1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1987, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005-2009 Robert N. M. Watson 7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray) 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 37 * based on memory types. Back end is implemented using the UMA(9) zone 38 * allocator. A set of fixed-size buckets are used for smaller allocations, 39 * and a special UMA allocation interface is used for larger allocations. 40 * Callers declare memory types, and statistics are maintained independently 41 * for each memory type. Statistics are maintained per-CPU for performance 42 * reasons. See malloc(9) and comments in malloc.h for a detailed 43 * description. 44 */ 45 46 #include <sys/cdefs.h> 47 #include "opt_ddb.h" 48 #include "opt_vm.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/asan.h> 53 #include <sys/kdb.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/msan.h> 58 #include <sys/mutex.h> 59 #include <sys/vmmeter.h> 60 #include <sys/proc.h> 61 #include <sys/queue.h> 62 #include <sys/sbuf.h> 63 #include <sys/smp.h> 64 #include <sys/sysctl.h> 65 #include <sys/time.h> 66 #include <sys/vmem.h> 67 #ifdef EPOCH_TRACE 68 #include <sys/epoch.h> 69 #endif 70 71 #include <vm/vm.h> 72 #include <vm/pmap.h> 73 #include <vm/vm_domainset.h> 74 #include <vm/vm_pageout.h> 75 #include <vm/vm_param.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_extern.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_page.h> 80 #include <vm/vm_phys.h> 81 #include <vm/vm_pagequeue.h> 82 #include <vm/uma.h> 83 #include <vm/uma_int.h> 84 #include <vm/uma_dbg.h> 85 86 #ifdef DEBUG_MEMGUARD 87 #include <vm/memguard.h> 88 #endif 89 #ifdef DEBUG_REDZONE 90 #include <vm/redzone.h> 91 #endif 92 93 #if defined(INVARIANTS) && defined(__i386__) 94 #include <machine/cpu.h> 95 #endif 96 97 #include <ddb/ddb.h> 98 99 #ifdef KDTRACE_HOOKS 100 #include <sys/dtrace_bsd.h> 101 102 bool __read_frequently dtrace_malloc_enabled; 103 dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; 104 #endif 105 106 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ 107 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) 108 #define MALLOC_DEBUG 1 109 #endif 110 111 #if defined(KASAN) || defined(DEBUG_REDZONE) 112 #define DEBUG_REDZONE_ARG_DEF , unsigned long osize 113 #define DEBUG_REDZONE_ARG , osize 114 #else 115 #define DEBUG_REDZONE_ARG_DEF 116 #define DEBUG_REDZONE_ARG 117 #endif 118 119 typedef enum { 120 SLAB_COOKIE_SLAB_PTR = 0x0, 121 SLAB_COOKIE_MALLOC_LARGE = 0x1, 122 SLAB_COOKIE_CONTIG_MALLOC = 0x2, 123 } slab_cookie_t; 124 #define SLAB_COOKIE_MASK 0x3 125 #define SLAB_COOKIE_SHIFT 2 126 #define GET_SLAB_COOKIE(_slab) \ 127 ((slab_cookie_t)(uintptr_t)(_slab) & SLAB_COOKIE_MASK) 128 129 /* 130 * When realloc() is called, if the new size is sufficiently smaller than 131 * the old size, realloc() will allocate a new, smaller block to avoid 132 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 133 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 134 */ 135 #ifndef REALLOC_FRACTION 136 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 137 #endif 138 139 /* 140 * Centrally define some common malloc types. 141 */ 142 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 143 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 144 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 145 146 static struct malloc_type *kmemstatistics; 147 static int kmemcount; 148 149 #define KMEM_ZSHIFT 4 150 #define KMEM_ZBASE 16 151 #define KMEM_ZMASK (KMEM_ZBASE - 1) 152 153 #define KMEM_ZMAX 65536 154 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 155 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 156 157 #ifndef MALLOC_DEBUG_MAXZONES 158 #define MALLOC_DEBUG_MAXZONES 1 159 #endif 160 static int numzones = MALLOC_DEBUG_MAXZONES; 161 162 /* 163 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 164 * of various sizes. 165 * 166 * Warning: the layout of the struct is duplicated in libmemstat for KVM support. 167 * 168 * XXX: The comment here used to read "These won't be powers of two for 169 * long." It's possible that a significant amount of wasted memory could be 170 * recovered by tuning the sizes of these buckets. 171 */ 172 struct { 173 int kz_size; 174 const char *kz_name; 175 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 176 } kmemzones[] = { 177 {16, "malloc-16", }, 178 {32, "malloc-32", }, 179 {64, "malloc-64", }, 180 {128, "malloc-128", }, 181 {256, "malloc-256", }, 182 {384, "malloc-384", }, 183 {512, "malloc-512", }, 184 {1024, "malloc-1024", }, 185 {2048, "malloc-2048", }, 186 {4096, "malloc-4096", }, 187 {8192, "malloc-8192", }, 188 {16384, "malloc-16384", }, 189 {32768, "malloc-32768", }, 190 {65536, "malloc-65536", }, 191 {0, NULL}, 192 }; 193 194 u_long vm_kmem_size; 195 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 196 "Size of kernel memory"); 197 198 static u_long kmem_zmax = KMEM_ZMAX; 199 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, 200 "Maximum allocation size that malloc(9) would use UMA as backend"); 201 202 static u_long vm_kmem_size_min; 203 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 204 "Minimum size of kernel memory"); 205 206 static u_long vm_kmem_size_max; 207 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 208 "Maximum size of kernel memory"); 209 210 static u_int vm_kmem_size_scale; 211 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 212 "Scale factor for kernel memory size"); 213 214 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 215 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 216 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 217 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 218 219 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 220 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 221 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 222 sysctl_kmem_map_free, "LU", "Free space in kmem"); 223 224 static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 225 "Malloc information"); 226 227 static u_int vm_malloc_zone_count = nitems(kmemzones); 228 SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count, 229 CTLFLAG_RD, &vm_malloc_zone_count, 0, 230 "Number of malloc zones"); 231 232 static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS); 233 SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes, 234 CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0, 235 sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc"); 236 237 /* 238 * The malloc_mtx protects the kmemstatistics linked list. 239 */ 240 struct mtx malloc_mtx; 241 242 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 243 244 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 245 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 246 "Kernel malloc debugging options"); 247 #endif 248 249 /* 250 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 251 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 252 */ 253 #ifdef MALLOC_MAKE_FAILURES 254 static int malloc_failure_rate; 255 static int malloc_nowait_count; 256 static int malloc_failure_count; 257 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, 258 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 259 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 260 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 261 #endif 262 263 static int 264 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 265 { 266 u_long size; 267 268 size = uma_size(); 269 return (sysctl_handle_long(oidp, &size, 0, req)); 270 } 271 272 static int 273 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 274 { 275 u_long size, limit; 276 277 /* The sysctl is unsigned, implement as a saturation value. */ 278 size = uma_size(); 279 limit = uma_limit(); 280 if (size > limit) 281 size = 0; 282 else 283 size = limit - size; 284 return (sysctl_handle_long(oidp, &size, 0, req)); 285 } 286 287 static int 288 sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS) 289 { 290 int sizes[nitems(kmemzones)]; 291 int i; 292 293 for (i = 0; i < nitems(kmemzones); i++) { 294 sizes[i] = kmemzones[i].kz_size; 295 } 296 297 return (SYSCTL_OUT(req, &sizes, sizeof(sizes))); 298 } 299 300 /* 301 * malloc(9) uma zone separation -- sub-page buffer overruns in one 302 * malloc type will affect only a subset of other malloc types. 303 */ 304 #if MALLOC_DEBUG_MAXZONES > 1 305 static void 306 tunable_set_numzones(void) 307 { 308 309 TUNABLE_INT_FETCH("debug.malloc.numzones", 310 &numzones); 311 312 /* Sanity check the number of malloc uma zones. */ 313 if (numzones <= 0) 314 numzones = 1; 315 if (numzones > MALLOC_DEBUG_MAXZONES) 316 numzones = MALLOC_DEBUG_MAXZONES; 317 } 318 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 319 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 320 &numzones, 0, "Number of malloc uma subzones"); 321 322 /* 323 * Any number that changes regularly is an okay choice for the 324 * offset. Build numbers are pretty good of you have them. 325 */ 326 static u_int zone_offset = __FreeBSD_version; 327 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 328 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 329 &zone_offset, 0, "Separate malloc types by examining the " 330 "Nth character in the malloc type short description."); 331 332 static void 333 mtp_set_subzone(struct malloc_type *mtp) 334 { 335 struct malloc_type_internal *mtip; 336 const char *desc; 337 size_t len; 338 u_int val; 339 340 mtip = &mtp->ks_mti; 341 desc = mtp->ks_shortdesc; 342 if (desc == NULL || (len = strlen(desc)) == 0) 343 val = 0; 344 else 345 val = desc[zone_offset % len]; 346 mtip->mti_zone = (val % numzones); 347 } 348 349 static inline u_int 350 mtp_get_subzone(struct malloc_type *mtp) 351 { 352 struct malloc_type_internal *mtip; 353 354 mtip = &mtp->ks_mti; 355 356 KASSERT(mtip->mti_zone < numzones, 357 ("mti_zone %u out of range %d", 358 mtip->mti_zone, numzones)); 359 return (mtip->mti_zone); 360 } 361 #elif MALLOC_DEBUG_MAXZONES == 0 362 #error "MALLOC_DEBUG_MAXZONES must be positive." 363 #else 364 static void 365 mtp_set_subzone(struct malloc_type *mtp) 366 { 367 struct malloc_type_internal *mtip; 368 369 mtip = &mtp->ks_mti; 370 mtip->mti_zone = 0; 371 } 372 373 static inline u_int 374 mtp_get_subzone(struct malloc_type *mtp) 375 { 376 377 return (0); 378 } 379 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 380 381 /* 382 * An allocation has succeeded -- update malloc type statistics for the 383 * amount of bucket size. Occurs within a critical section so that the 384 * thread isn't preempted and doesn't migrate while updating per-PCU 385 * statistics. 386 */ 387 static void 388 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 389 int zindx) 390 { 391 struct malloc_type_internal *mtip; 392 struct malloc_type_stats *mtsp; 393 394 critical_enter(); 395 mtip = &mtp->ks_mti; 396 mtsp = zpcpu_get(mtip->mti_stats); 397 if (size > 0) { 398 mtsp->mts_memalloced += size; 399 mtsp->mts_numallocs++; 400 } 401 if (zindx != -1) 402 mtsp->mts_size |= 1 << zindx; 403 404 #ifdef KDTRACE_HOOKS 405 if (__predict_false(dtrace_malloc_enabled)) { 406 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 407 if (probe_id != 0) 408 (dtrace_malloc_probe)(probe_id, 409 (uintptr_t) mtp, (uintptr_t) mtip, 410 (uintptr_t) mtsp, size, zindx); 411 } 412 #endif 413 414 critical_exit(); 415 } 416 417 void 418 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 419 { 420 421 if (size > 0) 422 malloc_type_zone_allocated(mtp, size, -1); 423 } 424 425 /* 426 * A free operation has occurred -- update malloc type statistics for the 427 * amount of the bucket size. Occurs within a critical section so that the 428 * thread isn't preempted and doesn't migrate while updating per-CPU 429 * statistics. 430 */ 431 void 432 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 433 { 434 struct malloc_type_internal *mtip; 435 struct malloc_type_stats *mtsp; 436 437 critical_enter(); 438 mtip = &mtp->ks_mti; 439 mtsp = zpcpu_get(mtip->mti_stats); 440 mtsp->mts_memfreed += size; 441 mtsp->mts_numfrees++; 442 443 #ifdef KDTRACE_HOOKS 444 if (__predict_false(dtrace_malloc_enabled)) { 445 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 446 if (probe_id != 0) 447 (dtrace_malloc_probe)(probe_id, 448 (uintptr_t) mtp, (uintptr_t) mtip, 449 (uintptr_t) mtsp, size, 0); 450 } 451 #endif 452 453 critical_exit(); 454 } 455 456 /* 457 * contigmalloc: 458 * 459 * Allocate a block of physically contiguous memory. 460 * 461 * If M_NOWAIT is set, this routine will not block and return NULL if 462 * the allocation fails. 463 */ 464 #define IS_CONTIG_MALLOC(_slab) \ 465 (GET_SLAB_COOKIE(_slab) == SLAB_COOKIE_CONTIG_MALLOC) 466 #define CONTIG_MALLOC_SLAB(_size) \ 467 ((void *)(((_size) << SLAB_COOKIE_SHIFT) | SLAB_COOKIE_CONTIG_MALLOC)) 468 static inline size_t 469 contigmalloc_size(uma_slab_t slab) 470 { 471 uintptr_t va; 472 473 KASSERT(IS_CONTIG_MALLOC(slab), 474 ("%s: called on non-contigmalloc allocation: %p", __func__, slab)); 475 va = (uintptr_t)slab; 476 return (va >> SLAB_COOKIE_SHIFT); 477 } 478 479 void * 480 contigmalloc(unsigned long osize, struct malloc_type *type, int flags, 481 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 482 vm_paddr_t boundary) 483 { 484 void *ret; 485 unsigned long size; 486 487 #ifdef DEBUG_REDZONE 488 size = redzone_size_ntor(osize); 489 #else 490 size = osize; 491 #endif 492 493 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, 494 boundary, VM_MEMATTR_DEFAULT); 495 if (ret != NULL) { 496 /* Use low bits unused for slab pointers. */ 497 vsetzoneslab((uintptr_t)ret, NULL, CONTIG_MALLOC_SLAB(size)); 498 malloc_type_allocated(type, round_page(size)); 499 #ifdef DEBUG_REDZONE 500 ret = redzone_setup(ret, osize); 501 #endif 502 } 503 return (ret); 504 } 505 506 void * 507 contigmalloc_domainset(unsigned long osize, struct malloc_type *type, 508 struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, 509 unsigned long alignment, vm_paddr_t boundary) 510 { 511 void *ret; 512 unsigned long size; 513 514 #ifdef DEBUG_REDZONE 515 size = redzone_size_ntor(osize); 516 #else 517 size = osize; 518 #endif 519 520 ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high, 521 alignment, boundary, VM_MEMATTR_DEFAULT); 522 if (ret != NULL) { 523 /* Use low bits unused for slab pointers. */ 524 vsetzoneslab((uintptr_t)ret, NULL, CONTIG_MALLOC_SLAB(size)); 525 malloc_type_allocated(type, round_page(size)); 526 #ifdef DEBUG_REDZONE 527 ret = redzone_setup(ret, osize); 528 #endif 529 } 530 return (ret); 531 } 532 #undef IS_CONTIG_MALLOC 533 #undef CONTIG_MALLOC_SLAB 534 535 /* contigfree(9) is deprecated. */ 536 void 537 contigfree(void *addr, unsigned long size __unused, struct malloc_type *type) 538 { 539 free(addr, type); 540 } 541 542 #ifdef MALLOC_DEBUG 543 static int 544 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, 545 int flags) 546 { 547 KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version")); 548 KASSERT((flags & (M_WAITOK | M_NOWAIT)) != 0, 549 ("malloc: flags must include either M_WAITOK or M_NOWAIT")); 550 KASSERT((flags & (M_WAITOK | M_NOWAIT)) != (M_WAITOK | M_NOWAIT), 551 ("malloc: flags may not include both M_WAITOK and M_NOWAIT")); 552 KASSERT((flags & M_NEVERFREED) == 0, 553 ("malloc: M_NEVERFREED is for internal use only")); 554 #ifdef MALLOC_MAKE_FAILURES 555 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 556 atomic_add_int(&malloc_nowait_count, 1); 557 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 558 atomic_add_int(&malloc_failure_count, 1); 559 *vap = NULL; 560 return (EJUSTRETURN); 561 } 562 } 563 #endif 564 if (flags & M_WAITOK) { 565 KASSERT(curthread->td_intr_nesting_level == 0, 566 ("malloc(M_WAITOK) in interrupt context")); 567 if (__predict_false(!THREAD_CAN_SLEEP())) { 568 #ifdef EPOCH_TRACE 569 epoch_trace_list(curthread); 570 #endif 571 KASSERT(0, 572 ("malloc(M_WAITOK) with sleeping prohibited")); 573 } 574 } 575 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 576 ("malloc: called with spinlock or critical section held")); 577 578 #ifdef DEBUG_MEMGUARD 579 if (memguard_cmp_mtp(mtp, *sizep)) { 580 *vap = memguard_alloc(*sizep, flags); 581 if (*vap != NULL) 582 return (EJUSTRETURN); 583 /* This is unfortunate but should not be fatal. */ 584 } 585 #endif 586 587 #ifdef DEBUG_REDZONE 588 *sizep = redzone_size_ntor(*sizep); 589 #endif 590 591 return (0); 592 } 593 #endif 594 595 /* 596 * Handle large allocations and frees by using kmem_malloc directly. 597 */ 598 #define IS_MALLOC_LARGE(_slab) \ 599 (GET_SLAB_COOKIE(_slab) == SLAB_COOKIE_MALLOC_LARGE) 600 #define MALLOC_LARGE_SLAB(_size) \ 601 ((void *)(((_size) << SLAB_COOKIE_SHIFT) | SLAB_COOKIE_MALLOC_LARGE)) 602 static inline size_t 603 malloc_large_size(uma_slab_t slab) 604 { 605 uintptr_t va; 606 607 va = (uintptr_t)slab; 608 KASSERT(IS_MALLOC_LARGE(slab), 609 ("%s: called on non-malloc_large allocation: %p", __func__, slab)); 610 return (va >> SLAB_COOKIE_SHIFT); 611 } 612 613 static caddr_t __noinline 614 malloc_large(size_t size, struct malloc_type *mtp, struct domainset *policy, 615 int flags DEBUG_REDZONE_ARG_DEF) 616 { 617 void *va; 618 619 size = roundup(size, PAGE_SIZE); 620 va = kmem_malloc_domainset(policy, size, flags); 621 if (va != NULL) { 622 /* Use low bits unused for slab pointers. */ 623 vsetzoneslab((uintptr_t)va, NULL, MALLOC_LARGE_SLAB(size)); 624 uma_total_inc(size); 625 } 626 malloc_type_allocated(mtp, va == NULL ? 0 : size); 627 if (__predict_false(va == NULL)) { 628 KASSERT((flags & M_WAITOK) == 0, 629 ("malloc(M_WAITOK) returned NULL")); 630 } else { 631 #ifdef DEBUG_REDZONE 632 va = redzone_setup(va, osize); 633 #endif 634 kasan_mark(va, osize, size, KASAN_MALLOC_REDZONE); 635 } 636 return (va); 637 } 638 639 static void 640 free_large(void *addr, size_t size) 641 { 642 643 kmem_free(addr, size); 644 uma_total_dec(size); 645 } 646 #undef IS_MALLOC_LARGE 647 #undef MALLOC_LARGE_SLAB 648 649 /* 650 * malloc: 651 * 652 * Allocate a block of memory. 653 * 654 * If M_NOWAIT is set, this routine will not block and return NULL if 655 * the allocation fails. 656 */ 657 void * 658 (malloc)(size_t size, struct malloc_type *mtp, int flags) 659 { 660 int indx; 661 caddr_t va; 662 uma_zone_t zone; 663 #if defined(DEBUG_REDZONE) || defined(KASAN) 664 unsigned long osize = size; 665 #endif 666 667 MPASS((flags & M_EXEC) == 0); 668 669 #ifdef MALLOC_DEBUG 670 va = NULL; 671 if (malloc_dbg(&va, &size, mtp, flags) != 0) 672 return (va); 673 #endif 674 675 if (__predict_false(size > kmem_zmax)) 676 return (malloc_large(size, mtp, DOMAINSET_RR(), flags 677 DEBUG_REDZONE_ARG)); 678 679 if (size & KMEM_ZMASK) 680 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 681 indx = kmemsize[size >> KMEM_ZSHIFT]; 682 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 683 va = uma_zalloc_arg(zone, zone, flags); 684 if (va != NULL) { 685 size = zone->uz_size; 686 if ((flags & M_ZERO) == 0) { 687 kmsan_mark(va, size, KMSAN_STATE_UNINIT); 688 kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR); 689 } 690 } 691 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 692 if (__predict_false(va == NULL)) { 693 KASSERT((flags & M_WAITOK) == 0, 694 ("malloc(M_WAITOK) returned NULL")); 695 } 696 #ifdef DEBUG_REDZONE 697 if (va != NULL) 698 va = redzone_setup(va, osize); 699 #endif 700 #ifdef KASAN 701 if (va != NULL) 702 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 703 #endif 704 return ((void *) va); 705 } 706 707 static void * 708 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain, 709 int flags) 710 { 711 uma_zone_t zone; 712 caddr_t va; 713 size_t size; 714 int indx; 715 716 size = *sizep; 717 KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0, 718 ("malloc_domain: Called with bad flag / size combination")); 719 if (size & KMEM_ZMASK) 720 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 721 indx = kmemsize[size >> KMEM_ZSHIFT]; 722 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 723 va = uma_zalloc_domain(zone, zone, domain, flags); 724 if (va != NULL) 725 *sizep = zone->uz_size; 726 *indxp = indx; 727 return ((void *)va); 728 } 729 730 void * 731 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, 732 int flags) 733 { 734 struct vm_domainset_iter di; 735 caddr_t va; 736 int domain; 737 int indx; 738 #if defined(KASAN) || defined(DEBUG_REDZONE) 739 unsigned long osize = size; 740 #endif 741 742 MPASS((flags & M_EXEC) == 0); 743 744 #ifdef MALLOC_DEBUG 745 va = NULL; 746 if (malloc_dbg(&va, &size, mtp, flags) != 0) 747 return (va); 748 #endif 749 750 if (__predict_false(size > kmem_zmax)) 751 return (malloc_large(size, mtp, DOMAINSET_RR(), flags 752 DEBUG_REDZONE_ARG)); 753 754 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 755 do { 756 va = malloc_domain(&size, &indx, mtp, domain, flags); 757 } while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0); 758 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 759 if (__predict_false(va == NULL)) { 760 KASSERT((flags & M_WAITOK) == 0, 761 ("malloc(M_WAITOK) returned NULL")); 762 } 763 #ifdef DEBUG_REDZONE 764 if (va != NULL) 765 va = redzone_setup(va, osize); 766 #endif 767 #ifdef KASAN 768 if (va != NULL) 769 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 770 #endif 771 #ifdef KMSAN 772 if ((flags & M_ZERO) == 0) { 773 kmsan_mark(va, size, KMSAN_STATE_UNINIT); 774 kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR); 775 } 776 #endif 777 return (va); 778 } 779 780 /* 781 * Allocate an executable area. 782 */ 783 void * 784 malloc_exec(size_t size, struct malloc_type *mtp, int flags) 785 { 786 787 return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags)); 788 } 789 790 void * 791 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds, 792 int flags) 793 { 794 #if defined(DEBUG_REDZONE) || defined(KASAN) 795 unsigned long osize = size; 796 #endif 797 #ifdef MALLOC_DEBUG 798 caddr_t va; 799 #endif 800 801 flags |= M_EXEC; 802 803 #ifdef MALLOC_DEBUG 804 va = NULL; 805 if (malloc_dbg(&va, &size, mtp, flags) != 0) 806 return (va); 807 #endif 808 809 return (malloc_large(size, mtp, ds, flags DEBUG_REDZONE_ARG)); 810 } 811 812 void * 813 malloc_aligned(size_t size, size_t align, struct malloc_type *type, int flags) 814 { 815 return (malloc_domainset_aligned(size, align, type, DOMAINSET_RR(), 816 flags)); 817 } 818 819 void * 820 malloc_domainset_aligned(size_t size, size_t align, 821 struct malloc_type *mtp, struct domainset *ds, int flags) 822 { 823 void *res; 824 size_t asize; 825 826 KASSERT(powerof2(align), 827 ("malloc_domainset_aligned: wrong align %#zx size %#zx", 828 align, size)); 829 KASSERT(align <= PAGE_SIZE, 830 ("malloc_domainset_aligned: align %#zx (size %#zx) too large", 831 align, size)); 832 833 /* 834 * Round the allocation size up to the next power of 2, 835 * because we can only guarantee alignment for 836 * power-of-2-sized allocations. Further increase the 837 * allocation size to align if the rounded size is less than 838 * align, since malloc zones provide alignment equal to their 839 * size. 840 */ 841 if (size == 0) 842 size = 1; 843 asize = size <= align ? align : 1UL << flsl(size - 1); 844 845 res = malloc_domainset(asize, mtp, ds, flags); 846 KASSERT(res == NULL || ((uintptr_t)res & (align - 1)) == 0, 847 ("malloc_domainset_aligned: result not aligned %p size %#zx " 848 "allocsize %#zx align %#zx", res, size, asize, align)); 849 return (res); 850 } 851 852 void * 853 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) 854 { 855 856 if (WOULD_OVERFLOW(nmemb, size)) 857 panic("mallocarray: %zu * %zu overflowed", nmemb, size); 858 859 return (malloc(size * nmemb, type, flags)); 860 } 861 862 void * 863 mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type, 864 struct domainset *ds, int flags) 865 { 866 867 if (WOULD_OVERFLOW(nmemb, size)) 868 panic("mallocarray_domainset: %zu * %zu overflowed", nmemb, size); 869 870 return (malloc_domainset(size * nmemb, type, ds, flags)); 871 } 872 873 #if defined(INVARIANTS) && !defined(KASAN) 874 static void 875 free_save_type(void *addr, struct malloc_type *mtp, u_long size) 876 { 877 struct malloc_type **mtpp = addr; 878 879 /* 880 * Cache a pointer to the malloc_type that most recently freed 881 * this memory here. This way we know who is most likely to 882 * have stepped on it later. 883 * 884 * This code assumes that size is a multiple of 8 bytes for 885 * 64 bit machines 886 */ 887 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 888 mtpp += (size - sizeof(struct malloc_type *)) / 889 sizeof(struct malloc_type *); 890 *mtpp = mtp; 891 } 892 #endif 893 894 #ifdef MALLOC_DEBUG 895 static int 896 free_dbg(void **addrp, struct malloc_type *mtp) 897 { 898 void *addr; 899 900 addr = *addrp; 901 KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version")); 902 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 903 ("free: called with spinlock or critical section held")); 904 905 /* free(NULL, ...) does nothing */ 906 if (addr == NULL) 907 return (EJUSTRETURN); 908 909 #ifdef DEBUG_MEMGUARD 910 if (is_memguard_addr(addr)) { 911 memguard_free(addr); 912 return (EJUSTRETURN); 913 } 914 #endif 915 916 #ifdef DEBUG_REDZONE 917 redzone_check(addr); 918 *addrp = redzone_addr_ntor(addr); 919 #endif 920 921 return (0); 922 } 923 #endif 924 925 static __always_inline void 926 _free(void *addr, struct malloc_type *mtp, bool dozero) 927 { 928 uma_zone_t zone; 929 uma_slab_t slab; 930 u_long size; 931 932 #ifdef MALLOC_DEBUG 933 if (free_dbg(&addr, mtp) != 0) 934 return; 935 #endif 936 /* free(NULL, ...) does nothing */ 937 if (addr == NULL) 938 return; 939 940 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 941 if (slab == NULL) 942 panic("%s(%d): address %p(%p) has not been allocated", __func__, 943 dozero, addr, (void *)((uintptr_t)addr & (~UMA_SLAB_MASK))); 944 945 switch (GET_SLAB_COOKIE(slab)) { 946 case __predict_true(SLAB_COOKIE_SLAB_PTR): 947 size = zone->uz_size; 948 #if defined(INVARIANTS) && !defined(KASAN) 949 free_save_type(addr, mtp, size); 950 #endif 951 if (dozero) { 952 kasan_mark(addr, size, size, 0); 953 explicit_bzero(addr, size); 954 } 955 uma_zfree_arg(zone, addr, slab); 956 break; 957 case SLAB_COOKIE_MALLOC_LARGE: 958 size = malloc_large_size(slab); 959 if (dozero) { 960 kasan_mark(addr, size, size, 0); 961 explicit_bzero(addr, size); 962 } 963 free_large(addr, size); 964 break; 965 case SLAB_COOKIE_CONTIG_MALLOC: 966 size = round_page(contigmalloc_size(slab)); 967 if (dozero) 968 explicit_bzero(addr, size); 969 kmem_free(addr, size); 970 break; 971 default: 972 panic("%s(%d): addr %p slab %p with unknown cookie %d", 973 __func__, dozero, addr, slab, GET_SLAB_COOKIE(slab)); 974 /* NOTREACHED */ 975 } 976 malloc_type_freed(mtp, size); 977 } 978 979 /* 980 * free: 981 * Free a block of memory allocated by malloc/contigmalloc. 982 * This routine may not block. 983 */ 984 void 985 free(void *addr, struct malloc_type *mtp) 986 { 987 _free(addr, mtp, false); 988 } 989 990 /* 991 * zfree: 992 * Zero then free a block of memory allocated by malloc/contigmalloc. 993 * This routine may not block. 994 */ 995 void 996 zfree(void *addr, struct malloc_type *mtp) 997 { 998 _free(addr, mtp, true); 999 } 1000 1001 /* 1002 * realloc: change the size of a memory block 1003 */ 1004 void * 1005 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) 1006 { 1007 #ifndef DEBUG_REDZONE 1008 uma_zone_t zone; 1009 uma_slab_t slab; 1010 #endif 1011 unsigned long alloc; 1012 void *newaddr; 1013 1014 KASSERT(mtp->ks_version == M_VERSION, 1015 ("realloc: bad malloc type version")); 1016 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 1017 ("realloc: called with spinlock or critical section held")); 1018 1019 /* realloc(NULL, ...) is equivalent to malloc(...) */ 1020 if (addr == NULL) 1021 return (malloc(size, mtp, flags)); 1022 1023 /* 1024 * XXX: Should report free of old memory and alloc of new memory to 1025 * per-CPU stats. 1026 */ 1027 1028 #ifdef DEBUG_MEMGUARD 1029 if (is_memguard_addr(addr)) 1030 return (memguard_realloc(addr, size, mtp, flags)); 1031 #endif 1032 1033 #ifdef DEBUG_REDZONE 1034 alloc = redzone_get_size(addr); 1035 #else 1036 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1037 1038 /* Sanity check */ 1039 KASSERT(slab != NULL, 1040 ("realloc: address %p out of range", (void *)addr)); 1041 1042 /* Get the size of the original block */ 1043 switch (GET_SLAB_COOKIE(slab)) { 1044 case __predict_true(SLAB_COOKIE_SLAB_PTR): 1045 alloc = zone->uz_size; 1046 break; 1047 case SLAB_COOKIE_MALLOC_LARGE: 1048 alloc = malloc_large_size(slab); 1049 break; 1050 default: 1051 #ifdef INVARIANTS 1052 panic("%s: called for addr %p of unsupported allocation type; " 1053 "slab %p cookie %d", __func__, addr, slab, GET_SLAB_COOKIE(slab)); 1054 #endif 1055 return (NULL); 1056 } 1057 1058 /* Reuse the original block if appropriate */ 1059 if (size <= alloc && 1060 (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) { 1061 kasan_mark((void *)addr, size, alloc, KASAN_MALLOC_REDZONE); 1062 return (addr); 1063 } 1064 #endif /* !DEBUG_REDZONE */ 1065 1066 /* Allocate a new, bigger (or smaller) block */ 1067 if ((newaddr = malloc(size, mtp, flags)) == NULL) 1068 return (NULL); 1069 1070 /* 1071 * Copy over original contents. For KASAN, the redzone must be marked 1072 * valid before performing the copy. 1073 */ 1074 kasan_mark(addr, alloc, alloc, 0); 1075 bcopy(addr, newaddr, min(size, alloc)); 1076 free(addr, mtp); 1077 return (newaddr); 1078 } 1079 1080 /* 1081 * reallocf: same as realloc() but free memory on failure. 1082 */ 1083 void * 1084 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) 1085 { 1086 void *mem; 1087 1088 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 1089 free(addr, mtp); 1090 return (mem); 1091 } 1092 1093 /* 1094 * malloc_size: returns the number of bytes allocated for a request of the 1095 * specified size 1096 */ 1097 size_t 1098 malloc_size(size_t size) 1099 { 1100 int indx; 1101 1102 if (size > kmem_zmax) 1103 return (round_page(size)); 1104 if (size & KMEM_ZMASK) 1105 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 1106 indx = kmemsize[size >> KMEM_ZSHIFT]; 1107 return (kmemzones[indx].kz_size); 1108 } 1109 1110 /* 1111 * malloc_usable_size: returns the usable size of the allocation. 1112 */ 1113 size_t 1114 malloc_usable_size(const void *addr) 1115 { 1116 #ifndef DEBUG_REDZONE 1117 uma_zone_t zone; 1118 uma_slab_t slab; 1119 #endif 1120 u_long size; 1121 1122 if (addr == NULL) 1123 return (0); 1124 1125 #ifdef DEBUG_MEMGUARD 1126 if (is_memguard_addr(__DECONST(void *, addr))) 1127 return (memguard_get_req_size(addr)); 1128 #endif 1129 1130 #ifdef DEBUG_REDZONE 1131 size = redzone_get_size(__DECONST(void *, addr)); 1132 #else 1133 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1134 if (slab == NULL) 1135 panic("malloc_usable_size: address %p(%p) is not allocated", 1136 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 1137 1138 switch (GET_SLAB_COOKIE(slab)) { 1139 case __predict_true(SLAB_COOKIE_SLAB_PTR): 1140 size = zone->uz_size; 1141 break; 1142 case SLAB_COOKIE_MALLOC_LARGE: 1143 size = malloc_large_size(slab); 1144 break; 1145 case SLAB_COOKIE_CONTIG_MALLOC: 1146 size = round_page(contigmalloc_size(slab)); 1147 break; 1148 default: 1149 __assert_unreachable(); 1150 size = 0; 1151 break; 1152 } 1153 #endif 1154 1155 /* 1156 * Unmark the redzone to avoid reports from consumers who are 1157 * (presumably) about to use the full allocation size. 1158 */ 1159 kasan_mark(addr, size, size, 0); 1160 1161 return (size); 1162 } 1163 1164 CTASSERT(VM_KMEM_SIZE_SCALE >= 1); 1165 1166 /* 1167 * Initialize the kernel memory (kmem) arena. 1168 */ 1169 void 1170 kmeminit(void) 1171 { 1172 u_long mem_size; 1173 u_long tmp; 1174 1175 #ifdef VM_KMEM_SIZE 1176 if (vm_kmem_size == 0) 1177 vm_kmem_size = VM_KMEM_SIZE; 1178 #endif 1179 #ifdef VM_KMEM_SIZE_MIN 1180 if (vm_kmem_size_min == 0) 1181 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 1182 #endif 1183 #ifdef VM_KMEM_SIZE_MAX 1184 if (vm_kmem_size_max == 0) 1185 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 1186 #endif 1187 /* 1188 * Calculate the amount of kernel virtual address (KVA) space that is 1189 * preallocated to the kmem arena. In order to support a wide range 1190 * of machines, it is a function of the physical memory size, 1191 * specifically, 1192 * 1193 * min(max(physical memory size / VM_KMEM_SIZE_SCALE, 1194 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) 1195 * 1196 * Every architecture must define an integral value for 1197 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN 1198 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and 1199 * ceiling on this preallocation, are optional. Typically, 1200 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on 1201 * a given architecture. 1202 */ 1203 mem_size = vm_cnt.v_page_count; 1204 if (mem_size <= 32768) /* delphij XXX 128MB */ 1205 kmem_zmax = PAGE_SIZE; 1206 1207 if (vm_kmem_size_scale < 1) 1208 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 1209 1210 /* 1211 * Check if we should use defaults for the "vm_kmem_size" 1212 * variable: 1213 */ 1214 if (vm_kmem_size == 0) { 1215 vm_kmem_size = mem_size / vm_kmem_size_scale; 1216 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ? 1217 vm_kmem_size_max : vm_kmem_size * PAGE_SIZE; 1218 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) 1219 vm_kmem_size = vm_kmem_size_min; 1220 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 1221 vm_kmem_size = vm_kmem_size_max; 1222 } 1223 if (vm_kmem_size == 0) 1224 panic("Tune VM_KMEM_SIZE_* for the platform"); 1225 1226 /* 1227 * The amount of KVA space that is preallocated to the 1228 * kmem arena can be set statically at compile-time or manually 1229 * through the kernel environment. However, it is still limited to 1230 * twice the physical memory size, which has been sufficient to handle 1231 * the most severe cases of external fragmentation in the kmem arena. 1232 */ 1233 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 1234 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 1235 1236 vm_kmem_size = round_page(vm_kmem_size); 1237 1238 /* 1239 * With KASAN or KMSAN enabled, dynamically allocated kernel memory is 1240 * shadowed. Account for this when setting the UMA limit. 1241 */ 1242 #if defined(KASAN) 1243 vm_kmem_size = (vm_kmem_size * KASAN_SHADOW_SCALE) / 1244 (KASAN_SHADOW_SCALE + 1); 1245 #elif defined(KMSAN) 1246 vm_kmem_size /= 3; 1247 #endif 1248 1249 #ifdef DEBUG_MEMGUARD 1250 tmp = memguard_fudge(vm_kmem_size, kernel_map); 1251 #else 1252 tmp = vm_kmem_size; 1253 #endif 1254 uma_set_limit(tmp); 1255 1256 #ifdef DEBUG_MEMGUARD 1257 /* 1258 * Initialize MemGuard if support compiled in. MemGuard is a 1259 * replacement allocator used for detecting tamper-after-free 1260 * scenarios as they occur. It is only used for debugging. 1261 */ 1262 memguard_init(kernel_arena); 1263 #endif 1264 } 1265 1266 /* 1267 * Initialize the kernel memory allocator 1268 */ 1269 /* ARGSUSED*/ 1270 static void 1271 mallocinit(void *dummy) 1272 { 1273 int i; 1274 uint8_t indx; 1275 1276 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 1277 1278 kmeminit(); 1279 1280 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) 1281 kmem_zmax = KMEM_ZMAX; 1282 1283 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 1284 int size = kmemzones[indx].kz_size; 1285 const char *name = kmemzones[indx].kz_name; 1286 size_t align; 1287 int subzone; 1288 1289 align = UMA_ALIGN_PTR; 1290 if (powerof2(size) && size > sizeof(void *)) 1291 align = MIN(size, PAGE_SIZE) - 1; 1292 for (subzone = 0; subzone < numzones; subzone++) { 1293 kmemzones[indx].kz_zone[subzone] = 1294 uma_zcreate(name, size, 1295 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 1296 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 1297 #else 1298 NULL, NULL, NULL, NULL, 1299 #endif 1300 align, UMA_ZONE_MALLOC); 1301 } 1302 for (;i <= size; i+= KMEM_ZBASE) 1303 kmemsize[i >> KMEM_ZSHIFT] = indx; 1304 } 1305 } 1306 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); 1307 1308 void 1309 malloc_init(void *data) 1310 { 1311 struct malloc_type_internal *mtip; 1312 struct malloc_type *mtp; 1313 1314 KASSERT(vm_cnt.v_page_count != 0, 1315 ("malloc_init() called before vm_mem_init()")); 1316 1317 mtp = data; 1318 if (mtp->ks_version != M_VERSION) 1319 panic("malloc_init: type %s with unsupported version %lu", 1320 mtp->ks_shortdesc, mtp->ks_version); 1321 1322 mtip = &mtp->ks_mti; 1323 mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO); 1324 mtp_set_subzone(mtp); 1325 1326 mtx_lock(&malloc_mtx); 1327 mtp->ks_next = kmemstatistics; 1328 kmemstatistics = mtp; 1329 kmemcount++; 1330 mtx_unlock(&malloc_mtx); 1331 } 1332 1333 void 1334 malloc_uninit(void *data) 1335 { 1336 struct malloc_type_internal *mtip; 1337 struct malloc_type_stats *mtsp; 1338 struct malloc_type *mtp, *temp; 1339 long temp_allocs, temp_bytes; 1340 int i; 1341 1342 mtp = data; 1343 KASSERT(mtp->ks_version == M_VERSION, 1344 ("malloc_uninit: bad malloc type version")); 1345 1346 mtx_lock(&malloc_mtx); 1347 mtip = &mtp->ks_mti; 1348 if (mtp != kmemstatistics) { 1349 for (temp = kmemstatistics; temp != NULL; 1350 temp = temp->ks_next) { 1351 if (temp->ks_next == mtp) { 1352 temp->ks_next = mtp->ks_next; 1353 break; 1354 } 1355 } 1356 KASSERT(temp, 1357 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 1358 } else 1359 kmemstatistics = mtp->ks_next; 1360 kmemcount--; 1361 mtx_unlock(&malloc_mtx); 1362 1363 /* 1364 * Look for memory leaks. 1365 */ 1366 temp_allocs = temp_bytes = 0; 1367 for (i = 0; i <= mp_maxid; i++) { 1368 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1369 temp_allocs += mtsp->mts_numallocs; 1370 temp_allocs -= mtsp->mts_numfrees; 1371 temp_bytes += mtsp->mts_memalloced; 1372 temp_bytes -= mtsp->mts_memfreed; 1373 } 1374 if (temp_allocs > 0 || temp_bytes > 0) { 1375 printf("Warning: memory type %s leaked memory on destroy " 1376 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 1377 temp_allocs, temp_bytes); 1378 } 1379 1380 uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats); 1381 } 1382 1383 struct malloc_type * 1384 malloc_desc2type(const char *desc) 1385 { 1386 struct malloc_type *mtp; 1387 1388 mtx_assert(&malloc_mtx, MA_OWNED); 1389 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1390 if (strcmp(mtp->ks_shortdesc, desc) == 0) 1391 return (mtp); 1392 } 1393 return (NULL); 1394 } 1395 1396 static int 1397 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 1398 { 1399 struct malloc_type_stream_header mtsh; 1400 struct malloc_type_internal *mtip; 1401 struct malloc_type_stats *mtsp, zeromts; 1402 struct malloc_type_header mth; 1403 struct malloc_type *mtp; 1404 int error, i; 1405 struct sbuf sbuf; 1406 1407 error = sysctl_wire_old_buffer(req, 0); 1408 if (error != 0) 1409 return (error); 1410 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1411 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 1412 mtx_lock(&malloc_mtx); 1413 1414 bzero(&zeromts, sizeof(zeromts)); 1415 1416 /* 1417 * Insert stream header. 1418 */ 1419 bzero(&mtsh, sizeof(mtsh)); 1420 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 1421 mtsh.mtsh_maxcpus = MAXCPU; 1422 mtsh.mtsh_count = kmemcount; 1423 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 1424 1425 /* 1426 * Insert alternating sequence of type headers and type statistics. 1427 */ 1428 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1429 mtip = &mtp->ks_mti; 1430 1431 /* 1432 * Insert type header. 1433 */ 1434 bzero(&mth, sizeof(mth)); 1435 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 1436 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 1437 1438 /* 1439 * Insert type statistics for each CPU. 1440 */ 1441 for (i = 0; i <= mp_maxid; i++) { 1442 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1443 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); 1444 } 1445 /* 1446 * Fill in the missing CPUs. 1447 */ 1448 for (; i < MAXCPU; i++) { 1449 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); 1450 } 1451 } 1452 mtx_unlock(&malloc_mtx); 1453 error = sbuf_finish(&sbuf); 1454 sbuf_delete(&sbuf); 1455 return (error); 1456 } 1457 1458 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, 1459 CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0, 1460 sysctl_kern_malloc_stats, "s,malloc_type_ustats", 1461 "Return malloc types"); 1462 1463 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 1464 "Count of kernel malloc types"); 1465 1466 void 1467 malloc_type_list(malloc_type_list_func_t *func, void *arg) 1468 { 1469 struct malloc_type *mtp, **bufmtp; 1470 int count, i; 1471 size_t buflen; 1472 1473 mtx_lock(&malloc_mtx); 1474 restart: 1475 mtx_assert(&malloc_mtx, MA_OWNED); 1476 count = kmemcount; 1477 mtx_unlock(&malloc_mtx); 1478 1479 buflen = sizeof(struct malloc_type *) * count; 1480 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 1481 1482 mtx_lock(&malloc_mtx); 1483 1484 if (count < kmemcount) { 1485 free(bufmtp, M_TEMP); 1486 goto restart; 1487 } 1488 1489 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 1490 bufmtp[i] = mtp; 1491 1492 mtx_unlock(&malloc_mtx); 1493 1494 for (i = 0; i < count; i++) 1495 (func)(bufmtp[i], arg); 1496 1497 free(bufmtp, M_TEMP); 1498 } 1499 1500 #ifdef DDB 1501 static int64_t 1502 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs, 1503 uint64_t *inuse) 1504 { 1505 const struct malloc_type_stats *mtsp; 1506 uint64_t frees, alloced, freed; 1507 int i; 1508 1509 *allocs = 0; 1510 frees = 0; 1511 alloced = 0; 1512 freed = 0; 1513 for (i = 0; i <= mp_maxid; i++) { 1514 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1515 1516 *allocs += mtsp->mts_numallocs; 1517 frees += mtsp->mts_numfrees; 1518 alloced += mtsp->mts_memalloced; 1519 freed += mtsp->mts_memfreed; 1520 } 1521 *inuse = *allocs - frees; 1522 return (alloced - freed); 1523 } 1524 1525 DB_SHOW_COMMAND_FLAGS(malloc, db_show_malloc, DB_CMD_MEMSAFE) 1526 { 1527 const char *fmt_hdr, *fmt_entry; 1528 struct malloc_type *mtp; 1529 uint64_t allocs, inuse; 1530 int64_t size; 1531 /* variables for sorting */ 1532 struct malloc_type *last_mtype, *cur_mtype; 1533 int64_t cur_size, last_size; 1534 int ties; 1535 1536 if (modif[0] == 'i') { 1537 fmt_hdr = "%s,%s,%s,%s\n"; 1538 fmt_entry = "\"%s\",%ju,%jdK,%ju\n"; 1539 } else { 1540 fmt_hdr = "%18s %12s %12s %12s\n"; 1541 fmt_entry = "%18s %12ju %12jdK %12ju\n"; 1542 } 1543 1544 db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests"); 1545 1546 /* Select sort, largest size first. */ 1547 last_mtype = NULL; 1548 last_size = INT64_MAX; 1549 for (;;) { 1550 cur_mtype = NULL; 1551 cur_size = -1; 1552 ties = 0; 1553 1554 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1555 /* 1556 * In the case of size ties, print out mtypes 1557 * in the order they are encountered. That is, 1558 * when we encounter the most recently output 1559 * mtype, we have already printed all preceding 1560 * ties, and we must print all following ties. 1561 */ 1562 if (mtp == last_mtype) { 1563 ties = 1; 1564 continue; 1565 } 1566 size = get_malloc_stats(&mtp->ks_mti, &allocs, 1567 &inuse); 1568 if (size > cur_size && size < last_size + ties) { 1569 cur_size = size; 1570 cur_mtype = mtp; 1571 } 1572 } 1573 if (cur_mtype == NULL) 1574 break; 1575 1576 size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse); 1577 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse, 1578 howmany(size, 1024), allocs); 1579 1580 if (db_pager_quit) 1581 break; 1582 1583 last_mtype = cur_mtype; 1584 last_size = cur_size; 1585 } 1586 } 1587 1588 #if MALLOC_DEBUG_MAXZONES > 1 1589 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1590 { 1591 struct malloc_type_internal *mtip; 1592 struct malloc_type *mtp; 1593 u_int subzone; 1594 1595 if (!have_addr) { 1596 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1597 return; 1598 } 1599 mtp = (void *)addr; 1600 if (mtp->ks_version != M_VERSION) { 1601 db_printf("Version %lx does not match expected %x\n", 1602 mtp->ks_version, M_VERSION); 1603 return; 1604 } 1605 1606 mtip = &mtp->ks_mti; 1607 subzone = mtip->mti_zone; 1608 1609 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1610 mtip = &mtp->ks_mti; 1611 if (mtip->mti_zone != subzone) 1612 continue; 1613 db_printf("%s\n", mtp->ks_shortdesc); 1614 if (db_pager_quit) 1615 break; 1616 } 1617 } 1618 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1619 #endif /* DDB */ 1620