1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1987, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005-2009 Robert N. M. Watson 7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray) 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 35 */ 36 37 /* 38 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 39 * based on memory types. Back end is implemented using the UMA(9) zone 40 * allocator. A set of fixed-size buckets are used for smaller allocations, 41 * and a special UMA allocation interface is used for larger allocations. 42 * Callers declare memory types, and statistics are maintained independently 43 * for each memory type. Statistics are maintained per-CPU for performance 44 * reasons. See malloc(9) and comments in malloc.h for a detailed 45 * description. 46 */ 47 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include "opt_ddb.h" 52 #include "opt_vm.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/kdb.h> 57 #include <sys/kernel.h> 58 #include <sys/lock.h> 59 #include <sys/malloc.h> 60 #include <sys/mutex.h> 61 #include <sys/vmmeter.h> 62 #include <sys/proc.h> 63 #include <sys/queue.h> 64 #include <sys/sbuf.h> 65 #include <sys/smp.h> 66 #include <sys/sysctl.h> 67 #include <sys/time.h> 68 #include <sys/vmem.h> 69 #ifdef EPOCH_TRACE 70 #include <sys/epoch.h> 71 #endif 72 73 #include <vm/vm.h> 74 #include <vm/pmap.h> 75 #include <vm/vm_domainset.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_param.h> 78 #include <vm/vm_kern.h> 79 #include <vm/vm_extern.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_page.h> 82 #include <vm/vm_phys.h> 83 #include <vm/vm_pagequeue.h> 84 #include <vm/uma.h> 85 #include <vm/uma_int.h> 86 #include <vm/uma_dbg.h> 87 88 #ifdef DEBUG_MEMGUARD 89 #include <vm/memguard.h> 90 #endif 91 #ifdef DEBUG_REDZONE 92 #include <vm/redzone.h> 93 #endif 94 95 #if defined(INVARIANTS) && defined(__i386__) 96 #include <machine/cpu.h> 97 #endif 98 99 #include <ddb/ddb.h> 100 101 #ifdef KDTRACE_HOOKS 102 #include <sys/dtrace_bsd.h> 103 104 bool __read_frequently dtrace_malloc_enabled; 105 dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; 106 #endif 107 108 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ 109 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) 110 #define MALLOC_DEBUG 1 111 #endif 112 113 /* 114 * When realloc() is called, if the new size is sufficiently smaller than 115 * the old size, realloc() will allocate a new, smaller block to avoid 116 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 117 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 118 */ 119 #ifndef REALLOC_FRACTION 120 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 121 #endif 122 123 /* 124 * Centrally define some common malloc types. 125 */ 126 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 127 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 128 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 129 130 static struct malloc_type *kmemstatistics; 131 static int kmemcount; 132 133 #define KMEM_ZSHIFT 4 134 #define KMEM_ZBASE 16 135 #define KMEM_ZMASK (KMEM_ZBASE - 1) 136 137 #define KMEM_ZMAX 65536 138 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 139 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 140 141 #ifndef MALLOC_DEBUG_MAXZONES 142 #define MALLOC_DEBUG_MAXZONES 1 143 #endif 144 static int numzones = MALLOC_DEBUG_MAXZONES; 145 146 /* 147 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 148 * of various sizes. 149 * 150 * Warning: the layout of the struct is duplicated in libmemstat for KVM support. 151 * 152 * XXX: The comment here used to read "These won't be powers of two for 153 * long." It's possible that a significant amount of wasted memory could be 154 * recovered by tuning the sizes of these buckets. 155 */ 156 struct { 157 int kz_size; 158 const char *kz_name; 159 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 160 } kmemzones[] = { 161 {16, "malloc-16", }, 162 {32, "malloc-32", }, 163 {64, "malloc-64", }, 164 {128, "malloc-128", }, 165 {256, "malloc-256", }, 166 {512, "malloc-512", }, 167 {1024, "malloc-1024", }, 168 {2048, "malloc-2048", }, 169 {4096, "malloc-4096", }, 170 {8192, "malloc-8192", }, 171 {16384, "malloc-16384", }, 172 {32768, "malloc-32768", }, 173 {65536, "malloc-65536", }, 174 {0, NULL}, 175 }; 176 177 /* 178 * Zone to allocate per-CPU storage for statistics. 179 */ 180 static uma_zone_t mt_stats_zone; 181 182 u_long vm_kmem_size; 183 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 184 "Size of kernel memory"); 185 186 static u_long kmem_zmax = KMEM_ZMAX; 187 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, 188 "Maximum allocation size that malloc(9) would use UMA as backend"); 189 190 static u_long vm_kmem_size_min; 191 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 192 "Minimum size of kernel memory"); 193 194 static u_long vm_kmem_size_max; 195 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 196 "Maximum size of kernel memory"); 197 198 static u_int vm_kmem_size_scale; 199 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 200 "Scale factor for kernel memory size"); 201 202 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 203 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 204 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 205 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 206 207 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 208 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 209 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 210 sysctl_kmem_map_free, "LU", "Free space in kmem"); 211 212 static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 213 "Malloc information"); 214 215 static u_int vm_malloc_zone_count = nitems(kmemzones); 216 SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count, 217 CTLFLAG_RD, &vm_malloc_zone_count, 0, 218 "Number of malloc zones"); 219 220 static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS); 221 SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes, 222 CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0, 223 sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc"); 224 225 /* 226 * The malloc_mtx protects the kmemstatistics linked list. 227 */ 228 struct mtx malloc_mtx; 229 230 #ifdef MALLOC_PROFILE 231 uint64_t krequests[KMEM_ZSIZE + 1]; 232 233 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 234 #endif 235 236 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 237 238 /* 239 * time_uptime of the last malloc(9) failure (induced or real). 240 */ 241 static time_t t_malloc_fail; 242 243 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 244 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 245 "Kernel malloc debugging options"); 246 #endif 247 248 /* 249 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 250 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 251 */ 252 #ifdef MALLOC_MAKE_FAILURES 253 static int malloc_failure_rate; 254 static int malloc_nowait_count; 255 static int malloc_failure_count; 256 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, 257 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 258 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 259 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 260 #endif 261 262 static int 263 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 264 { 265 u_long size; 266 267 size = uma_size(); 268 return (sysctl_handle_long(oidp, &size, 0, req)); 269 } 270 271 static int 272 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 273 { 274 u_long size, limit; 275 276 /* The sysctl is unsigned, implement as a saturation value. */ 277 size = uma_size(); 278 limit = uma_limit(); 279 if (size > limit) 280 size = 0; 281 else 282 size = limit - size; 283 return (sysctl_handle_long(oidp, &size, 0, req)); 284 } 285 286 static int 287 sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS) 288 { 289 int sizes[nitems(kmemzones)]; 290 int i; 291 292 for (i = 0; i < nitems(kmemzones); i++) { 293 sizes[i] = kmemzones[i].kz_size; 294 } 295 296 return (SYSCTL_OUT(req, &sizes, sizeof(sizes))); 297 } 298 299 /* 300 * malloc(9) uma zone separation -- sub-page buffer overruns in one 301 * malloc type will affect only a subset of other malloc types. 302 */ 303 #if MALLOC_DEBUG_MAXZONES > 1 304 static void 305 tunable_set_numzones(void) 306 { 307 308 TUNABLE_INT_FETCH("debug.malloc.numzones", 309 &numzones); 310 311 /* Sanity check the number of malloc uma zones. */ 312 if (numzones <= 0) 313 numzones = 1; 314 if (numzones > MALLOC_DEBUG_MAXZONES) 315 numzones = MALLOC_DEBUG_MAXZONES; 316 } 317 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 318 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 319 &numzones, 0, "Number of malloc uma subzones"); 320 321 /* 322 * Any number that changes regularly is an okay choice for the 323 * offset. Build numbers are pretty good of you have them. 324 */ 325 static u_int zone_offset = __FreeBSD_version; 326 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 327 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 328 &zone_offset, 0, "Separate malloc types by examining the " 329 "Nth character in the malloc type short description."); 330 331 static void 332 mtp_set_subzone(struct malloc_type *mtp) 333 { 334 struct malloc_type_internal *mtip; 335 const char *desc; 336 size_t len; 337 u_int val; 338 339 mtip = &mtp->ks_mti; 340 desc = mtp->ks_shortdesc; 341 if (desc == NULL || (len = strlen(desc)) == 0) 342 val = 0; 343 else 344 val = desc[zone_offset % len]; 345 mtip->mti_zone = (val % numzones); 346 } 347 348 static inline u_int 349 mtp_get_subzone(struct malloc_type *mtp) 350 { 351 struct malloc_type_internal *mtip; 352 353 mtip = &mtp->ks_mti; 354 355 KASSERT(mtip->mti_zone < numzones, 356 ("mti_zone %u out of range %d", 357 mtip->mti_zone, numzones)); 358 return (mtip->mti_zone); 359 } 360 #elif MALLOC_DEBUG_MAXZONES == 0 361 #error "MALLOC_DEBUG_MAXZONES must be positive." 362 #else 363 static void 364 mtp_set_subzone(struct malloc_type *mtp) 365 { 366 struct malloc_type_internal *mtip; 367 368 mtip = &mtp->ks_mti; 369 mtip->mti_zone = 0; 370 } 371 372 static inline u_int 373 mtp_get_subzone(struct malloc_type *mtp) 374 { 375 376 return (0); 377 } 378 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 379 380 int 381 malloc_last_fail(void) 382 { 383 384 return (time_uptime - t_malloc_fail); 385 } 386 387 /* 388 * An allocation has succeeded -- update malloc type statistics for the 389 * amount of bucket size. Occurs within a critical section so that the 390 * thread isn't preempted and doesn't migrate while updating per-PCU 391 * statistics. 392 */ 393 static void 394 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 395 int zindx) 396 { 397 struct malloc_type_internal *mtip; 398 struct malloc_type_stats *mtsp; 399 400 critical_enter(); 401 mtip = &mtp->ks_mti; 402 mtsp = zpcpu_get(mtip->mti_stats); 403 if (size > 0) { 404 mtsp->mts_memalloced += size; 405 mtsp->mts_numallocs++; 406 } 407 if (zindx != -1) 408 mtsp->mts_size |= 1 << zindx; 409 410 #ifdef KDTRACE_HOOKS 411 if (__predict_false(dtrace_malloc_enabled)) { 412 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 413 if (probe_id != 0) 414 (dtrace_malloc_probe)(probe_id, 415 (uintptr_t) mtp, (uintptr_t) mtip, 416 (uintptr_t) mtsp, size, zindx); 417 } 418 #endif 419 420 critical_exit(); 421 } 422 423 void 424 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 425 { 426 427 if (size > 0) 428 malloc_type_zone_allocated(mtp, size, -1); 429 } 430 431 /* 432 * A free operation has occurred -- update malloc type statistics for the 433 * amount of the bucket size. Occurs within a critical section so that the 434 * thread isn't preempted and doesn't migrate while updating per-CPU 435 * statistics. 436 */ 437 void 438 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 439 { 440 struct malloc_type_internal *mtip; 441 struct malloc_type_stats *mtsp; 442 443 critical_enter(); 444 mtip = &mtp->ks_mti; 445 mtsp = zpcpu_get(mtip->mti_stats); 446 mtsp->mts_memfreed += size; 447 mtsp->mts_numfrees++; 448 449 #ifdef KDTRACE_HOOKS 450 if (__predict_false(dtrace_malloc_enabled)) { 451 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 452 if (probe_id != 0) 453 (dtrace_malloc_probe)(probe_id, 454 (uintptr_t) mtp, (uintptr_t) mtip, 455 (uintptr_t) mtsp, size, 0); 456 } 457 #endif 458 459 critical_exit(); 460 } 461 462 /* 463 * contigmalloc: 464 * 465 * Allocate a block of physically contiguous memory. 466 * 467 * If M_NOWAIT is set, this routine will not block and return NULL if 468 * the allocation fails. 469 */ 470 void * 471 contigmalloc(unsigned long size, struct malloc_type *type, int flags, 472 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 473 vm_paddr_t boundary) 474 { 475 void *ret; 476 477 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, 478 boundary, VM_MEMATTR_DEFAULT); 479 if (ret != NULL) 480 malloc_type_allocated(type, round_page(size)); 481 return (ret); 482 } 483 484 void * 485 contigmalloc_domainset(unsigned long size, struct malloc_type *type, 486 struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, 487 unsigned long alignment, vm_paddr_t boundary) 488 { 489 void *ret; 490 491 ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high, 492 alignment, boundary, VM_MEMATTR_DEFAULT); 493 if (ret != NULL) 494 malloc_type_allocated(type, round_page(size)); 495 return (ret); 496 } 497 498 /* 499 * contigfree: 500 * 501 * Free a block of memory allocated by contigmalloc. 502 * 503 * This routine may not block. 504 */ 505 void 506 contigfree(void *addr, unsigned long size, struct malloc_type *type) 507 { 508 509 kmem_free((vm_offset_t)addr, size); 510 malloc_type_freed(type, round_page(size)); 511 } 512 513 #ifdef MALLOC_DEBUG 514 static int 515 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, 516 int flags) 517 { 518 #ifdef INVARIANTS 519 int indx; 520 521 KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version")); 522 /* 523 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 524 */ 525 indx = flags & (M_WAITOK | M_NOWAIT); 526 if (indx != M_NOWAIT && indx != M_WAITOK) { 527 static struct timeval lasterr; 528 static int curerr, once; 529 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 530 printf("Bad malloc flags: %x\n", indx); 531 kdb_backtrace(); 532 flags |= M_WAITOK; 533 once++; 534 } 535 } 536 #endif 537 #ifdef MALLOC_MAKE_FAILURES 538 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 539 atomic_add_int(&malloc_nowait_count, 1); 540 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 541 atomic_add_int(&malloc_failure_count, 1); 542 t_malloc_fail = time_uptime; 543 *vap = NULL; 544 return (EJUSTRETURN); 545 } 546 } 547 #endif 548 if (flags & M_WAITOK) { 549 KASSERT(curthread->td_intr_nesting_level == 0, 550 ("malloc(M_WAITOK) in interrupt context")); 551 if (__predict_false(!THREAD_CAN_SLEEP())) { 552 #ifdef EPOCH_TRACE 553 epoch_trace_list(curthread); 554 #endif 555 KASSERT(1, 556 ("malloc(M_WAITOK) with sleeping prohibited")); 557 } 558 } 559 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 560 ("malloc: called with spinlock or critical section held")); 561 562 #ifdef DEBUG_MEMGUARD 563 if (memguard_cmp_mtp(mtp, *sizep)) { 564 *vap = memguard_alloc(*sizep, flags); 565 if (*vap != NULL) 566 return (EJUSTRETURN); 567 /* This is unfortunate but should not be fatal. */ 568 } 569 #endif 570 571 #ifdef DEBUG_REDZONE 572 *sizep = redzone_size_ntor(*sizep); 573 #endif 574 575 return (0); 576 } 577 #endif 578 579 /* 580 * Handle large allocations and frees by using kmem_malloc directly. 581 */ 582 static inline bool 583 malloc_large_slab(uma_slab_t slab) 584 { 585 uintptr_t va; 586 587 va = (uintptr_t)slab; 588 return ((va & 1) != 0); 589 } 590 591 static inline size_t 592 malloc_large_size(uma_slab_t slab) 593 { 594 uintptr_t va; 595 596 va = (uintptr_t)slab; 597 return (va >> 1); 598 } 599 600 static caddr_t 601 malloc_large(size_t *size, struct domainset *policy, int flags) 602 { 603 vm_offset_t va; 604 size_t sz; 605 606 sz = roundup(*size, PAGE_SIZE); 607 va = kmem_malloc_domainset(policy, sz, flags); 608 if (va != 0) { 609 /* The low bit is unused for slab pointers. */ 610 vsetzoneslab(va, NULL, (void *)((sz << 1) | 1)); 611 uma_total_inc(sz); 612 *size = sz; 613 } 614 return ((caddr_t)va); 615 } 616 617 static void 618 free_large(void *addr, size_t size) 619 { 620 621 kmem_free((vm_offset_t)addr, size); 622 uma_total_dec(size); 623 } 624 625 /* 626 * malloc: 627 * 628 * Allocate a block of memory. 629 * 630 * If M_NOWAIT is set, this routine will not block and return NULL if 631 * the allocation fails. 632 */ 633 void * 634 (malloc)(size_t size, struct malloc_type *mtp, int flags) 635 { 636 int indx; 637 caddr_t va; 638 uma_zone_t zone; 639 #if defined(DEBUG_REDZONE) 640 unsigned long osize = size; 641 #endif 642 643 MPASS((flags & M_EXEC) == 0); 644 #ifdef MALLOC_DEBUG 645 va = NULL; 646 if (malloc_dbg(&va, &size, mtp, flags) != 0) 647 return (va); 648 #endif 649 650 if (size <= kmem_zmax) { 651 if (size & KMEM_ZMASK) 652 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 653 indx = kmemsize[size >> KMEM_ZSHIFT]; 654 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 655 #ifdef MALLOC_PROFILE 656 krequests[size >> KMEM_ZSHIFT]++; 657 #endif 658 va = uma_zalloc(zone, flags); 659 if (va != NULL) 660 size = zone->uz_size; 661 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 662 } else { 663 va = malloc_large(&size, DOMAINSET_RR(), flags); 664 malloc_type_allocated(mtp, va == NULL ? 0 : size); 665 } 666 if (__predict_false(va == NULL)) { 667 KASSERT((flags & M_WAITOK) == 0, 668 ("malloc(M_WAITOK) returned NULL")); 669 t_malloc_fail = time_uptime; 670 } 671 #ifdef DEBUG_REDZONE 672 if (va != NULL) 673 va = redzone_setup(va, osize); 674 #endif 675 return ((void *) va); 676 } 677 678 static void * 679 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain, 680 int flags) 681 { 682 uma_zone_t zone; 683 caddr_t va; 684 size_t size; 685 int indx; 686 687 size = *sizep; 688 KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0, 689 ("malloc_domain: Called with bad flag / size combination.")); 690 if (size & KMEM_ZMASK) 691 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 692 indx = kmemsize[size >> KMEM_ZSHIFT]; 693 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 694 #ifdef MALLOC_PROFILE 695 krequests[size >> KMEM_ZSHIFT]++; 696 #endif 697 va = uma_zalloc_domain(zone, NULL, domain, flags); 698 if (va != NULL) 699 *sizep = zone->uz_size; 700 *indxp = indx; 701 return ((void *)va); 702 } 703 704 void * 705 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, 706 int flags) 707 { 708 struct vm_domainset_iter di; 709 caddr_t va; 710 int domain; 711 int indx; 712 713 #if defined(DEBUG_REDZONE) 714 unsigned long osize = size; 715 #endif 716 MPASS((flags & M_EXEC) == 0); 717 #ifdef MALLOC_DEBUG 718 va = NULL; 719 if (malloc_dbg(&va, &size, mtp, flags) != 0) 720 return (va); 721 #endif 722 if (size <= kmem_zmax) { 723 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 724 do { 725 va = malloc_domain(&size, &indx, mtp, domain, flags); 726 } while (va == NULL && 727 vm_domainset_iter_policy(&di, &domain) == 0); 728 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 729 } else { 730 /* Policy is handled by kmem. */ 731 va = malloc_large(&size, ds, flags); 732 malloc_type_allocated(mtp, va == NULL ? 0 : size); 733 } 734 if (__predict_false(va == NULL)) { 735 KASSERT((flags & M_WAITOK) == 0, 736 ("malloc(M_WAITOK) returned NULL")); 737 t_malloc_fail = time_uptime; 738 } 739 #ifdef DEBUG_REDZONE 740 if (va != NULL) 741 va = redzone_setup(va, osize); 742 #endif 743 return (va); 744 } 745 746 /* 747 * Allocate an executable area. 748 */ 749 void * 750 malloc_exec(size_t size, struct malloc_type *mtp, int flags) 751 { 752 caddr_t va; 753 #if defined(DEBUG_REDZONE) 754 unsigned long osize = size; 755 #endif 756 757 flags |= M_EXEC; 758 #ifdef MALLOC_DEBUG 759 va = NULL; 760 if (malloc_dbg(&va, &size, mtp, flags) != 0) 761 return (va); 762 #endif 763 va = malloc_large(&size, DOMAINSET_RR(), flags); 764 malloc_type_allocated(mtp, va == NULL ? 0 : size); 765 if (__predict_false(va == NULL)) { 766 KASSERT((flags & M_WAITOK) == 0, 767 ("malloc(M_WAITOK) returned NULL")); 768 t_malloc_fail = time_uptime; 769 } 770 #ifdef DEBUG_REDZONE 771 if (va != NULL) 772 va = redzone_setup(va, osize); 773 #endif 774 return ((void *) va); 775 } 776 777 void * 778 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds, 779 int flags) 780 { 781 caddr_t va; 782 #if defined(DEBUG_REDZONE) 783 unsigned long osize = size; 784 #endif 785 786 flags |= M_EXEC; 787 #ifdef MALLOC_DEBUG 788 va = NULL; 789 if (malloc_dbg(&va, &size, mtp, flags) != 0) 790 return (va); 791 #endif 792 /* Policy is handled by kmem. */ 793 va = malloc_large(&size, ds, flags); 794 malloc_type_allocated(mtp, va == NULL ? 0 : size); 795 if (__predict_false(va == NULL)) { 796 KASSERT((flags & M_WAITOK) == 0, 797 ("malloc(M_WAITOK) returned NULL")); 798 t_malloc_fail = time_uptime; 799 } 800 #ifdef DEBUG_REDZONE 801 if (va != NULL) 802 va = redzone_setup(va, osize); 803 #endif 804 return (va); 805 } 806 807 void * 808 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) 809 { 810 811 if (WOULD_OVERFLOW(nmemb, size)) 812 panic("mallocarray: %zu * %zu overflowed", nmemb, size); 813 814 return (malloc(size * nmemb, type, flags)); 815 } 816 817 #ifdef INVARIANTS 818 static void 819 free_save_type(void *addr, struct malloc_type *mtp, u_long size) 820 { 821 struct malloc_type **mtpp = addr; 822 823 /* 824 * Cache a pointer to the malloc_type that most recently freed 825 * this memory here. This way we know who is most likely to 826 * have stepped on it later. 827 * 828 * This code assumes that size is a multiple of 8 bytes for 829 * 64 bit machines 830 */ 831 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 832 mtpp += (size - sizeof(struct malloc_type *)) / 833 sizeof(struct malloc_type *); 834 *mtpp = mtp; 835 } 836 #endif 837 838 #ifdef MALLOC_DEBUG 839 static int 840 free_dbg(void **addrp, struct malloc_type *mtp) 841 { 842 void *addr; 843 844 addr = *addrp; 845 KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version")); 846 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 847 ("free: called with spinlock or critical section held")); 848 849 /* free(NULL, ...) does nothing */ 850 if (addr == NULL) 851 return (EJUSTRETURN); 852 853 #ifdef DEBUG_MEMGUARD 854 if (is_memguard_addr(addr)) { 855 memguard_free(addr); 856 return (EJUSTRETURN); 857 } 858 #endif 859 860 #ifdef DEBUG_REDZONE 861 redzone_check(addr); 862 *addrp = redzone_addr_ntor(addr); 863 #endif 864 865 return (0); 866 } 867 #endif 868 869 /* 870 * free: 871 * 872 * Free a block of memory allocated by malloc. 873 * 874 * This routine may not block. 875 */ 876 void 877 free(void *addr, struct malloc_type *mtp) 878 { 879 uma_zone_t zone; 880 uma_slab_t slab; 881 u_long size; 882 883 #ifdef MALLOC_DEBUG 884 if (free_dbg(&addr, mtp) != 0) 885 return; 886 #endif 887 /* free(NULL, ...) does nothing */ 888 if (addr == NULL) 889 return; 890 891 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 892 if (slab == NULL) 893 panic("free: address %p(%p) has not been allocated.\n", 894 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 895 896 if (__predict_true(!malloc_large_slab(slab))) { 897 size = zone->uz_size; 898 #ifdef INVARIANTS 899 free_save_type(addr, mtp, size); 900 #endif 901 uma_zfree_arg(zone, addr, slab); 902 } else { 903 size = malloc_large_size(slab); 904 free_large(addr, size); 905 } 906 malloc_type_freed(mtp, size); 907 } 908 909 /* 910 * zfree: 911 * 912 * Zero then free a block of memory allocated by malloc. 913 * 914 * This routine may not block. 915 */ 916 void 917 zfree(void *addr, struct malloc_type *mtp) 918 { 919 uma_zone_t zone; 920 uma_slab_t slab; 921 u_long size; 922 923 #ifdef MALLOC_DEBUG 924 if (free_dbg(&addr, mtp) != 0) 925 return; 926 #endif 927 /* free(NULL, ...) does nothing */ 928 if (addr == NULL) 929 return; 930 931 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 932 if (slab == NULL) 933 panic("free: address %p(%p) has not been allocated.\n", 934 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 935 936 if (__predict_true(!malloc_large_slab(slab))) { 937 size = zone->uz_size; 938 #ifdef INVARIANTS 939 free_save_type(addr, mtp, size); 940 #endif 941 explicit_bzero(addr, size); 942 uma_zfree_arg(zone, addr, slab); 943 } else { 944 size = malloc_large_size(slab); 945 explicit_bzero(addr, size); 946 free_large(addr, size); 947 } 948 malloc_type_freed(mtp, size); 949 } 950 951 /* 952 * realloc: change the size of a memory block 953 */ 954 void * 955 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) 956 { 957 uma_zone_t zone; 958 uma_slab_t slab; 959 unsigned long alloc; 960 void *newaddr; 961 962 KASSERT(mtp->ks_version == M_VERSION, 963 ("realloc: bad malloc type version")); 964 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 965 ("realloc: called with spinlock or critical section held")); 966 967 /* realloc(NULL, ...) is equivalent to malloc(...) */ 968 if (addr == NULL) 969 return (malloc(size, mtp, flags)); 970 971 /* 972 * XXX: Should report free of old memory and alloc of new memory to 973 * per-CPU stats. 974 */ 975 976 #ifdef DEBUG_MEMGUARD 977 if (is_memguard_addr(addr)) 978 return (memguard_realloc(addr, size, mtp, flags)); 979 #endif 980 981 #ifdef DEBUG_REDZONE 982 slab = NULL; 983 zone = NULL; 984 alloc = redzone_get_size(addr); 985 #else 986 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 987 988 /* Sanity check */ 989 KASSERT(slab != NULL, 990 ("realloc: address %p out of range", (void *)addr)); 991 992 /* Get the size of the original block */ 993 if (!malloc_large_slab(slab)) 994 alloc = zone->uz_size; 995 else 996 alloc = malloc_large_size(slab); 997 998 /* Reuse the original block if appropriate */ 999 if (size <= alloc 1000 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 1001 return (addr); 1002 #endif /* !DEBUG_REDZONE */ 1003 1004 /* Allocate a new, bigger (or smaller) block */ 1005 if ((newaddr = malloc(size, mtp, flags)) == NULL) 1006 return (NULL); 1007 1008 /* Copy over original contents */ 1009 bcopy(addr, newaddr, min(size, alloc)); 1010 free(addr, mtp); 1011 return (newaddr); 1012 } 1013 1014 /* 1015 * reallocf: same as realloc() but free memory on failure. 1016 */ 1017 void * 1018 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) 1019 { 1020 void *mem; 1021 1022 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 1023 free(addr, mtp); 1024 return (mem); 1025 } 1026 1027 /* 1028 * malloc_size: returns the number of bytes allocated for a request of the 1029 * specified size 1030 */ 1031 size_t 1032 malloc_size(size_t size) 1033 { 1034 int indx; 1035 1036 if (size > kmem_zmax) 1037 return (0); 1038 if (size & KMEM_ZMASK) 1039 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 1040 indx = kmemsize[size >> KMEM_ZSHIFT]; 1041 return (kmemzones[indx].kz_size); 1042 } 1043 1044 /* 1045 * malloc_usable_size: returns the usable size of the allocation. 1046 */ 1047 size_t 1048 malloc_usable_size(const void *addr) 1049 { 1050 #ifndef DEBUG_REDZONE 1051 uma_zone_t zone; 1052 uma_slab_t slab; 1053 #endif 1054 u_long size; 1055 1056 if (addr == NULL) 1057 return (0); 1058 1059 #ifdef DEBUG_MEMGUARD 1060 if (is_memguard_addr(__DECONST(void *, addr))) 1061 return (memguard_get_req_size(addr)); 1062 #endif 1063 1064 #ifdef DEBUG_REDZONE 1065 size = redzone_get_size(__DECONST(void *, addr)); 1066 #else 1067 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1068 if (slab == NULL) 1069 panic("malloc_usable_size: address %p(%p) is not allocated.\n", 1070 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 1071 1072 if (!malloc_large_slab(slab)) 1073 size = zone->uz_size; 1074 else 1075 size = malloc_large_size(slab); 1076 #endif 1077 return (size); 1078 } 1079 1080 CTASSERT(VM_KMEM_SIZE_SCALE >= 1); 1081 1082 /* 1083 * Initialize the kernel memory (kmem) arena. 1084 */ 1085 void 1086 kmeminit(void) 1087 { 1088 u_long mem_size; 1089 u_long tmp; 1090 1091 #ifdef VM_KMEM_SIZE 1092 if (vm_kmem_size == 0) 1093 vm_kmem_size = VM_KMEM_SIZE; 1094 #endif 1095 #ifdef VM_KMEM_SIZE_MIN 1096 if (vm_kmem_size_min == 0) 1097 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 1098 #endif 1099 #ifdef VM_KMEM_SIZE_MAX 1100 if (vm_kmem_size_max == 0) 1101 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 1102 #endif 1103 /* 1104 * Calculate the amount of kernel virtual address (KVA) space that is 1105 * preallocated to the kmem arena. In order to support a wide range 1106 * of machines, it is a function of the physical memory size, 1107 * specifically, 1108 * 1109 * min(max(physical memory size / VM_KMEM_SIZE_SCALE, 1110 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) 1111 * 1112 * Every architecture must define an integral value for 1113 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN 1114 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and 1115 * ceiling on this preallocation, are optional. Typically, 1116 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on 1117 * a given architecture. 1118 */ 1119 mem_size = vm_cnt.v_page_count; 1120 if (mem_size <= 32768) /* delphij XXX 128MB */ 1121 kmem_zmax = PAGE_SIZE; 1122 1123 if (vm_kmem_size_scale < 1) 1124 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 1125 1126 /* 1127 * Check if we should use defaults for the "vm_kmem_size" 1128 * variable: 1129 */ 1130 if (vm_kmem_size == 0) { 1131 vm_kmem_size = mem_size / vm_kmem_size_scale; 1132 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ? 1133 vm_kmem_size_max : vm_kmem_size * PAGE_SIZE; 1134 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) 1135 vm_kmem_size = vm_kmem_size_min; 1136 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 1137 vm_kmem_size = vm_kmem_size_max; 1138 } 1139 if (vm_kmem_size == 0) 1140 panic("Tune VM_KMEM_SIZE_* for the platform"); 1141 1142 /* 1143 * The amount of KVA space that is preallocated to the 1144 * kmem arena can be set statically at compile-time or manually 1145 * through the kernel environment. However, it is still limited to 1146 * twice the physical memory size, which has been sufficient to handle 1147 * the most severe cases of external fragmentation in the kmem arena. 1148 */ 1149 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 1150 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 1151 1152 vm_kmem_size = round_page(vm_kmem_size); 1153 #ifdef DEBUG_MEMGUARD 1154 tmp = memguard_fudge(vm_kmem_size, kernel_map); 1155 #else 1156 tmp = vm_kmem_size; 1157 #endif 1158 uma_set_limit(tmp); 1159 1160 #ifdef DEBUG_MEMGUARD 1161 /* 1162 * Initialize MemGuard if support compiled in. MemGuard is a 1163 * replacement allocator used for detecting tamper-after-free 1164 * scenarios as they occur. It is only used for debugging. 1165 */ 1166 memguard_init(kernel_arena); 1167 #endif 1168 } 1169 1170 /* 1171 * Initialize the kernel memory allocator 1172 */ 1173 /* ARGSUSED*/ 1174 static void 1175 mallocinit(void *dummy) 1176 { 1177 int i; 1178 uint8_t indx; 1179 1180 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 1181 1182 kmeminit(); 1183 1184 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) 1185 kmem_zmax = KMEM_ZMAX; 1186 1187 mt_stats_zone = uma_zcreate("mt_stats_zone", 1188 sizeof(struct malloc_type_stats), NULL, NULL, NULL, NULL, 1189 UMA_ALIGN_PTR, UMA_ZONE_PCPU); 1190 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 1191 int size = kmemzones[indx].kz_size; 1192 const char *name = kmemzones[indx].kz_name; 1193 int subzone; 1194 1195 for (subzone = 0; subzone < numzones; subzone++) { 1196 kmemzones[indx].kz_zone[subzone] = 1197 uma_zcreate(name, size, 1198 #ifdef INVARIANTS 1199 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 1200 #else 1201 NULL, NULL, NULL, NULL, 1202 #endif 1203 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 1204 } 1205 for (;i <= size; i+= KMEM_ZBASE) 1206 kmemsize[i >> KMEM_ZSHIFT] = indx; 1207 } 1208 } 1209 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); 1210 1211 void 1212 malloc_init(void *data) 1213 { 1214 struct malloc_type_internal *mtip; 1215 struct malloc_type *mtp; 1216 1217 KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init")); 1218 1219 mtp = data; 1220 if (mtp->ks_version != M_VERSION) 1221 panic("malloc_init: type %s with unsupported version %lu", 1222 mtp->ks_shortdesc, mtp->ks_version); 1223 1224 mtip = &mtp->ks_mti; 1225 mtip->mti_stats = uma_zalloc_pcpu(mt_stats_zone, M_WAITOK | M_ZERO); 1226 mtp_set_subzone(mtp); 1227 1228 mtx_lock(&malloc_mtx); 1229 mtp->ks_next = kmemstatistics; 1230 kmemstatistics = mtp; 1231 kmemcount++; 1232 mtx_unlock(&malloc_mtx); 1233 } 1234 1235 void 1236 malloc_uninit(void *data) 1237 { 1238 struct malloc_type_internal *mtip; 1239 struct malloc_type_stats *mtsp; 1240 struct malloc_type *mtp, *temp; 1241 long temp_allocs, temp_bytes; 1242 int i; 1243 1244 mtp = data; 1245 KASSERT(mtp->ks_version == M_VERSION, 1246 ("malloc_uninit: bad malloc type version")); 1247 1248 mtx_lock(&malloc_mtx); 1249 mtip = &mtp->ks_mti; 1250 if (mtp != kmemstatistics) { 1251 for (temp = kmemstatistics; temp != NULL; 1252 temp = temp->ks_next) { 1253 if (temp->ks_next == mtp) { 1254 temp->ks_next = mtp->ks_next; 1255 break; 1256 } 1257 } 1258 KASSERT(temp, 1259 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 1260 } else 1261 kmemstatistics = mtp->ks_next; 1262 kmemcount--; 1263 mtx_unlock(&malloc_mtx); 1264 1265 /* 1266 * Look for memory leaks. 1267 */ 1268 temp_allocs = temp_bytes = 0; 1269 for (i = 0; i <= mp_maxid; i++) { 1270 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1271 temp_allocs += mtsp->mts_numallocs; 1272 temp_allocs -= mtsp->mts_numfrees; 1273 temp_bytes += mtsp->mts_memalloced; 1274 temp_bytes -= mtsp->mts_memfreed; 1275 } 1276 if (temp_allocs > 0 || temp_bytes > 0) { 1277 printf("Warning: memory type %s leaked memory on destroy " 1278 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 1279 temp_allocs, temp_bytes); 1280 } 1281 1282 uma_zfree_pcpu(mt_stats_zone, mtip->mti_stats); 1283 } 1284 1285 struct malloc_type * 1286 malloc_desc2type(const char *desc) 1287 { 1288 struct malloc_type *mtp; 1289 1290 mtx_assert(&malloc_mtx, MA_OWNED); 1291 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1292 if (strcmp(mtp->ks_shortdesc, desc) == 0) 1293 return (mtp); 1294 } 1295 return (NULL); 1296 } 1297 1298 static int 1299 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 1300 { 1301 struct malloc_type_stream_header mtsh; 1302 struct malloc_type_internal *mtip; 1303 struct malloc_type_stats *mtsp, zeromts; 1304 struct malloc_type_header mth; 1305 struct malloc_type *mtp; 1306 int error, i; 1307 struct sbuf sbuf; 1308 1309 error = sysctl_wire_old_buffer(req, 0); 1310 if (error != 0) 1311 return (error); 1312 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1313 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 1314 mtx_lock(&malloc_mtx); 1315 1316 bzero(&zeromts, sizeof(zeromts)); 1317 1318 /* 1319 * Insert stream header. 1320 */ 1321 bzero(&mtsh, sizeof(mtsh)); 1322 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 1323 mtsh.mtsh_maxcpus = MAXCPU; 1324 mtsh.mtsh_count = kmemcount; 1325 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 1326 1327 /* 1328 * Insert alternating sequence of type headers and type statistics. 1329 */ 1330 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1331 mtip = &mtp->ks_mti; 1332 1333 /* 1334 * Insert type header. 1335 */ 1336 bzero(&mth, sizeof(mth)); 1337 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 1338 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 1339 1340 /* 1341 * Insert type statistics for each CPU. 1342 */ 1343 for (i = 0; i <= mp_maxid; i++) { 1344 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1345 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); 1346 } 1347 /* 1348 * Fill in the missing CPUs. 1349 */ 1350 for (; i < MAXCPU; i++) { 1351 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); 1352 } 1353 } 1354 mtx_unlock(&malloc_mtx); 1355 error = sbuf_finish(&sbuf); 1356 sbuf_delete(&sbuf); 1357 return (error); 1358 } 1359 1360 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, 1361 CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0, 1362 sysctl_kern_malloc_stats, "s,malloc_type_ustats", 1363 "Return malloc types"); 1364 1365 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 1366 "Count of kernel malloc types"); 1367 1368 void 1369 malloc_type_list(malloc_type_list_func_t *func, void *arg) 1370 { 1371 struct malloc_type *mtp, **bufmtp; 1372 int count, i; 1373 size_t buflen; 1374 1375 mtx_lock(&malloc_mtx); 1376 restart: 1377 mtx_assert(&malloc_mtx, MA_OWNED); 1378 count = kmemcount; 1379 mtx_unlock(&malloc_mtx); 1380 1381 buflen = sizeof(struct malloc_type *) * count; 1382 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 1383 1384 mtx_lock(&malloc_mtx); 1385 1386 if (count < kmemcount) { 1387 free(bufmtp, M_TEMP); 1388 goto restart; 1389 } 1390 1391 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 1392 bufmtp[i] = mtp; 1393 1394 mtx_unlock(&malloc_mtx); 1395 1396 for (i = 0; i < count; i++) 1397 (func)(bufmtp[i], arg); 1398 1399 free(bufmtp, M_TEMP); 1400 } 1401 1402 #ifdef DDB 1403 static int64_t 1404 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs, 1405 uint64_t *inuse) 1406 { 1407 const struct malloc_type_stats *mtsp; 1408 uint64_t frees, alloced, freed; 1409 int i; 1410 1411 *allocs = 0; 1412 frees = 0; 1413 alloced = 0; 1414 freed = 0; 1415 for (i = 0; i <= mp_maxid; i++) { 1416 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1417 1418 *allocs += mtsp->mts_numallocs; 1419 frees += mtsp->mts_numfrees; 1420 alloced += mtsp->mts_memalloced; 1421 freed += mtsp->mts_memfreed; 1422 } 1423 *inuse = *allocs - frees; 1424 return (alloced - freed); 1425 } 1426 1427 DB_SHOW_COMMAND(malloc, db_show_malloc) 1428 { 1429 const char *fmt_hdr, *fmt_entry; 1430 struct malloc_type *mtp; 1431 uint64_t allocs, inuse; 1432 int64_t size; 1433 /* variables for sorting */ 1434 struct malloc_type *last_mtype, *cur_mtype; 1435 int64_t cur_size, last_size; 1436 int ties; 1437 1438 if (modif[0] == 'i') { 1439 fmt_hdr = "%s,%s,%s,%s\n"; 1440 fmt_entry = "\"%s\",%ju,%jdK,%ju\n"; 1441 } else { 1442 fmt_hdr = "%18s %12s %12s %12s\n"; 1443 fmt_entry = "%18s %12ju %12jdK %12ju\n"; 1444 } 1445 1446 db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests"); 1447 1448 /* Select sort, largest size first. */ 1449 last_mtype = NULL; 1450 last_size = INT64_MAX; 1451 for (;;) { 1452 cur_mtype = NULL; 1453 cur_size = -1; 1454 ties = 0; 1455 1456 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1457 /* 1458 * In the case of size ties, print out mtypes 1459 * in the order they are encountered. That is, 1460 * when we encounter the most recently output 1461 * mtype, we have already printed all preceding 1462 * ties, and we must print all following ties. 1463 */ 1464 if (mtp == last_mtype) { 1465 ties = 1; 1466 continue; 1467 } 1468 size = get_malloc_stats(&mtp->ks_mti, &allocs, 1469 &inuse); 1470 if (size > cur_size && size < last_size + ties) { 1471 cur_size = size; 1472 cur_mtype = mtp; 1473 } 1474 } 1475 if (cur_mtype == NULL) 1476 break; 1477 1478 size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse); 1479 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse, 1480 howmany(size, 1024), allocs); 1481 1482 if (db_pager_quit) 1483 break; 1484 1485 last_mtype = cur_mtype; 1486 last_size = cur_size; 1487 } 1488 } 1489 1490 #if MALLOC_DEBUG_MAXZONES > 1 1491 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1492 { 1493 struct malloc_type_internal *mtip; 1494 struct malloc_type *mtp; 1495 u_int subzone; 1496 1497 if (!have_addr) { 1498 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1499 return; 1500 } 1501 mtp = (void *)addr; 1502 if (mtp->ks_version != M_VERSION) { 1503 db_printf("Version %lx does not match expected %x\n", 1504 mtp->ks_version, M_VERSION); 1505 return; 1506 } 1507 1508 mtip = &mtp->ks_mti; 1509 subzone = mtip->mti_zone; 1510 1511 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1512 mtip = &mtp->ks_mti; 1513 if (mtip->mti_zone != subzone) 1514 continue; 1515 db_printf("%s\n", mtp->ks_shortdesc); 1516 if (db_pager_quit) 1517 break; 1518 } 1519 } 1520 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1521 #endif /* DDB */ 1522 1523 #ifdef MALLOC_PROFILE 1524 1525 static int 1526 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 1527 { 1528 struct sbuf sbuf; 1529 uint64_t count; 1530 uint64_t waste; 1531 uint64_t mem; 1532 int error; 1533 int rsize; 1534 int size; 1535 int i; 1536 1537 waste = 0; 1538 mem = 0; 1539 1540 error = sysctl_wire_old_buffer(req, 0); 1541 if (error != 0) 1542 return (error); 1543 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1544 sbuf_printf(&sbuf, 1545 "\n Size Requests Real Size\n"); 1546 for (i = 0; i < KMEM_ZSIZE; i++) { 1547 size = i << KMEM_ZSHIFT; 1548 rsize = kmemzones[kmemsize[i]].kz_size; 1549 count = (long long unsigned)krequests[i]; 1550 1551 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size, 1552 (unsigned long long)count, rsize); 1553 1554 if ((rsize * count) > (size * count)) 1555 waste += (rsize * count) - (size * count); 1556 mem += (rsize * count); 1557 } 1558 sbuf_printf(&sbuf, 1559 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 1560 (unsigned long long)mem, (unsigned long long)waste); 1561 error = sbuf_finish(&sbuf); 1562 sbuf_delete(&sbuf); 1563 return (error); 1564 } 1565 1566 SYSCTL_OID(_kern, OID_AUTO, mprof, 1567 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0, 1568 sysctl_kern_mprof, "A", 1569 "Malloc Profiling"); 1570 #endif /* MALLOC_PROFILE */ 1571