xref: /freebsd/sys/kern/kern_mbuf.c (revision 4e99f45480598189d49d45a825533a6c9e12f02c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004, 2005,
5  *	Bosko Milekic <bmilekic@FreeBSD.org>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_param.h"
34 #include "opt_kern_tls.h"
35 
36 #include <sys/param.h>
37 #include <sys/conf.h>
38 #include <sys/domainset.h>
39 #include <sys/malloc.h>
40 #include <sys/systm.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/eventhandler.h>
44 #include <sys/kernel.h>
45 #include <sys/ktls.h>
46 #include <sys/limits.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/protosw.h>
50 #include <sys/refcount.h>
51 #include <sys/sf_buf.h>
52 #include <sys/smp.h>
53 #include <sys/socket.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/if.h>
57 #include <net/if_var.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_extern.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/uma.h>
65 #include <vm/uma_dbg.h>
66 
67 /*
68  * In FreeBSD, Mbufs and Mbuf Clusters are allocated from UMA
69  * Zones.
70  *
71  * Mbuf Clusters (2K, contiguous) are allocated from the Cluster
72  * Zone.  The Zone can be capped at kern.ipc.nmbclusters, if the
73  * administrator so desires.
74  *
75  * Mbufs are allocated from a UMA Master Zone called the Mbuf
76  * Zone.
77  *
78  * Additionally, FreeBSD provides a Packet Zone, which it
79  * configures as a Secondary Zone to the Mbuf Master Zone,
80  * thus sharing backend Slab kegs with the Mbuf Master Zone.
81  *
82  * Thus common-case allocations and locking are simplified:
83  *
84  *  m_clget()                m_getcl()
85  *    |                         |
86  *    |   .------------>[(Packet Cache)]    m_get(), m_gethdr()
87  *    |   |             [     Packet   ]            |
88  *  [(Cluster Cache)]   [    Secondary ]   [ (Mbuf Cache)     ]
89  *  [ Cluster Zone  ]   [     Zone     ]   [ Mbuf Master Zone ]
90  *        |                       \________         |
91  *  [ Cluster Keg   ]                      \       /
92  *        |	                         [ Mbuf Keg   ]
93  *  [ Cluster Slabs ]                         |
94  *        |                              [ Mbuf Slabs ]
95  *         \____________(VM)_________________/
96  *
97  *
98  * Whenever an object is allocated with uma_zalloc() out of
99  * one of the Zones its _ctor_ function is executed.  The same
100  * for any deallocation through uma_zfree() the _dtor_ function
101  * is executed.
102  *
103  * Caches are per-CPU and are filled from the Master Zone.
104  *
105  * Whenever an object is allocated from the underlying global
106  * memory pool it gets pre-initialized with the _zinit_ functions.
107  * When the Keg's are overfull objects get decommissioned with
108  * _zfini_ functions and free'd back to the global memory pool.
109  *
110  */
111 
112 int nmbufs;			/* limits number of mbufs */
113 int nmbclusters;		/* limits number of mbuf clusters */
114 int nmbjumbop;			/* limits number of page size jumbo clusters */
115 int nmbjumbo9;			/* limits number of 9k jumbo clusters */
116 int nmbjumbo16;			/* limits number of 16k jumbo clusters */
117 
118 bool mb_use_ext_pgs;		/* use M_EXTPG mbufs for sendfile & TLS */
119 SYSCTL_BOOL(_kern_ipc, OID_AUTO, mb_use_ext_pgs, CTLFLAG_RWTUN,
120     &mb_use_ext_pgs, 0,
121     "Use unmapped mbufs for sendfile(2) and TLS offload");
122 
123 static quad_t maxmbufmem;	/* overall real memory limit for all mbufs */
124 
125 SYSCTL_QUAD(_kern_ipc, OID_AUTO, maxmbufmem, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &maxmbufmem, 0,
126     "Maximum real memory allocatable to various mbuf types");
127 
128 static counter_u64_t snd_tag_count;
129 SYSCTL_COUNTER_U64(_kern_ipc, OID_AUTO, num_snd_tags, CTLFLAG_RW,
130     &snd_tag_count, "# of active mbuf send tags");
131 
132 /*
133  * tunable_mbinit() has to be run before any mbuf allocations are done.
134  */
135 static void
136 tunable_mbinit(void *dummy)
137 {
138 	quad_t realmem;
139 
140 	/*
141 	 * The default limit for all mbuf related memory is 1/2 of all
142 	 * available kernel memory (physical or kmem).
143 	 * At most it can be 3/4 of available kernel memory.
144 	 */
145 	realmem = qmin((quad_t)physmem * PAGE_SIZE, vm_kmem_size);
146 	maxmbufmem = realmem / 2;
147 	TUNABLE_QUAD_FETCH("kern.ipc.maxmbufmem", &maxmbufmem);
148 	if (maxmbufmem > realmem / 4 * 3)
149 		maxmbufmem = realmem / 4 * 3;
150 
151 	TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
152 	if (nmbclusters == 0)
153 		nmbclusters = maxmbufmem / MCLBYTES / 4;
154 
155 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbop", &nmbjumbop);
156 	if (nmbjumbop == 0)
157 		nmbjumbop = maxmbufmem / MJUMPAGESIZE / 4;
158 
159 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbo9", &nmbjumbo9);
160 	if (nmbjumbo9 == 0)
161 		nmbjumbo9 = maxmbufmem / MJUM9BYTES / 6;
162 
163 	TUNABLE_INT_FETCH("kern.ipc.nmbjumbo16", &nmbjumbo16);
164 	if (nmbjumbo16 == 0)
165 		nmbjumbo16 = maxmbufmem / MJUM16BYTES / 6;
166 
167 	/*
168 	 * We need at least as many mbufs as we have clusters of
169 	 * the various types added together.
170 	 */
171 	TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
172 	if (nmbufs < nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16)
173 		nmbufs = lmax(maxmbufmem / MSIZE / 5,
174 		    nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16);
175 }
176 SYSINIT(tunable_mbinit, SI_SUB_KMEM, SI_ORDER_MIDDLE, tunable_mbinit, NULL);
177 
178 static int
179 sysctl_nmbclusters(SYSCTL_HANDLER_ARGS)
180 {
181 	int error, newnmbclusters;
182 
183 	newnmbclusters = nmbclusters;
184 	error = sysctl_handle_int(oidp, &newnmbclusters, 0, req);
185 	if (error == 0 && req->newptr && newnmbclusters != nmbclusters) {
186 		if (newnmbclusters > nmbclusters &&
187 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
188 			nmbclusters = newnmbclusters;
189 			nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
190 			EVENTHANDLER_INVOKE(nmbclusters_change);
191 		} else
192 			error = EINVAL;
193 	}
194 	return (error);
195 }
196 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbclusters,
197     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbclusters, 0,
198     sysctl_nmbclusters, "IU",
199     "Maximum number of mbuf clusters allowed");
200 
201 static int
202 sysctl_nmbjumbop(SYSCTL_HANDLER_ARGS)
203 {
204 	int error, newnmbjumbop;
205 
206 	newnmbjumbop = nmbjumbop;
207 	error = sysctl_handle_int(oidp, &newnmbjumbop, 0, req);
208 	if (error == 0 && req->newptr && newnmbjumbop != nmbjumbop) {
209 		if (newnmbjumbop > nmbjumbop &&
210 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
211 			nmbjumbop = newnmbjumbop;
212 			nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
213 		} else
214 			error = EINVAL;
215 	}
216 	return (error);
217 }
218 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbop,
219     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbjumbop, 0,
220     sysctl_nmbjumbop, "IU",
221     "Maximum number of mbuf page size jumbo clusters allowed");
222 
223 static int
224 sysctl_nmbjumbo9(SYSCTL_HANDLER_ARGS)
225 {
226 	int error, newnmbjumbo9;
227 
228 	newnmbjumbo9 = nmbjumbo9;
229 	error = sysctl_handle_int(oidp, &newnmbjumbo9, 0, req);
230 	if (error == 0 && req->newptr && newnmbjumbo9 != nmbjumbo9) {
231 		if (newnmbjumbo9 > nmbjumbo9 &&
232 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
233 			nmbjumbo9 = newnmbjumbo9;
234 			nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
235 		} else
236 			error = EINVAL;
237 	}
238 	return (error);
239 }
240 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo9,
241     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbjumbo9, 0,
242     sysctl_nmbjumbo9, "IU",
243     "Maximum number of mbuf 9k jumbo clusters allowed");
244 
245 static int
246 sysctl_nmbjumbo16(SYSCTL_HANDLER_ARGS)
247 {
248 	int error, newnmbjumbo16;
249 
250 	newnmbjumbo16 = nmbjumbo16;
251 	error = sysctl_handle_int(oidp, &newnmbjumbo16, 0, req);
252 	if (error == 0 && req->newptr && newnmbjumbo16 != nmbjumbo16) {
253 		if (newnmbjumbo16 > nmbjumbo16 &&
254 		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
255 			nmbjumbo16 = newnmbjumbo16;
256 			nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
257 		} else
258 			error = EINVAL;
259 	}
260 	return (error);
261 }
262 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo16,
263     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbjumbo16, 0,
264     sysctl_nmbjumbo16, "IU",
265     "Maximum number of mbuf 16k jumbo clusters allowed");
266 
267 static int
268 sysctl_nmbufs(SYSCTL_HANDLER_ARGS)
269 {
270 	int error, newnmbufs;
271 
272 	newnmbufs = nmbufs;
273 	error = sysctl_handle_int(oidp, &newnmbufs, 0, req);
274 	if (error == 0 && req->newptr && newnmbufs != nmbufs) {
275 		if (newnmbufs > nmbufs) {
276 			nmbufs = newnmbufs;
277 			nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
278 			EVENTHANDLER_INVOKE(nmbufs_change);
279 		} else
280 			error = EINVAL;
281 	}
282 	return (error);
283 }
284 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs,
285     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
286     &nmbufs, 0, sysctl_nmbufs, "IU",
287     "Maximum number of mbufs allowed");
288 
289 /*
290  * Zones from which we allocate.
291  */
292 uma_zone_t	zone_mbuf;
293 uma_zone_t	zone_clust;
294 uma_zone_t	zone_pack;
295 uma_zone_t	zone_jumbop;
296 uma_zone_t	zone_jumbo9;
297 uma_zone_t	zone_jumbo16;
298 
299 /*
300  * Local prototypes.
301  */
302 static int	mb_ctor_mbuf(void *, int, void *, int);
303 static int	mb_ctor_clust(void *, int, void *, int);
304 static int	mb_ctor_pack(void *, int, void *, int);
305 static void	mb_dtor_mbuf(void *, int, void *);
306 static void	mb_dtor_pack(void *, int, void *);
307 static int	mb_zinit_pack(void *, int, int);
308 static void	mb_zfini_pack(void *, int);
309 static void	mb_reclaim(uma_zone_t, int);
310 
311 /* Ensure that MSIZE is a power of 2. */
312 CTASSERT((((MSIZE - 1) ^ MSIZE) + 1) >> 1 == MSIZE);
313 
314 _Static_assert(sizeof(struct mbuf) <= MSIZE,
315     "size of mbuf exceeds MSIZE");
316 /*
317  * Initialize FreeBSD Network buffer allocation.
318  */
319 static void
320 mbuf_init(void *dummy)
321 {
322 
323 	/*
324 	 * Configure UMA zones for Mbufs, Clusters, and Packets.
325 	 */
326 	zone_mbuf = uma_zcreate(MBUF_MEM_NAME, MSIZE,
327 	    mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL,
328 	    MSIZE - 1, UMA_ZONE_CONTIG | UMA_ZONE_MAXBUCKET);
329 	if (nmbufs > 0)
330 		nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
331 	uma_zone_set_warning(zone_mbuf, "kern.ipc.nmbufs limit reached");
332 	uma_zone_set_maxaction(zone_mbuf, mb_reclaim);
333 
334 	zone_clust = uma_zcreate(MBUF_CLUSTER_MEM_NAME, MCLBYTES,
335 	    mb_ctor_clust, NULL, NULL, NULL,
336 	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
337 	if (nmbclusters > 0)
338 		nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
339 	uma_zone_set_warning(zone_clust, "kern.ipc.nmbclusters limit reached");
340 	uma_zone_set_maxaction(zone_clust, mb_reclaim);
341 
342 	zone_pack = uma_zsecond_create(MBUF_PACKET_MEM_NAME, mb_ctor_pack,
343 	    mb_dtor_pack, mb_zinit_pack, mb_zfini_pack, zone_mbuf);
344 
345 	/* Make jumbo frame zone too. Page size, 9k and 16k. */
346 	zone_jumbop = uma_zcreate(MBUF_JUMBOP_MEM_NAME, MJUMPAGESIZE,
347 	    mb_ctor_clust, NULL, NULL, NULL,
348 	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
349 	if (nmbjumbop > 0)
350 		nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
351 	uma_zone_set_warning(zone_jumbop, "kern.ipc.nmbjumbop limit reached");
352 	uma_zone_set_maxaction(zone_jumbop, mb_reclaim);
353 
354 	zone_jumbo9 = uma_zcreate(MBUF_JUMBO9_MEM_NAME, MJUM9BYTES,
355 	    mb_ctor_clust, NULL, NULL, NULL,
356 	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
357 	if (nmbjumbo9 > 0)
358 		nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
359 	uma_zone_set_warning(zone_jumbo9, "kern.ipc.nmbjumbo9 limit reached");
360 	uma_zone_set_maxaction(zone_jumbo9, mb_reclaim);
361 
362 	zone_jumbo16 = uma_zcreate(MBUF_JUMBO16_MEM_NAME, MJUM16BYTES,
363 	    mb_ctor_clust, NULL, NULL, NULL,
364 	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
365 	if (nmbjumbo16 > 0)
366 		nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
367 	uma_zone_set_warning(zone_jumbo16, "kern.ipc.nmbjumbo16 limit reached");
368 	uma_zone_set_maxaction(zone_jumbo16, mb_reclaim);
369 
370 	/*
371 	 * Hook event handler for low-memory situation, used to
372 	 * drain protocols and push data back to the caches (UMA
373 	 * later pushes it back to VM).
374 	 */
375 	EVENTHANDLER_REGISTER(vm_lowmem, mb_reclaim, NULL,
376 	    EVENTHANDLER_PRI_FIRST);
377 
378 	snd_tag_count = counter_u64_alloc(M_WAITOK);
379 }
380 SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbuf_init, NULL);
381 
382 #ifdef DEBUGNET
383 /*
384  * debugnet makes use of a pre-allocated pool of mbufs and clusters.  When
385  * debugnet is configured, we initialize a set of UMA cache zones which return
386  * items from this pool.  At panic-time, the regular UMA zone pointers are
387  * overwritten with those of the cache zones so that drivers may allocate and
388  * free mbufs and clusters without attempting to allocate physical memory.
389  *
390  * We keep mbufs and clusters in a pair of mbuf queues.  In particular, for
391  * the purpose of caching clusters, we treat them as mbufs.
392  */
393 static struct mbufq dn_mbufq =
394     { STAILQ_HEAD_INITIALIZER(dn_mbufq.mq_head), 0, INT_MAX };
395 static struct mbufq dn_clustq =
396     { STAILQ_HEAD_INITIALIZER(dn_clustq.mq_head), 0, INT_MAX };
397 
398 static int dn_clsize;
399 static uma_zone_t dn_zone_mbuf;
400 static uma_zone_t dn_zone_clust;
401 static uma_zone_t dn_zone_pack;
402 
403 static struct debugnet_saved_zones {
404 	uma_zone_t dsz_mbuf;
405 	uma_zone_t dsz_clust;
406 	uma_zone_t dsz_pack;
407 	uma_zone_t dsz_jumbop;
408 	uma_zone_t dsz_jumbo9;
409 	uma_zone_t dsz_jumbo16;
410 	bool dsz_debugnet_zones_enabled;
411 } dn_saved_zones;
412 
413 static int
414 dn_buf_import(void *arg, void **store, int count, int domain __unused,
415     int flags)
416 {
417 	struct mbufq *q;
418 	struct mbuf *m;
419 	int i;
420 
421 	q = arg;
422 
423 	for (i = 0; i < count; i++) {
424 		m = mbufq_dequeue(q);
425 		if (m == NULL)
426 			break;
427 		trash_init(m, q == &dn_mbufq ? MSIZE : dn_clsize, flags);
428 		store[i] = m;
429 	}
430 	KASSERT((flags & M_WAITOK) == 0 || i == count,
431 	    ("%s: ran out of pre-allocated mbufs", __func__));
432 	return (i);
433 }
434 
435 static void
436 dn_buf_release(void *arg, void **store, int count)
437 {
438 	struct mbufq *q;
439 	struct mbuf *m;
440 	int i;
441 
442 	q = arg;
443 
444 	for (i = 0; i < count; i++) {
445 		m = store[i];
446 		(void)mbufq_enqueue(q, m);
447 	}
448 }
449 
450 static int
451 dn_pack_import(void *arg __unused, void **store, int count, int domain __unused,
452     int flags __unused)
453 {
454 	struct mbuf *m;
455 	void *clust;
456 	int i;
457 
458 	for (i = 0; i < count; i++) {
459 		m = m_get(MT_DATA, M_NOWAIT);
460 		if (m == NULL)
461 			break;
462 		clust = uma_zalloc(dn_zone_clust, M_NOWAIT);
463 		if (clust == NULL) {
464 			m_free(m);
465 			break;
466 		}
467 		mb_ctor_clust(clust, dn_clsize, m, 0);
468 		store[i] = m;
469 	}
470 	KASSERT((flags & M_WAITOK) == 0 || i == count,
471 	    ("%s: ran out of pre-allocated mbufs", __func__));
472 	return (i);
473 }
474 
475 static void
476 dn_pack_release(void *arg __unused, void **store, int count)
477 {
478 	struct mbuf *m;
479 	void *clust;
480 	int i;
481 
482 	for (i = 0; i < count; i++) {
483 		m = store[i];
484 		clust = m->m_ext.ext_buf;
485 		uma_zfree(dn_zone_clust, clust);
486 		uma_zfree(dn_zone_mbuf, m);
487 	}
488 }
489 
490 /*
491  * Free the pre-allocated mbufs and clusters reserved for debugnet, and destroy
492  * the corresponding UMA cache zones.
493  */
494 void
495 debugnet_mbuf_drain(void)
496 {
497 	struct mbuf *m;
498 	void *item;
499 
500 	if (dn_zone_mbuf != NULL) {
501 		uma_zdestroy(dn_zone_mbuf);
502 		dn_zone_mbuf = NULL;
503 	}
504 	if (dn_zone_clust != NULL) {
505 		uma_zdestroy(dn_zone_clust);
506 		dn_zone_clust = NULL;
507 	}
508 	if (dn_zone_pack != NULL) {
509 		uma_zdestroy(dn_zone_pack);
510 		dn_zone_pack = NULL;
511 	}
512 
513 	while ((m = mbufq_dequeue(&dn_mbufq)) != NULL)
514 		m_free(m);
515 	while ((item = mbufq_dequeue(&dn_clustq)) != NULL)
516 		uma_zfree(m_getzone(dn_clsize), item);
517 }
518 
519 /*
520  * Callback invoked immediately prior to starting a debugnet connection.
521  */
522 void
523 debugnet_mbuf_start(void)
524 {
525 
526 	MPASS(!dn_saved_zones.dsz_debugnet_zones_enabled);
527 
528 	/* Save the old zone pointers to restore when debugnet is closed. */
529 	dn_saved_zones = (struct debugnet_saved_zones) {
530 		.dsz_debugnet_zones_enabled = true,
531 		.dsz_mbuf = zone_mbuf,
532 		.dsz_clust = zone_clust,
533 		.dsz_pack = zone_pack,
534 		.dsz_jumbop = zone_jumbop,
535 		.dsz_jumbo9 = zone_jumbo9,
536 		.dsz_jumbo16 = zone_jumbo16,
537 	};
538 
539 	/*
540 	 * All cluster zones return buffers of the size requested by the
541 	 * drivers.  It's up to the driver to reinitialize the zones if the
542 	 * MTU of a debugnet-enabled interface changes.
543 	 */
544 	printf("debugnet: overwriting mbuf zone pointers\n");
545 	zone_mbuf = dn_zone_mbuf;
546 	zone_clust = dn_zone_clust;
547 	zone_pack = dn_zone_pack;
548 	zone_jumbop = dn_zone_clust;
549 	zone_jumbo9 = dn_zone_clust;
550 	zone_jumbo16 = dn_zone_clust;
551 }
552 
553 /*
554  * Callback invoked when a debugnet connection is closed/finished.
555  */
556 void
557 debugnet_mbuf_finish(void)
558 {
559 
560 	MPASS(dn_saved_zones.dsz_debugnet_zones_enabled);
561 
562 	printf("debugnet: restoring mbuf zone pointers\n");
563 	zone_mbuf = dn_saved_zones.dsz_mbuf;
564 	zone_clust = dn_saved_zones.dsz_clust;
565 	zone_pack = dn_saved_zones.dsz_pack;
566 	zone_jumbop = dn_saved_zones.dsz_jumbop;
567 	zone_jumbo9 = dn_saved_zones.dsz_jumbo9;
568 	zone_jumbo16 = dn_saved_zones.dsz_jumbo16;
569 
570 	memset(&dn_saved_zones, 0, sizeof(dn_saved_zones));
571 }
572 
573 /*
574  * Reinitialize the debugnet mbuf+cluster pool and cache zones.
575  */
576 void
577 debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize)
578 {
579 	struct mbuf *m;
580 	void *item;
581 
582 	debugnet_mbuf_drain();
583 
584 	dn_clsize = clsize;
585 
586 	dn_zone_mbuf = uma_zcache_create("debugnet_" MBUF_MEM_NAME,
587 	    MSIZE, mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL,
588 	    dn_buf_import, dn_buf_release,
589 	    &dn_mbufq, UMA_ZONE_NOBUCKET);
590 
591 	dn_zone_clust = uma_zcache_create("debugnet_" MBUF_CLUSTER_MEM_NAME,
592 	    clsize, mb_ctor_clust, NULL, NULL, NULL,
593 	    dn_buf_import, dn_buf_release,
594 	    &dn_clustq, UMA_ZONE_NOBUCKET);
595 
596 	dn_zone_pack = uma_zcache_create("debugnet_" MBUF_PACKET_MEM_NAME,
597 	    MCLBYTES, mb_ctor_pack, mb_dtor_pack, NULL, NULL,
598 	    dn_pack_import, dn_pack_release,
599 	    NULL, UMA_ZONE_NOBUCKET);
600 
601 	while (nmbuf-- > 0) {
602 		m = m_get(MT_DATA, M_WAITOK);
603 		uma_zfree(dn_zone_mbuf, m);
604 	}
605 	while (nclust-- > 0) {
606 		item = uma_zalloc(m_getzone(dn_clsize), M_WAITOK);
607 		uma_zfree(dn_zone_clust, item);
608 	}
609 }
610 #endif /* DEBUGNET */
611 
612 /*
613  * Constructor for Mbuf master zone.
614  *
615  * The 'arg' pointer points to a mb_args structure which
616  * contains call-specific information required to support the
617  * mbuf allocation API.  See mbuf.h.
618  */
619 static int
620 mb_ctor_mbuf(void *mem, int size, void *arg, int how)
621 {
622 	struct mbuf *m;
623 	struct mb_args *args;
624 	int error;
625 	int flags;
626 	short type;
627 
628 	args = (struct mb_args *)arg;
629 	type = args->type;
630 
631 	/*
632 	 * The mbuf is initialized later.  The caller has the
633 	 * responsibility to set up any MAC labels too.
634 	 */
635 	if (type == MT_NOINIT)
636 		return (0);
637 
638 	m = (struct mbuf *)mem;
639 	flags = args->flags;
640 	MPASS((flags & M_NOFREE) == 0);
641 
642 	error = m_init(m, how, type, flags);
643 
644 	return (error);
645 }
646 
647 /*
648  * The Mbuf master zone destructor.
649  */
650 static void
651 mb_dtor_mbuf(void *mem, int size, void *arg)
652 {
653 	struct mbuf *m;
654 	unsigned long flags;
655 
656 	m = (struct mbuf *)mem;
657 	flags = (unsigned long)arg;
658 
659 	KASSERT((m->m_flags & M_NOFREE) == 0, ("%s: M_NOFREE set", __func__));
660 	if (!(flags & MB_DTOR_SKIP) && (m->m_flags & M_PKTHDR) && !SLIST_EMPTY(&m->m_pkthdr.tags))
661 		m_tag_delete_chain(m, NULL);
662 }
663 
664 /*
665  * The Mbuf Packet zone destructor.
666  */
667 static void
668 mb_dtor_pack(void *mem, int size, void *arg)
669 {
670 	struct mbuf *m;
671 
672 	m = (struct mbuf *)mem;
673 	if ((m->m_flags & M_PKTHDR) != 0)
674 		m_tag_delete_chain(m, NULL);
675 
676 	/* Make sure we've got a clean cluster back. */
677 	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
678 	KASSERT(m->m_ext.ext_buf != NULL, ("%s: ext_buf == NULL", __func__));
679 	KASSERT(m->m_ext.ext_free == NULL, ("%s: ext_free != NULL", __func__));
680 	KASSERT(m->m_ext.ext_arg1 == NULL, ("%s: ext_arg1 != NULL", __func__));
681 	KASSERT(m->m_ext.ext_arg2 == NULL, ("%s: ext_arg2 != NULL", __func__));
682 	KASSERT(m->m_ext.ext_size == MCLBYTES, ("%s: ext_size != MCLBYTES", __func__));
683 	KASSERT(m->m_ext.ext_type == EXT_PACKET, ("%s: ext_type != EXT_PACKET", __func__));
684 #ifdef INVARIANTS
685 	trash_dtor(m->m_ext.ext_buf, MCLBYTES, arg);
686 #endif
687 	/*
688 	 * If there are processes blocked on zone_clust, waiting for pages
689 	 * to be freed up, cause them to be woken up by draining the
690 	 * packet zone.  We are exposed to a race here (in the check for
691 	 * the UMA_ZFLAG_FULL) where we might miss the flag set, but that
692 	 * is deliberate. We don't want to acquire the zone lock for every
693 	 * mbuf free.
694 	 */
695 	if (uma_zone_exhausted(zone_clust))
696 		uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN);
697 }
698 
699 /*
700  * The Cluster and Jumbo[PAGESIZE|9|16] zone constructor.
701  *
702  * Here the 'arg' pointer points to the Mbuf which we
703  * are configuring cluster storage for.  If 'arg' is
704  * empty we allocate just the cluster without setting
705  * the mbuf to it.  See mbuf.h.
706  */
707 static int
708 mb_ctor_clust(void *mem, int size, void *arg, int how)
709 {
710 	struct mbuf *m;
711 
712 	m = (struct mbuf *)arg;
713 	if (m != NULL) {
714 		m->m_ext.ext_buf = (char *)mem;
715 		m->m_data = m->m_ext.ext_buf;
716 		m->m_flags |= M_EXT;
717 		m->m_ext.ext_free = NULL;
718 		m->m_ext.ext_arg1 = NULL;
719 		m->m_ext.ext_arg2 = NULL;
720 		m->m_ext.ext_size = size;
721 		m->m_ext.ext_type = m_gettype(size);
722 		m->m_ext.ext_flags = EXT_FLAG_EMBREF;
723 		m->m_ext.ext_count = 1;
724 	}
725 
726 	return (0);
727 }
728 
729 /*
730  * The Packet secondary zone's init routine, executed on the
731  * object's transition from mbuf keg slab to zone cache.
732  */
733 static int
734 mb_zinit_pack(void *mem, int size, int how)
735 {
736 	struct mbuf *m;
737 
738 	m = (struct mbuf *)mem;		/* m is virgin. */
739 	if (uma_zalloc_arg(zone_clust, m, how) == NULL ||
740 	    m->m_ext.ext_buf == NULL)
741 		return (ENOMEM);
742 	m->m_ext.ext_type = EXT_PACKET;	/* Override. */
743 #ifdef INVARIANTS
744 	trash_init(m->m_ext.ext_buf, MCLBYTES, how);
745 #endif
746 	return (0);
747 }
748 
749 /*
750  * The Packet secondary zone's fini routine, executed on the
751  * object's transition from zone cache to keg slab.
752  */
753 static void
754 mb_zfini_pack(void *mem, int size)
755 {
756 	struct mbuf *m;
757 
758 	m = (struct mbuf *)mem;
759 #ifdef INVARIANTS
760 	trash_fini(m->m_ext.ext_buf, MCLBYTES);
761 #endif
762 	uma_zfree_arg(zone_clust, m->m_ext.ext_buf, NULL);
763 #ifdef INVARIANTS
764 	trash_dtor(mem, size, NULL);
765 #endif
766 }
767 
768 /*
769  * The "packet" keg constructor.
770  */
771 static int
772 mb_ctor_pack(void *mem, int size, void *arg, int how)
773 {
774 	struct mbuf *m;
775 	struct mb_args *args;
776 	int error, flags;
777 	short type;
778 
779 	m = (struct mbuf *)mem;
780 	args = (struct mb_args *)arg;
781 	flags = args->flags;
782 	type = args->type;
783 	MPASS((flags & M_NOFREE) == 0);
784 
785 #ifdef INVARIANTS
786 	trash_ctor(m->m_ext.ext_buf, MCLBYTES, arg, how);
787 #endif
788 
789 	error = m_init(m, how, type, flags);
790 
791 	/* m_ext is already initialized. */
792 	m->m_data = m->m_ext.ext_buf;
793  	m->m_flags = (flags | M_EXT);
794 
795 	return (error);
796 }
797 
798 /*
799  * This is the protocol drain routine.  Called by UMA whenever any of the
800  * mbuf zones is closed to its limit.
801  *
802  * No locks should be held when this is called.  The drain routines have to
803  * presently acquire some locks which raises the possibility of lock order
804  * reversal.
805  */
806 static void
807 mb_reclaim(uma_zone_t zone __unused, int pending __unused)
808 {
809 	struct epoch_tracker et;
810 	struct domain *dp;
811 	struct protosw *pr;
812 
813 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK | WARN_PANIC, NULL, __func__);
814 
815 	NET_EPOCH_ENTER(et);
816 	for (dp = domains; dp != NULL; dp = dp->dom_next)
817 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
818 			if (pr->pr_drain != NULL)
819 				(*pr->pr_drain)();
820 	NET_EPOCH_EXIT(et);
821 }
822 
823 /*
824  * Free "count" units of I/O from an mbuf chain.  They could be held
825  * in M_EXTPG or just as a normal mbuf.  This code is intended to be
826  * called in an error path (I/O error, closed connection, etc).
827  */
828 void
829 mb_free_notready(struct mbuf *m, int count)
830 {
831 	int i;
832 
833 	for (i = 0; i < count && m != NULL; i++) {
834 		if ((m->m_flags & M_EXTPG) != 0) {
835 			m->m_epg_nrdy--;
836 			if (m->m_epg_nrdy != 0)
837 				continue;
838 		}
839 		m = m_free(m);
840 	}
841 	KASSERT(i == count, ("Removed only %d items from %p", i, m));
842 }
843 
844 /*
845  * Compress an unmapped mbuf into a simple mbuf when it holds a small
846  * amount of data.  This is used as a DOS defense to avoid having
847  * small packets tie up wired pages, an ext_pgs structure, and an
848  * mbuf.  Since this converts the existing mbuf in place, it can only
849  * be used if there are no other references to 'm'.
850  */
851 int
852 mb_unmapped_compress(struct mbuf *m)
853 {
854 	volatile u_int *refcnt;
855 	char buf[MLEN];
856 
857 	/*
858 	 * Assert that 'm' does not have a packet header.  If 'm' had
859 	 * a packet header, it would only be able to hold MHLEN bytes
860 	 * and m_data would have to be initialized differently.
861 	 */
862 	KASSERT((m->m_flags & M_PKTHDR) == 0 && (m->m_flags & M_EXTPG),
863             ("%s: m %p !M_EXTPG or M_PKTHDR", __func__, m));
864 	KASSERT(m->m_len <= MLEN, ("m_len too large %p", m));
865 
866 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
867 		refcnt = &m->m_ext.ext_count;
868 	} else {
869 		KASSERT(m->m_ext.ext_cnt != NULL,
870 		    ("%s: no refcounting pointer on %p", __func__, m));
871 		refcnt = m->m_ext.ext_cnt;
872 	}
873 
874 	if (*refcnt != 1)
875 		return (EBUSY);
876 
877 	m_copydata(m, 0, m->m_len, buf);
878 
879 	/* Free the backing pages. */
880 	m->m_ext.ext_free(m);
881 
882 	/* Turn 'm' into a "normal" mbuf. */
883 	m->m_flags &= ~(M_EXT | M_RDONLY | M_EXTPG);
884 	m->m_data = m->m_dat;
885 
886 	/* Copy data back into m. */
887 	bcopy(buf, mtod(m, char *), m->m_len);
888 
889 	return (0);
890 }
891 
892 /*
893  * These next few routines are used to permit downgrading an unmapped
894  * mbuf to a chain of mapped mbufs.  This is used when an interface
895  * doesn't supported unmapped mbufs or if checksums need to be
896  * computed in software.
897  *
898  * Each unmapped mbuf is converted to a chain of mbufs.  First, any
899  * TLS header data is stored in a regular mbuf.  Second, each page of
900  * unmapped data is stored in an mbuf with an EXT_SFBUF external
901  * cluster.  These mbufs use an sf_buf to provide a valid KVA for the
902  * associated physical page.  They also hold a reference on the
903  * original M_EXTPG mbuf to ensure the physical page doesn't go away.
904  * Finally, any TLS trailer data is stored in a regular mbuf.
905  *
906  * mb_unmapped_free_mext() is the ext_free handler for the EXT_SFBUF
907  * mbufs.  It frees the associated sf_buf and releases its reference
908  * on the original M_EXTPG mbuf.
909  *
910  * _mb_unmapped_to_ext() is a helper function that converts a single
911  * unmapped mbuf into a chain of mbufs.
912  *
913  * mb_unmapped_to_ext() is the public function that walks an mbuf
914  * chain converting any unmapped mbufs to mapped mbufs.  It returns
915  * the new chain of unmapped mbufs on success.  On failure it frees
916  * the original mbuf chain and returns NULL.
917  */
918 static void
919 mb_unmapped_free_mext(struct mbuf *m)
920 {
921 	struct sf_buf *sf;
922 	struct mbuf *old_m;
923 
924 	sf = m->m_ext.ext_arg1;
925 	sf_buf_free(sf);
926 
927 	/* Drop the reference on the backing M_EXTPG mbuf. */
928 	old_m = m->m_ext.ext_arg2;
929 	mb_free_extpg(old_m);
930 }
931 
932 static struct mbuf *
933 _mb_unmapped_to_ext(struct mbuf *m)
934 {
935 	struct mbuf *m_new, *top, *prev, *mref;
936 	struct sf_buf *sf;
937 	vm_page_t pg;
938 	int i, len, off, pglen, pgoff, seglen, segoff;
939 	volatile u_int *refcnt;
940 	u_int ref_inc = 0;
941 
942 	M_ASSERTEXTPG(m);
943 	len = m->m_len;
944 	KASSERT(m->m_epg_tls == NULL, ("%s: can't convert TLS mbuf %p",
945 	    __func__, m));
946 
947 	/* See if this is the mbuf that holds the embedded refcount. */
948 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
949 		refcnt = &m->m_ext.ext_count;
950 		mref = m;
951 	} else {
952 		KASSERT(m->m_ext.ext_cnt != NULL,
953 		    ("%s: no refcounting pointer on %p", __func__, m));
954 		refcnt = m->m_ext.ext_cnt;
955 		mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
956 	}
957 
958 	/* Skip over any data removed from the front. */
959 	off = mtod(m, vm_offset_t);
960 
961 	top = NULL;
962 	if (m->m_epg_hdrlen != 0) {
963 		if (off >= m->m_epg_hdrlen) {
964 			off -= m->m_epg_hdrlen;
965 		} else {
966 			seglen = m->m_epg_hdrlen - off;
967 			segoff = off;
968 			seglen = min(seglen, len);
969 			off = 0;
970 			len -= seglen;
971 			m_new = m_get(M_NOWAIT, MT_DATA);
972 			if (m_new == NULL)
973 				goto fail;
974 			m_new->m_len = seglen;
975 			prev = top = m_new;
976 			memcpy(mtod(m_new, void *), &m->m_epg_hdr[segoff],
977 			    seglen);
978 		}
979 	}
980 	pgoff = m->m_epg_1st_off;
981 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
982 		pglen = m_epg_pagelen(m, i, pgoff);
983 		if (off >= pglen) {
984 			off -= pglen;
985 			pgoff = 0;
986 			continue;
987 		}
988 		seglen = pglen - off;
989 		segoff = pgoff + off;
990 		off = 0;
991 		seglen = min(seglen, len);
992 		len -= seglen;
993 
994 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
995 		m_new = m_get(M_NOWAIT, MT_DATA);
996 		if (m_new == NULL)
997 			goto fail;
998 		if (top == NULL) {
999 			top = prev = m_new;
1000 		} else {
1001 			prev->m_next = m_new;
1002 			prev = m_new;
1003 		}
1004 		sf = sf_buf_alloc(pg, SFB_NOWAIT);
1005 		if (sf == NULL)
1006 			goto fail;
1007 
1008 		ref_inc++;
1009 		m_extadd(m_new, (char *)sf_buf_kva(sf), PAGE_SIZE,
1010 		    mb_unmapped_free_mext, sf, mref, M_RDONLY, EXT_SFBUF);
1011 		m_new->m_data += segoff;
1012 		m_new->m_len = seglen;
1013 
1014 		pgoff = 0;
1015 	};
1016 	if (len != 0) {
1017 		KASSERT((off + len) <= m->m_epg_trllen,
1018 		    ("off + len > trail (%d + %d > %d)", off, len,
1019 		    m->m_epg_trllen));
1020 		m_new = m_get(M_NOWAIT, MT_DATA);
1021 		if (m_new == NULL)
1022 			goto fail;
1023 		if (top == NULL)
1024 			top = m_new;
1025 		else
1026 			prev->m_next = m_new;
1027 		m_new->m_len = len;
1028 		memcpy(mtod(m_new, void *), &m->m_epg_trail[off], len);
1029 	}
1030 
1031 	if (ref_inc != 0) {
1032 		/*
1033 		 * Obtain an additional reference on the old mbuf for
1034 		 * each created EXT_SFBUF mbuf.  They will be dropped
1035 		 * in mb_unmapped_free_mext().
1036 		 */
1037 		if (*refcnt == 1)
1038 			*refcnt += ref_inc;
1039 		else
1040 			atomic_add_int(refcnt, ref_inc);
1041 	}
1042 	m_free(m);
1043 	return (top);
1044 
1045 fail:
1046 	if (ref_inc != 0) {
1047 		/*
1048 		 * Obtain an additional reference on the old mbuf for
1049 		 * each created EXT_SFBUF mbuf.  They will be
1050 		 * immediately dropped when these mbufs are freed
1051 		 * below.
1052 		 */
1053 		if (*refcnt == 1)
1054 			*refcnt += ref_inc;
1055 		else
1056 			atomic_add_int(refcnt, ref_inc);
1057 	}
1058 	m_free(m);
1059 	m_freem(top);
1060 	return (NULL);
1061 }
1062 
1063 struct mbuf *
1064 mb_unmapped_to_ext(struct mbuf *top)
1065 {
1066 	struct mbuf *m, *next, *prev = NULL;
1067 
1068 	prev = NULL;
1069 	for (m = top; m != NULL; m = next) {
1070 		/* m might be freed, so cache the next pointer. */
1071 		next = m->m_next;
1072 		if (m->m_flags & M_EXTPG) {
1073 			if (prev != NULL) {
1074 				/*
1075 				 * Remove 'm' from the new chain so
1076 				 * that the 'top' chain terminates
1077 				 * before 'm' in case 'top' is freed
1078 				 * due to an error.
1079 				 */
1080 				prev->m_next = NULL;
1081 			}
1082 			m = _mb_unmapped_to_ext(m);
1083 			if (m == NULL) {
1084 				m_freem(top);
1085 				m_freem(next);
1086 				return (NULL);
1087 			}
1088 			if (prev == NULL) {
1089 				top = m;
1090 			} else {
1091 				prev->m_next = m;
1092 			}
1093 
1094 			/*
1095 			 * Replaced one mbuf with a chain, so we must
1096 			 * find the end of chain.
1097 			 */
1098 			prev = m_last(m);
1099 		} else {
1100 			if (prev != NULL) {
1101 				prev->m_next = m;
1102 			}
1103 			prev = m;
1104 		}
1105 	}
1106 	return (top);
1107 }
1108 
1109 /*
1110  * Allocate an empty M_EXTPG mbuf.  The ext_free routine is
1111  * responsible for freeing any pages backing this mbuf when it is
1112  * freed.
1113  */
1114 struct mbuf *
1115 mb_alloc_ext_pgs(int how, m_ext_free_t ext_free)
1116 {
1117 	struct mbuf *m;
1118 
1119 	m = m_get(how, MT_DATA);
1120 	if (m == NULL)
1121 		return (NULL);
1122 
1123 	m->m_epg_npgs = 0;
1124 	m->m_epg_nrdy = 0;
1125 	m->m_epg_1st_off = 0;
1126 	m->m_epg_last_len = 0;
1127 	m->m_epg_flags = 0;
1128 	m->m_epg_hdrlen = 0;
1129 	m->m_epg_trllen = 0;
1130 	m->m_epg_tls = NULL;
1131 	m->m_epg_so = NULL;
1132 	m->m_data = NULL;
1133 	m->m_flags |= (M_EXT | M_RDONLY | M_EXTPG);
1134 	m->m_ext.ext_flags = EXT_FLAG_EMBREF;
1135 	m->m_ext.ext_count = 1;
1136 	m->m_ext.ext_size = 0;
1137 	m->m_ext.ext_free = ext_free;
1138 	return (m);
1139 }
1140 
1141 /*
1142  * Clean up after mbufs with M_EXT storage attached to them if the
1143  * reference count hits 1.
1144  */
1145 void
1146 mb_free_ext(struct mbuf *m)
1147 {
1148 	volatile u_int *refcnt;
1149 	struct mbuf *mref;
1150 	int freembuf;
1151 
1152 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
1153 
1154 	/* See if this is the mbuf that holds the embedded refcount. */
1155 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
1156 		refcnt = &m->m_ext.ext_count;
1157 		mref = m;
1158 	} else {
1159 		KASSERT(m->m_ext.ext_cnt != NULL,
1160 		    ("%s: no refcounting pointer on %p", __func__, m));
1161 		refcnt = m->m_ext.ext_cnt;
1162 		mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
1163 	}
1164 
1165 	/*
1166 	 * Check if the header is embedded in the cluster.  It is
1167 	 * important that we can't touch any of the mbuf fields
1168 	 * after we have freed the external storage, since mbuf
1169 	 * could have been embedded in it.  For now, the mbufs
1170 	 * embedded into the cluster are always of type EXT_EXTREF,
1171 	 * and for this type we won't free the mref.
1172 	 */
1173 	if (m->m_flags & M_NOFREE) {
1174 		freembuf = 0;
1175 		KASSERT(m->m_ext.ext_type == EXT_EXTREF ||
1176 		    m->m_ext.ext_type == EXT_RXRING,
1177 		    ("%s: no-free mbuf %p has wrong type", __func__, m));
1178 	} else
1179 		freembuf = 1;
1180 
1181 	/* Free attached storage if this mbuf is the only reference to it. */
1182 	if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
1183 		switch (m->m_ext.ext_type) {
1184 		case EXT_PACKET:
1185 			/* The packet zone is special. */
1186 			if (*refcnt == 0)
1187 				*refcnt = 1;
1188 			uma_zfree(zone_pack, mref);
1189 			break;
1190 		case EXT_CLUSTER:
1191 			uma_zfree(zone_clust, m->m_ext.ext_buf);
1192 			uma_zfree(zone_mbuf, mref);
1193 			break;
1194 		case EXT_JUMBOP:
1195 			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
1196 			uma_zfree(zone_mbuf, mref);
1197 			break;
1198 		case EXT_JUMBO9:
1199 			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
1200 			uma_zfree(zone_mbuf, mref);
1201 			break;
1202 		case EXT_JUMBO16:
1203 			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
1204 			uma_zfree(zone_mbuf, mref);
1205 			break;
1206 		case EXT_SFBUF:
1207 		case EXT_NET_DRV:
1208 		case EXT_MOD_TYPE:
1209 		case EXT_DISPOSABLE:
1210 			KASSERT(mref->m_ext.ext_free != NULL,
1211 			    ("%s: ext_free not set", __func__));
1212 			mref->m_ext.ext_free(mref);
1213 			uma_zfree(zone_mbuf, mref);
1214 			break;
1215 		case EXT_EXTREF:
1216 			KASSERT(m->m_ext.ext_free != NULL,
1217 			    ("%s: ext_free not set", __func__));
1218 			m->m_ext.ext_free(m);
1219 			break;
1220 		case EXT_RXRING:
1221 			KASSERT(m->m_ext.ext_free == NULL,
1222 			    ("%s: ext_free is set", __func__));
1223 			break;
1224 		default:
1225 			KASSERT(m->m_ext.ext_type == 0,
1226 			    ("%s: unknown ext_type", __func__));
1227 		}
1228 	}
1229 
1230 	if (freembuf && m != mref)
1231 		uma_zfree(zone_mbuf, m);
1232 }
1233 
1234 /*
1235  * Clean up after mbufs with M_EXTPG storage attached to them if the
1236  * reference count hits 1.
1237  */
1238 void
1239 mb_free_extpg(struct mbuf *m)
1240 {
1241 	volatile u_int *refcnt;
1242 	struct mbuf *mref;
1243 
1244 	M_ASSERTEXTPG(m);
1245 
1246 	/* See if this is the mbuf that holds the embedded refcount. */
1247 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
1248 		refcnt = &m->m_ext.ext_count;
1249 		mref = m;
1250 	} else {
1251 		KASSERT(m->m_ext.ext_cnt != NULL,
1252 		    ("%s: no refcounting pointer on %p", __func__, m));
1253 		refcnt = m->m_ext.ext_cnt;
1254 		mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
1255 	}
1256 
1257 	/* Free attached storage if this mbuf is the only reference to it. */
1258 	if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
1259 		KASSERT(mref->m_ext.ext_free != NULL,
1260 		    ("%s: ext_free not set", __func__));
1261 
1262 		mref->m_ext.ext_free(mref);
1263 #ifdef KERN_TLS
1264 		if (mref->m_epg_tls != NULL &&
1265 		    !refcount_release_if_not_last(&mref->m_epg_tls->refcount))
1266 			ktls_enqueue_to_free(mref);
1267 		else
1268 #endif
1269 			uma_zfree(zone_mbuf, mref);
1270 	}
1271 
1272 	if (m != mref)
1273 		uma_zfree(zone_mbuf, m);
1274 }
1275 
1276 /*
1277  * Official mbuf(9) allocation KPI for stack and drivers:
1278  *
1279  * m_get()	- a single mbuf without any attachments, sys/mbuf.h.
1280  * m_gethdr()	- a single mbuf initialized as M_PKTHDR, sys/mbuf.h.
1281  * m_getcl()	- an mbuf + 2k cluster, sys/mbuf.h.
1282  * m_clget()	- attach cluster to already allocated mbuf.
1283  * m_cljget()	- attach jumbo cluster to already allocated mbuf.
1284  * m_get2()	- allocate minimum mbuf that would fit size argument.
1285  * m_getm2()	- allocate a chain of mbufs/clusters.
1286  * m_extadd()	- attach external cluster to mbuf.
1287  *
1288  * m_free()	- free single mbuf with its tags and ext, sys/mbuf.h.
1289  * m_freem()	- free chain of mbufs.
1290  */
1291 
1292 int
1293 m_clget(struct mbuf *m, int how)
1294 {
1295 
1296 	KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
1297 	    __func__, m));
1298 	m->m_ext.ext_buf = (char *)NULL;
1299 	uma_zalloc_arg(zone_clust, m, how);
1300 	/*
1301 	 * On a cluster allocation failure, drain the packet zone and retry,
1302 	 * we might be able to loosen a few clusters up on the drain.
1303 	 */
1304 	if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) {
1305 		uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN);
1306 		uma_zalloc_arg(zone_clust, m, how);
1307 	}
1308 	MBUF_PROBE2(m__clget, m, how);
1309 	return (m->m_flags & M_EXT);
1310 }
1311 
1312 /*
1313  * m_cljget() is different from m_clget() as it can allocate clusters without
1314  * attaching them to an mbuf.  In that case the return value is the pointer
1315  * to the cluster of the requested size.  If an mbuf was specified, it gets
1316  * the cluster attached to it and the return value can be safely ignored.
1317  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
1318  */
1319 void *
1320 m_cljget(struct mbuf *m, int how, int size)
1321 {
1322 	uma_zone_t zone;
1323 	void *retval;
1324 
1325 	if (m != NULL) {
1326 		KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
1327 		    __func__, m));
1328 		m->m_ext.ext_buf = NULL;
1329 	}
1330 
1331 	zone = m_getzone(size);
1332 	retval = uma_zalloc_arg(zone, m, how);
1333 
1334 	MBUF_PROBE4(m__cljget, m, how, size, retval);
1335 
1336 	return (retval);
1337 }
1338 
1339 /*
1340  * m_get2() allocates minimum mbuf that would fit "size" argument.
1341  */
1342 struct mbuf *
1343 m_get2(int size, int how, short type, int flags)
1344 {
1345 	struct mb_args args;
1346 	struct mbuf *m, *n;
1347 
1348 	args.flags = flags;
1349 	args.type = type;
1350 
1351 	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
1352 		return (uma_zalloc_arg(zone_mbuf, &args, how));
1353 	if (size <= MCLBYTES)
1354 		return (uma_zalloc_arg(zone_pack, &args, how));
1355 
1356 	if (size > MJUMPAGESIZE)
1357 		return (NULL);
1358 
1359 	m = uma_zalloc_arg(zone_mbuf, &args, how);
1360 	if (m == NULL)
1361 		return (NULL);
1362 
1363 	n = uma_zalloc_arg(zone_jumbop, m, how);
1364 	if (n == NULL) {
1365 		uma_zfree(zone_mbuf, m);
1366 		return (NULL);
1367 	}
1368 
1369 	return (m);
1370 }
1371 
1372 /*
1373  * m_getjcl() returns an mbuf with a cluster of the specified size attached.
1374  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
1375  */
1376 struct mbuf *
1377 m_getjcl(int how, short type, int flags, int size)
1378 {
1379 	struct mb_args args;
1380 	struct mbuf *m, *n;
1381 	uma_zone_t zone;
1382 
1383 	if (size == MCLBYTES)
1384 		return m_getcl(how, type, flags);
1385 
1386 	args.flags = flags;
1387 	args.type = type;
1388 
1389 	m = uma_zalloc_arg(zone_mbuf, &args, how);
1390 	if (m == NULL)
1391 		return (NULL);
1392 
1393 	zone = m_getzone(size);
1394 	n = uma_zalloc_arg(zone, m, how);
1395 	if (n == NULL) {
1396 		uma_zfree(zone_mbuf, m);
1397 		return (NULL);
1398 	}
1399 	return (m);
1400 }
1401 
1402 /*
1403  * Allocate a given length worth of mbufs and/or clusters (whatever fits
1404  * best) and return a pointer to the top of the allocated chain.  If an
1405  * existing mbuf chain is provided, then we will append the new chain
1406  * to the existing one and return a pointer to the provided mbuf.
1407  */
1408 struct mbuf *
1409 m_getm2(struct mbuf *m, int len, int how, short type, int flags)
1410 {
1411 	struct mbuf *mb, *nm = NULL, *mtail = NULL;
1412 
1413 	KASSERT(len >= 0, ("%s: len is < 0", __func__));
1414 
1415 	/* Validate flags. */
1416 	flags &= (M_PKTHDR | M_EOR);
1417 
1418 	/* Packet header mbuf must be first in chain. */
1419 	if ((flags & M_PKTHDR) && m != NULL)
1420 		flags &= ~M_PKTHDR;
1421 
1422 	/* Loop and append maximum sized mbufs to the chain tail. */
1423 	while (len > 0) {
1424 		if (len > MCLBYTES)
1425 			mb = m_getjcl(how, type, (flags & M_PKTHDR),
1426 			    MJUMPAGESIZE);
1427 		else if (len >= MINCLSIZE)
1428 			mb = m_getcl(how, type, (flags & M_PKTHDR));
1429 		else if (flags & M_PKTHDR)
1430 			mb = m_gethdr(how, type);
1431 		else
1432 			mb = m_get(how, type);
1433 
1434 		/* Fail the whole operation if one mbuf can't be allocated. */
1435 		if (mb == NULL) {
1436 			if (nm != NULL)
1437 				m_freem(nm);
1438 			return (NULL);
1439 		}
1440 
1441 		/* Book keeping. */
1442 		len -= M_SIZE(mb);
1443 		if (mtail != NULL)
1444 			mtail->m_next = mb;
1445 		else
1446 			nm = mb;
1447 		mtail = mb;
1448 		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
1449 	}
1450 	if (flags & M_EOR)
1451 		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
1452 
1453 	/* If mbuf was supplied, append new chain to the end of it. */
1454 	if (m != NULL) {
1455 		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
1456 			;
1457 		mtail->m_next = nm;
1458 		mtail->m_flags &= ~M_EOR;
1459 	} else
1460 		m = nm;
1461 
1462 	return (m);
1463 }
1464 
1465 /*-
1466  * Configure a provided mbuf to refer to the provided external storage
1467  * buffer and setup a reference count for said buffer.
1468  *
1469  * Arguments:
1470  *    mb     The existing mbuf to which to attach the provided buffer.
1471  *    buf    The address of the provided external storage buffer.
1472  *    size   The size of the provided buffer.
1473  *    freef  A pointer to a routine that is responsible for freeing the
1474  *           provided external storage buffer.
1475  *    args   A pointer to an argument structure (of any type) to be passed
1476  *           to the provided freef routine (may be NULL).
1477  *    flags  Any other flags to be passed to the provided mbuf.
1478  *    type   The type that the external storage buffer should be
1479  *           labeled with.
1480  *
1481  * Returns:
1482  *    Nothing.
1483  */
1484 void
1485 m_extadd(struct mbuf *mb, char *buf, u_int size, m_ext_free_t freef,
1486     void *arg1, void *arg2, int flags, int type)
1487 {
1488 
1489 	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
1490 
1491 	mb->m_flags |= (M_EXT | flags);
1492 	mb->m_ext.ext_buf = buf;
1493 	mb->m_data = mb->m_ext.ext_buf;
1494 	mb->m_ext.ext_size = size;
1495 	mb->m_ext.ext_free = freef;
1496 	mb->m_ext.ext_arg1 = arg1;
1497 	mb->m_ext.ext_arg2 = arg2;
1498 	mb->m_ext.ext_type = type;
1499 
1500 	if (type != EXT_EXTREF) {
1501 		mb->m_ext.ext_count = 1;
1502 		mb->m_ext.ext_flags = EXT_FLAG_EMBREF;
1503 	} else
1504 		mb->m_ext.ext_flags = 0;
1505 }
1506 
1507 /*
1508  * Free an entire chain of mbufs and associated external buffers, if
1509  * applicable.
1510  */
1511 void
1512 m_freem(struct mbuf *mb)
1513 {
1514 
1515 	MBUF_PROBE1(m__freem, mb);
1516 	while (mb != NULL)
1517 		mb = m_free(mb);
1518 }
1519 
1520 void
1521 m_snd_tag_init(struct m_snd_tag *mst, struct ifnet *ifp)
1522 {
1523 
1524 	if_ref(ifp);
1525 	mst->ifp = ifp;
1526 	refcount_init(&mst->refcount, 1);
1527 	counter_u64_add(snd_tag_count, 1);
1528 }
1529 
1530 void
1531 m_snd_tag_destroy(struct m_snd_tag *mst)
1532 {
1533 	struct ifnet *ifp;
1534 
1535 	ifp = mst->ifp;
1536 	ifp->if_snd_tag_free(mst);
1537 	if_rele(ifp);
1538 	counter_u64_add(snd_tag_count, -1);
1539 }
1540