xref: /freebsd/sys/kern/kern_malloc.c (revision ee2ea5ceafed78a5bd9810beb9e3ca927180c226)
1 /*
2  * Copyright (c) 1987, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #include "opt_vm.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/mutex.h>
46 #include <sys/vmmeter.h>
47 #include <sys/proc.h>
48 #include <sys/sysctl.h>
49 
50 #include <vm/vm.h>
51 #include <vm/vm_param.h>
52 #include <vm/vm_kern.h>
53 #include <vm/vm_extern.h>
54 #include <vm/pmap.h>
55 #include <vm/vm_map.h>
56 #include <vm/uma.h>
57 #include <vm/uma_int.h>
58 #include <vm/uma_dbg.h>
59 
60 #if defined(INVARIANTS) && defined(__i386__)
61 #include <machine/cpu.h>
62 #endif
63 
64 /*
65  * When realloc() is called, if the new size is sufficiently smaller than
66  * the old size, realloc() will allocate a new, smaller block to avoid
67  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
68  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
69  */
70 #ifndef REALLOC_FRACTION
71 #define	REALLOC_FRACTION	1	/* new block if <= half the size */
72 #endif
73 
74 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
75 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
76 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
77 
78 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
79 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
80 
81 static void kmeminit(void *);
82 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
83 
84 static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
85 
86 static struct malloc_type *kmemstatistics;
87 static char *kmembase;
88 static char *kmemlimit;
89 
90 #define KMEM_ZSHIFT	4
91 #define KMEM_ZBASE	16
92 #define KMEM_ZMASK	(KMEM_ZBASE - 1)
93 
94 #define KMEM_ZMAX	65536
95 #define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
96 static u_int8_t kmemsize[KMEM_ZSIZE + 1];
97 
98 /* These won't be powers of two for long */
99 struct {
100 	int kz_size;
101 	char *kz_name;
102 	uma_zone_t kz_zone;
103 } kmemzones[] = {
104 	{16, "16", NULL},
105 	{32, "32", NULL},
106 	{64, "64", NULL},
107 	{128, "128", NULL},
108 	{256, "256", NULL},
109 	{512, "512", NULL},
110 	{1024, "1024", NULL},
111 	{2048, "2048", NULL},
112 	{4096, "4096", NULL},
113 	{8192, "8192", NULL},
114 	{16384, "16384", NULL},
115 	{32768, "32768", NULL},
116 	{65536, "65536", NULL},
117 	{0, NULL},
118 };
119 
120 u_int vm_kmem_size;
121 
122 /*
123  * The malloc_mtx protects the kmemstatistics linked list as well as the
124  * mallochash.
125  */
126 
127 struct mtx malloc_mtx;
128 
129 #ifdef MALLOC_PROFILE
130 uint64_t krequests[KMEM_ZSIZE + 1];
131 
132 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
133 #endif
134 
135 static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS);
136 
137 /*
138  *	malloc:
139  *
140  *	Allocate a block of memory.
141  *
142  *	If M_NOWAIT is set, this routine will not block and return NULL if
143  *	the allocation fails.
144  */
145 void *
146 malloc(size, type, flags)
147 	unsigned long size;
148 	struct malloc_type *type;
149 	int flags;
150 {
151 	int indx;
152 	caddr_t va;
153 	uma_zone_t zone;
154 	register struct malloc_type *ksp = type;
155 
156 #if 0
157 	if (size == 0)
158 		Debugger("zero size malloc");
159 #endif
160 #if defined(INVARIANTS)
161 	if (flags == M_WAITOK)
162 		KASSERT(curthread->td_intr_nesting_level == 0,
163 		   ("malloc(M_WAITOK) in interrupt context"));
164 #endif
165 	if (size <= KMEM_ZMAX) {
166 		if (size & KMEM_ZMASK)
167 			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
168 		indx = kmemsize[size >> KMEM_ZSHIFT];
169 		zone = kmemzones[indx].kz_zone;
170 #ifdef MALLOC_PROFILE
171 		krequests[size >> KMEM_ZSHIFT]++;
172 #endif
173 		va = uma_zalloc(zone, flags);
174 		mtx_lock(&ksp->ks_mtx);
175 		if (va == NULL)
176 			goto out;
177 
178 		ksp->ks_size |= 1 << indx;
179 		size = zone->uz_size;
180 	} else {
181 		size = roundup(size, PAGE_SIZE);
182 		zone = NULL;
183 		va = uma_large_malloc(size, flags);
184 		mtx_lock(&ksp->ks_mtx);
185 		if (va == NULL)
186 			goto out;
187 	}
188 	ksp->ks_memuse += size;
189 	ksp->ks_inuse++;
190 out:
191 	ksp->ks_calls++;
192 	if (ksp->ks_memuse > ksp->ks_maxused)
193 		ksp->ks_maxused = ksp->ks_memuse;
194 
195 	mtx_unlock(&ksp->ks_mtx);
196 	return ((void *) va);
197 }
198 
199 /*
200  *	free:
201  *
202  *	Free a block of memory allocated by malloc.
203  *
204  *	This routine may not block.
205  */
206 void
207 free(addr, type)
208 	void *addr;
209 	struct malloc_type *type;
210 {
211 	uma_slab_t slab;
212 	void *mem;
213 	u_long size;
214 	register struct malloc_type *ksp = type;
215 
216 	/* free(NULL, ...) does nothing */
217 	if (addr == NULL)
218 		return;
219 
220 	size = 0;
221 
222 	mem = (void *)((u_long)addr & (~UMA_SLAB_MASK));
223 	mtx_lock(&malloc_mtx);
224 	slab = hash_sfind(mallochash, mem);
225 	mtx_unlock(&malloc_mtx);
226 
227 	if (slab == NULL)
228 		panic("free: address %p(%p) has not been allocated.\n",
229 		    addr, mem);
230 
231 	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
232 #ifdef INVARIANTS
233 		struct malloc_type **mtp = addr;
234 #endif
235 		size = slab->us_zone->uz_size;
236 #ifdef INVARIANTS
237 		/*
238 		 * Cache a pointer to the malloc_type that most recently freed
239 		 * this memory here.  This way we know who is most likely to
240 		 * have stepped on it later.
241 		 *
242 		 * This code assumes that size is a multiple of 8 bytes for
243 		 * 64 bit machines
244 		 */
245 		mtp = (struct malloc_type **)
246 		    ((unsigned long)mtp & ~UMA_ALIGN_PTR);
247 		mtp += (size - sizeof(struct malloc_type *)) /
248 		    sizeof(struct malloc_type *);
249 		*mtp = type;
250 #endif
251 		uma_zfree_arg(slab->us_zone, addr, slab);
252 	} else {
253 		size = slab->us_size;
254 		uma_large_free(slab);
255 	}
256 	mtx_lock(&ksp->ks_mtx);
257 	ksp->ks_memuse -= size;
258 	ksp->ks_inuse--;
259 	mtx_unlock(&ksp->ks_mtx);
260 }
261 
262 /*
263  *	realloc: change the size of a memory block
264  */
265 void *
266 realloc(addr, size, type, flags)
267 	void *addr;
268 	unsigned long size;
269 	struct malloc_type *type;
270 	int flags;
271 {
272 	uma_slab_t slab;
273 	unsigned long alloc;
274 	void *newaddr;
275 
276 	/* realloc(NULL, ...) is equivalent to malloc(...) */
277 	if (addr == NULL)
278 		return (malloc(size, type, flags));
279 
280 	mtx_lock(&malloc_mtx);
281 	slab = hash_sfind(mallochash,
282 	    (void *)((u_long)addr & ~(UMA_SLAB_MASK)));
283 	mtx_unlock(&malloc_mtx);
284 
285 	/* Sanity check */
286 	KASSERT(slab != NULL,
287 	    ("realloc: address %p out of range", (void *)addr));
288 
289 	/* Get the size of the original block */
290 	if (slab->us_zone)
291 		alloc = slab->us_zone->uz_size;
292 	else
293 		alloc = slab->us_size;
294 
295 	/* Reuse the original block if appropriate */
296 	if (size <= alloc
297 	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
298 		return (addr);
299 
300 	/* Allocate a new, bigger (or smaller) block */
301 	if ((newaddr = malloc(size, type, flags)) == NULL)
302 		return (NULL);
303 
304 	/* Copy over original contents */
305 	bcopy(addr, newaddr, min(size, alloc));
306 	free(addr, type);
307 	return (newaddr);
308 }
309 
310 /*
311  *	reallocf: same as realloc() but free memory on failure.
312  */
313 void *
314 reallocf(addr, size, type, flags)
315 	void *addr;
316 	unsigned long size;
317 	struct malloc_type *type;
318 	int flags;
319 {
320 	void *mem;
321 
322 	if ((mem = realloc(addr, size, type, flags)) == NULL)
323 		free(addr, type);
324 	return (mem);
325 }
326 
327 /*
328  * Initialize the kernel memory allocator
329  */
330 /* ARGSUSED*/
331 static void
332 kmeminit(dummy)
333 	void *dummy;
334 {
335 	u_int8_t indx;
336 	u_long npg;
337 	u_long mem_size;
338 	void *hashmem;
339 	u_long hashsize;
340 	int highbit;
341 	int bits;
342 	int i;
343 
344 	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
345 
346 	/*
347 	 * Try to auto-tune the kernel memory size, so that it is
348 	 * more applicable for a wider range of machine sizes.
349 	 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
350 	 * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
351 	 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
352 	 * available, and on an X86 with a total KVA space of 256MB,
353 	 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
354 	 *
355 	 * Note that the kmem_map is also used by the zone allocator,
356 	 * so make sure that there is enough space.
357 	 */
358 	vm_kmem_size = VM_KMEM_SIZE;
359 	mem_size = cnt.v_page_count * PAGE_SIZE;
360 
361 #if defined(VM_KMEM_SIZE_SCALE)
362 	if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size)
363 		vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
364 #endif
365 
366 #if defined(VM_KMEM_SIZE_MAX)
367 	if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
368 		vm_kmem_size = VM_KMEM_SIZE_MAX;
369 #endif
370 
371 	/* Allow final override from the kernel environment */
372 	TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size);
373 
374 	/*
375 	 * Limit kmem virtual size to twice the physical memory.
376 	 * This allows for kmem map sparseness, but limits the size
377 	 * to something sane. Be careful to not overflow the 32bit
378 	 * ints while doing the check.
379 	 */
380 	if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE))
381 		vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
382 
383 	/*
384 	 * In mbuf_init(), we set up submaps for mbufs and clusters, in which
385 	 * case we rounddown() (nmbufs * MSIZE) and (nmbclusters * MCLBYTES),
386 	 * respectively. Mathematically, this means that what we do here may
387 	 * amount to slightly more address space than we need for the submaps,
388 	 * but it never hurts to have an extra page in kmem_map.
389 	 */
390 	npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + nmbcnt *
391 	    sizeof(u_int) + vm_kmem_size) / PAGE_SIZE;
392 
393 	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
394 		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
395 	kmem_map->system_map = 1;
396 
397 	hashsize = npg * sizeof(void *);
398 
399 	highbit = 0;
400 	bits = 0;
401 	/* The hash size must be a power of two */
402 	for (i = 0; i < 8 * sizeof(hashsize); i++)
403 		if (hashsize & (1 << i)) {
404 			highbit = i;
405 			bits++;
406 		}
407 	if (bits > 1)
408 		hashsize = 1 << (highbit);
409 
410 	hashmem = (void *)kmem_alloc(kernel_map, (vm_size_t)hashsize);
411 	uma_startup2(hashmem, hashsize / sizeof(void *));
412 
413 	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
414 		int size = kmemzones[indx].kz_size;
415 		char *name = kmemzones[indx].kz_name;
416 
417 		kmemzones[indx].kz_zone = uma_zcreate(name, size,
418 #ifdef INVARIANTS
419 		    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
420 #else
421 		    NULL, NULL, NULL, NULL,
422 #endif
423 		    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
424 
425 		for (;i <= size; i+= KMEM_ZBASE)
426 			kmemsize[i >> KMEM_ZSHIFT] = indx;
427 
428 	}
429 }
430 
431 void
432 malloc_init(data)
433 	void *data;
434 {
435 	struct malloc_type *type = (struct malloc_type *)data;
436 
437 	mtx_lock(&malloc_mtx);
438 	if (type->ks_magic != M_MAGIC)
439 		panic("malloc type lacks magic");
440 
441 	if (cnt.v_page_count == 0)
442 		panic("malloc_init not allowed before vm init");
443 
444 	if (type->ks_next != NULL)
445 		return;
446 
447 	type->ks_next = kmemstatistics;
448 	kmemstatistics = type;
449 	mtx_init(&type->ks_mtx, type->ks_shortdesc, "Malloc Stats", MTX_DEF);
450 	mtx_unlock(&malloc_mtx);
451 }
452 
453 void
454 malloc_uninit(data)
455 	void *data;
456 {
457 	struct malloc_type *type = (struct malloc_type *)data;
458 	struct malloc_type *t;
459 
460 	mtx_lock(&malloc_mtx);
461 	mtx_lock(&type->ks_mtx);
462 	if (type->ks_magic != M_MAGIC)
463 		panic("malloc type lacks magic");
464 
465 	if (cnt.v_page_count == 0)
466 		panic("malloc_uninit not allowed before vm init");
467 
468 	if (type == kmemstatistics)
469 		kmemstatistics = type->ks_next;
470 	else {
471 		for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
472 			if (t->ks_next == type) {
473 				t->ks_next = type->ks_next;
474 				break;
475 			}
476 		}
477 	}
478 	type->ks_next = NULL;
479 	mtx_destroy(&type->ks_mtx);
480 	mtx_unlock(&malloc_mtx);
481 }
482 
483 static int
484 sysctl_kern_malloc(SYSCTL_HANDLER_ARGS)
485 {
486 	struct malloc_type *type;
487 	int linesize = 128;
488 	int curline;
489 	int bufsize;
490 	int first;
491 	int error;
492 	char *buf;
493 	char *p;
494 	int cnt;
495 	int len;
496 	int i;
497 
498 	cnt = 0;
499 
500 	mtx_lock(&malloc_mtx);
501 	for (type = kmemstatistics; type != NULL; type = type->ks_next)
502 		cnt++;
503 
504 	mtx_unlock(&malloc_mtx);
505 	bufsize = linesize * (cnt + 1);
506 	p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
507 	mtx_lock(&malloc_mtx);
508 
509 	len = snprintf(p, linesize,
510 	    "\n        Type  InUse MemUse HighUse Requests  Size(s)\n");
511 	p += len;
512 
513 	for (type = kmemstatistics; cnt != 0 && type != NULL;
514 	    type = type->ks_next, cnt--) {
515 		if (type->ks_calls == 0)
516 			continue;
517 
518 		curline = linesize - 2;	/* Leave room for the \n */
519 		len = snprintf(p, curline, "%13s%6lu%6luK%7luK%9llu",
520 			type->ks_shortdesc,
521 			type->ks_inuse,
522 			(type->ks_memuse + 1023) / 1024,
523 			(type->ks_maxused + 1023) / 1024,
524 			(long long unsigned)type->ks_calls);
525 		curline -= len;
526 		p += len;
527 
528 		first = 1;
529 		for (i = 0; i < 8 * sizeof(type->ks_size); i++)
530 			if (type->ks_size & (1 << i)) {
531 				if (first)
532 					len = snprintf(p, curline, "  ");
533 				else
534 					len = snprintf(p, curline, ",");
535 				curline -= len;
536 				p += len;
537 
538 				len = snprintf(p, curline,
539 				    "%s", kmemzones[i].kz_name);
540 				curline -= len;
541 				p += len;
542 
543 				first = 0;
544 			}
545 
546 		len = snprintf(p, 2, "\n");
547 		p += len;
548 	}
549 
550 	mtx_unlock(&malloc_mtx);
551 	error = SYSCTL_OUT(req, buf, p - buf);
552 
553 	free(buf, M_TEMP);
554 	return (error);
555 }
556 
557 SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD,
558     NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats");
559 
560 #ifdef MALLOC_PROFILE
561 
562 static int
563 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
564 {
565 	int linesize = 64;
566 	uint64_t count;
567 	uint64_t waste;
568 	uint64_t mem;
569 	int bufsize;
570 	int error;
571 	char *buf;
572 	int rsize;
573 	int size;
574 	char *p;
575 	int len;
576 	int i;
577 
578 	bufsize = linesize * (KMEM_ZSIZE + 1);
579 	bufsize += 128; 	/* For the stats line */
580 	bufsize += 128; 	/* For the banner line */
581 	waste = 0;
582 	mem = 0;
583 
584 	p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
585 	len = snprintf(p, bufsize,
586 	    "\n  Size                    Requests  Real Size\n");
587 	bufsize -= len;
588 	p += len;
589 
590 	for (i = 0; i < KMEM_ZSIZE; i++) {
591 		size = i << KMEM_ZSHIFT;
592 		rsize = kmemzones[kmemsize[i]].kz_size;
593 		count = (long long unsigned)krequests[i];
594 
595 		len = snprintf(p, bufsize, "%6d%28llu%11d\n",
596 		    size, (unsigned long long)count, rsize);
597 		bufsize -= len;
598 		p += len;
599 
600 		if ((rsize * count) > (size * count))
601 			waste += (rsize * count) - (size * count);
602 		mem += (rsize * count);
603 	}
604 
605 	len = snprintf(p, bufsize,
606 	    "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
607 	    (unsigned long long)mem, (unsigned long long)waste);
608 	p += len;
609 
610 	error = SYSCTL_OUT(req, buf, p - buf);
611 
612 	free(buf, M_TEMP);
613 	return (error);
614 }
615 
616 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
617     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
618 #endif /* MALLOC_PROFILE */
619