 	}
1001 
1002 	return (m);
1003 }
1004 
1005 /*
1006  * m_getjcl() returns an mbuf with a cluster of the specified size attached.
1007  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
1008  */
1009 struct mbuf *
1010 m_getjcl(int how, short type, int flags, int size)
1011 {
1012 	struct mb_args args;
1013 	struct mbuf *m, *n;
1014 	uma_zone_t zone;
1015 
1016 	if (size == MCLBYTES)
1017 		return m_getcl(how, type, flags);
1018 
1019 	args.flags = flags;
1020 	args.type = type;
1021 
1022 	m = uma_zalloc_arg(zone_mbuf, &args, how);
1023 	if (m == NULL)
1024 		return (NULL);
1025 
1026 	zone = m_getzone(size);
1027 	n = uma_zalloc_arg(zone, m, how);
1028 	if (n == NULL) {
1029 		uma_zfree(zone_mbuf, m);
1030 		return (NULL);
1031 	}
1032 	return (m);
1033 }
1034 
1035 /*
1036  * Allocate a given length worth of mbufs and/or clusters (whatever fits
1037  * best) and return a pointer to the top of the allocated chain.  If an
1038  * existing mbuf chain is provided, then we will append the new chain
1039  * to the existing one and return a pointer to the provided mbuf.
1040  */
1041 struct mbuf *
1042 m_getm2(struct mbuf *m, int len, int how, short type, int flags)
1043 {
1044 	struct mbuf *mb, *nm = NULL, *mtail = NULL;
1045 
1046 	KASSERT(len >= 0, ("%s: len is < 0", __func__));
1047 
1048 	/* Validate flags. */
1049 	flags &= (M_PKTHDR | M_EOR);
1050 
1051 	/* Packet header mbuf must be first in chain. */
1052 	if ((flags & M_PKTHDR) && m != NULL)
1053 		flags &= ~M_PKTHDR;
1054 
1055 	/* Loop and append maximum sized mbufs to the chain tail. */
1056 	while (len > 0) {
1057 		if (len > MCLBYTES)
1058 			mb = m_getjcl(how, type, (flags & M_PKTHDR),
1059 			    MJUMPAGESIZE);
1060 		else if (len >= MINCLSIZE)
1061 			mb = m_getcl(how, type, (flags & M_PKTHDR));
1062 		else if (flags & M_PKTHDR)
1063 			mb = m_gethdr(how, type);
1064 		else
1065 			mb = m_get(how, type);
1066 
1067 		/* Fail the whole operation if one mbuf can't be allocated. */
1068 		if (mb == NULL) {
1069 			if (nm != NULL)
1070 				m_freem(nm);
1071 			return (NULL);
1072 		}
1073 
1074 		/* Book keeping. */
1075 		len -= M_SIZE(mb);
1076 		if (mtail != NULL)
1077 			mtail->m_next = mb;
1078 		else
1079 			nm = mb;
1080 		mtail = mb;
1081 		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
1082 	}
1083 	if (flags & M_EOR)
1084 		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
1085 
1086 	/* If mbuf was supplied, append new chain to the end of it. */
1087 	if (m != NULL) {
1088 		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
1089 			;
1090 		mtail->m_next = nm;
1091 		mtail->m_flags &= ~M_EOR;
1092 	} else
1093 		m = nm;
1094 
1095 	return (m);
1096 }
1097 
1098 /*-
1099  * Configure a provided mbuf to refer to the provided external storage
1100  * buffer and setup a reference count for said buffer.
1101  *
1102  * Arguments:
1103  *    mb     The existing mbuf to which to attach the provided buffer.
1104  *    buf    The address of the provided external storage buffer.
1105  *    size   The size of the provided buffer.
1106  *    freef  A pointer to a routine that is responsible for freeing the
1107  *           provided external storage buffer.
1108  *    args   A pointer to an argument structure (of any type) to be passed
1109  *           to the provided freef routine (may be NULL).
1110  *    flags  Any other flags to be passed to the provided mbuf.
1111  *    type   The type that the external storage buffer should be
1112  *           labeled with.
1113  *
1114  * Returns:
1115  *    Nothing.
1116  */
1117 void
1118 m_extadd(struct mbuf *mb, char *buf, u_int size, m_ext_free_t freef,
1119     void *arg1, void *arg2, int flags, int type)
1120 {
1121 
1122 	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
1123 
1124 	mb->m_flags |= (M_EXT | flags);
1125 	mb->m_ext.ext_buf = buf;
1126 	mb->m_data = mb->m_ext.ext_buf;
1127 	mb->m_ext.ext_size = size;
1128 	mb->m_ext.ext_free = freef;
1129 	mb->m_ext.ext_arg1 = arg1;
1130 	mb->m_ext.ext_arg2 = arg2;
1131 	mb->m_ext.ext_type = type;
1132 
1133 	if (type != EXT_EXTREF) {
1134 		mb->m_ext.ext_count = 1;
1135 		mb->m_ext.ext_flags = EXT_FLAG_EMBREF;
1136 	} else
1137 		mb->m_ext.ext_flags = 0;
1138 }
1139 
1140 /*
1141  * Free an entire chain of mbufs and associated external buffers, if
1142  * applicable.
1143  */
1144 void
1145 m_freem(struct mbuf *mb)
1146 {
1147 
1148 	MBUF_PROBE1(m__freem, mb);
1149 	while (mb != NULL)
1150 		mb = m_free(mb);
1151 }
1152