1 /* 2 * Copyright (c) 1987, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 34 * $FreeBSD$ 35 */ 36 37 #include "opt_vm.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/mutex.h> 46 #include <sys/vmmeter.h> 47 #include <sys/proc.h> 48 #include <sys/sysctl.h> 49 50 #include <vm/vm.h> 51 #include <vm/vm_param.h> 52 #include <vm/vm_kern.h> 53 #include <vm/vm_extern.h> 54 #include <vm/pmap.h> 55 #include <vm/vm_map.h> 56 #include <vm/uma.h> 57 #include <vm/uma_int.h> 58 #include <vm/uma_dbg.h> 59 60 #if defined(INVARIANTS) && defined(__i386__) 61 #include <machine/cpu.h> 62 #endif 63 64 /* 65 * When realloc() is called, if the new size is sufficiently smaller than 66 * the old size, realloc() will allocate a new, smaller block to avoid 67 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 68 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 69 */ 70 #ifndef REALLOC_FRACTION 71 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 72 #endif 73 74 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 75 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 76 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 77 78 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 79 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 80 81 static void kmeminit(void *); 82 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 83 84 static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); 85 86 static struct malloc_type *kmemstatistics; 87 static char *kmembase; 88 static char *kmemlimit; 89 90 #define KMEM_ZSHIFT 4 91 #define KMEM_ZBASE 16 92 #define KMEM_ZMASK (KMEM_ZBASE - 1) 93 94 #define KMEM_ZMAX 65536 95 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 96 static u_int8_t kmemsize[KMEM_ZSIZE + 1]; 97 98 /* These won't be powers of two for long */ 99 struct { 100 int kz_size; 101 char *kz_name; 102 uma_zone_t kz_zone; 103 } kmemzones[] = { 104 {16, "16", NULL}, 105 {32, "32", NULL}, 106 {64, "64", NULL}, 107 {128, "128", NULL}, 108 {256, "256", NULL}, 109 {512, "512", NULL}, 110 {1024, "1024", NULL}, 111 {2048, "2048", NULL}, 112 {4096, "4096", NULL}, 113 {8192, "8192", NULL}, 114 {16384, "16384", NULL}, 115 {32768, "32768", NULL}, 116 {65536, "65536", NULL}, 117 {0, NULL}, 118 }; 119 120 u_int vm_kmem_size; 121 122 /* 123 * The malloc_mtx protects the kmemstatistics linked list as well as the 124 * mallochash. 125 */ 126 127 struct mtx malloc_mtx; 128 129 #ifdef MALLOC_PROFILE 130 uint64_t krequests[KMEM_ZSIZE + 1]; 131 132 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 133 #endif 134 135 static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS); 136 137 /* 138 * malloc: 139 * 140 * Allocate a block of memory. 141 * 142 * If M_NOWAIT is set, this routine will not block and return NULL if 143 * the allocation fails. 144 */ 145 void * 146 malloc(size, type, flags) 147 unsigned long size; 148 struct malloc_type *type; 149 int flags; 150 { 151 int indx; 152 caddr_t va; 153 uma_zone_t zone; 154 register struct malloc_type *ksp = type; 155 156 #if 0 157 if (size == 0) 158 Debugger("zero size malloc"); 159 #endif 160 #if defined(INVARIANTS) 161 if (flags == M_WAITOK) 162 KASSERT(curthread->td_intr_nesting_level == 0, 163 ("malloc(M_WAITOK) in interrupt context")); 164 #endif 165 if (size <= KMEM_ZMAX) { 166 if (size & KMEM_ZMASK) 167 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 168 indx = kmemsize[size >> KMEM_ZSHIFT]; 169 zone = kmemzones[indx].kz_zone; 170 #ifdef MALLOC_PROFILE 171 krequests[size >> KMEM_ZSHIFT]++; 172 #endif 173 va = uma_zalloc(zone, flags); 174 mtx_lock(&ksp->ks_mtx); 175 if (va == NULL) 176 goto out; 177 178 ksp->ks_size |= 1 << indx; 179 size = zone->uz_size; 180 } else { 181 size = roundup(size, PAGE_SIZE); 182 zone = NULL; 183 va = uma_large_malloc(size, flags); 184 mtx_lock(&ksp->ks_mtx); 185 if (va == NULL) 186 goto out; 187 } 188 ksp->ks_memuse += size; 189 ksp->ks_inuse++; 190 out: 191 ksp->ks_calls++; 192 if (ksp->ks_memuse > ksp->ks_maxused) 193 ksp->ks_maxused = ksp->ks_memuse; 194 195 mtx_unlock(&ksp->ks_mtx); 196 return ((void *) va); 197 } 198 199 /* 200 * free: 201 * 202 * Free a block of memory allocated by malloc. 203 * 204 * This routine may not block. 205 */ 206 void 207 free(addr, type) 208 void *addr; 209 struct malloc_type *type; 210 { 211 uma_slab_t slab; 212 void *mem; 213 u_long size; 214 register struct malloc_type *ksp = type; 215 216 /* free(NULL, ...) does nothing */ 217 if (addr == NULL) 218 return; 219 220 size = 0; 221 222 mem = (void *)((u_long)addr & (~UMA_SLAB_MASK)); 223 mtx_lock(&malloc_mtx); 224 slab = hash_sfind(mallochash, mem); 225 mtx_unlock(&malloc_mtx); 226 227 if (slab == NULL) 228 panic("free: address %p(%p) has not been allocated.\n", 229 addr, mem); 230 231 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 232 #ifdef INVARIANTS 233 struct malloc_type **mtp = addr; 234 #endif 235 size = slab->us_zone->uz_size; 236 #ifdef INVARIANTS 237 /* 238 * Cache a pointer to the malloc_type that most recently freed 239 * this memory here. This way we know who is most likely to 240 * have stepped on it later. 241 * 242 * This code assumes that size is a multiple of 8 bytes for 243 * 64 bit machines 244 */ 245 mtp = (struct malloc_type **) 246 ((unsigned long)mtp & ~UMA_ALIGN_PTR); 247 mtp += (size - sizeof(struct malloc_type *)) / 248 sizeof(struct malloc_type *); 249 *mtp = type; 250 #endif 251 uma_zfree_arg(slab->us_zone, addr, slab); 252 } else { 253 size = slab->us_size; 254 uma_large_free(slab); 255 } 256 mtx_lock(&ksp->ks_mtx); 257 ksp->ks_memuse -= size; 258 ksp->ks_inuse--; 259 mtx_unlock(&ksp->ks_mtx); 260 } 261 262 /* 263 * realloc: change the size of a memory block 264 */ 265 void * 266 realloc(addr, size, type, flags) 267 void *addr; 268 unsigned long size; 269 struct malloc_type *type; 270 int flags; 271 { 272 uma_slab_t slab; 273 unsigned long alloc; 274 void *newaddr; 275 276 /* realloc(NULL, ...) is equivalent to malloc(...) */ 277 if (addr == NULL) 278 return (malloc(size, type, flags)); 279 280 mtx_lock(&malloc_mtx); 281 slab = hash_sfind(mallochash, 282 (void *)((u_long)addr & ~(UMA_SLAB_MASK))); 283 mtx_unlock(&malloc_mtx); 284 285 /* Sanity check */ 286 KASSERT(slab != NULL, 287 ("realloc: address %p out of range", (void *)addr)); 288 289 /* Get the size of the original block */ 290 if (slab->us_zone) 291 alloc = slab->us_zone->uz_size; 292 else 293 alloc = slab->us_size; 294 295 /* Reuse the original block if appropriate */ 296 if (size <= alloc 297 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 298 return (addr); 299 300 /* Allocate a new, bigger (or smaller) block */ 301 if ((newaddr = malloc(size, type, flags)) == NULL) 302 return (NULL); 303 304 /* Copy over original contents */ 305 bcopy(addr, newaddr, min(size, alloc)); 306 free(addr, type); 307 return (newaddr); 308 } 309 310 /* 311 * reallocf: same as realloc() but free memory on failure. 312 */ 313 void * 314 reallocf(addr, size, type, flags) 315 void *addr; 316 unsigned long size; 317 struct malloc_type *type; 318 int flags; 319 { 320 void *mem; 321 322 if ((mem = realloc(addr, size, type, flags)) == NULL) 323 free(addr, type); 324 return (mem); 325 } 326 327 /* 328 * Initialize the kernel memory allocator 329 */ 330 /* ARGSUSED*/ 331 static void 332 kmeminit(dummy) 333 void *dummy; 334 { 335 u_int8_t indx; 336 u_long npg; 337 u_long mem_size; 338 void *hashmem; 339 u_long hashsize; 340 int highbit; 341 int bits; 342 int i; 343 344 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 345 346 /* 347 * Try to auto-tune the kernel memory size, so that it is 348 * more applicable for a wider range of machine sizes. 349 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while 350 * a VM_KMEM_SIZE of 12MB is a fair compromise. The 351 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space 352 * available, and on an X86 with a total KVA space of 256MB, 353 * try to keep VM_KMEM_SIZE_MAX at 80MB or below. 354 * 355 * Note that the kmem_map is also used by the zone allocator, 356 * so make sure that there is enough space. 357 */ 358 vm_kmem_size = VM_KMEM_SIZE; 359 mem_size = cnt.v_page_count * PAGE_SIZE; 360 361 #if defined(VM_KMEM_SIZE_SCALE) 362 if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size) 363 vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE; 364 #endif 365 366 #if defined(VM_KMEM_SIZE_MAX) 367 if (vm_kmem_size >= VM_KMEM_SIZE_MAX) 368 vm_kmem_size = VM_KMEM_SIZE_MAX; 369 #endif 370 371 /* Allow final override from the kernel environment */ 372 TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size); 373 374 /* 375 * Limit kmem virtual size to twice the physical memory. 376 * This allows for kmem map sparseness, but limits the size 377 * to something sane. Be careful to not overflow the 32bit 378 * ints while doing the check. 379 */ 380 if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE)) 381 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE; 382 383 /* 384 * In mbuf_init(), we set up submaps for mbufs and clusters, in which 385 * case we rounddown() (nmbufs * MSIZE) and (nmbclusters * MCLBYTES), 386 * respectively. Mathematically, this means that what we do here may 387 * amount to slightly more address space than we need for the submaps, 388 * but it never hurts to have an extra page in kmem_map. 389 */ 390 npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + nmbcnt * 391 sizeof(u_int) + vm_kmem_size) / PAGE_SIZE; 392 393 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase, 394 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE)); 395 kmem_map->system_map = 1; 396 397 hashsize = npg * sizeof(void *); 398 399 highbit = 0; 400 bits = 0; 401 /* The hash size must be a power of two */ 402 for (i = 0; i < 8 * sizeof(hashsize); i++) 403 if (hashsize & (1 << i)) { 404 highbit = i; 405 bits++; 406 } 407 if (bits > 1) 408 hashsize = 1 << (highbit); 409 410 hashmem = (void *)kmem_alloc(kernel_map, (vm_size_t)hashsize); 411 uma_startup2(hashmem, hashsize / sizeof(void *)); 412 413 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 414 int size = kmemzones[indx].kz_size; 415 char *name = kmemzones[indx].kz_name; 416 417 kmemzones[indx].kz_zone = uma_zcreate(name, size, 418 #ifdef INVARIANTS 419 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 420 #else 421 NULL, NULL, NULL, NULL, 422 #endif 423 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 424 425 for (;i <= size; i+= KMEM_ZBASE) 426 kmemsize[i >> KMEM_ZSHIFT] = indx; 427 428 } 429 } 430 431 void 432 malloc_init(data) 433 void *data; 434 { 435 struct malloc_type *type = (struct malloc_type *)data; 436 437 mtx_lock(&malloc_mtx); 438 if (type->ks_magic != M_MAGIC) 439 panic("malloc type lacks magic"); 440 441 if (cnt.v_page_count == 0) 442 panic("malloc_init not allowed before vm init"); 443 444 if (type->ks_next != NULL) 445 return; 446 447 type->ks_next = kmemstatistics; 448 kmemstatistics = type; 449 mtx_init(&type->ks_mtx, type->ks_shortdesc, "Malloc Stats", MTX_DEF); 450 mtx_unlock(&malloc_mtx); 451 } 452 453 void 454 malloc_uninit(data) 455 void *data; 456 { 457 struct malloc_type *type = (struct malloc_type *)data; 458 struct malloc_type *t; 459 460 mtx_lock(&malloc_mtx); 461 mtx_lock(&type->ks_mtx); 462 if (type->ks_magic != M_MAGIC) 463 panic("malloc type lacks magic"); 464 465 if (cnt.v_page_count == 0) 466 panic("malloc_uninit not allowed before vm init"); 467 468 if (type == kmemstatistics) 469 kmemstatistics = type->ks_next; 470 else { 471 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 472 if (t->ks_next == type) { 473 t->ks_next = type->ks_next; 474 break; 475 } 476 } 477 } 478 type->ks_next = NULL; 479 mtx_destroy(&type->ks_mtx); 480 mtx_unlock(&malloc_mtx); 481 } 482 483 static int 484 sysctl_kern_malloc(SYSCTL_HANDLER_ARGS) 485 { 486 struct malloc_type *type; 487 int linesize = 128; 488 int curline; 489 int bufsize; 490 int first; 491 int error; 492 char *buf; 493 char *p; 494 int cnt; 495 int len; 496 int i; 497 498 cnt = 0; 499 500 mtx_lock(&malloc_mtx); 501 for (type = kmemstatistics; type != NULL; type = type->ks_next) 502 cnt++; 503 504 mtx_unlock(&malloc_mtx); 505 bufsize = linesize * (cnt + 1); 506 p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 507 mtx_lock(&malloc_mtx); 508 509 len = snprintf(p, linesize, 510 "\n Type InUse MemUse HighUse Requests Size(s)\n"); 511 p += len; 512 513 for (type = kmemstatistics; cnt != 0 && type != NULL; 514 type = type->ks_next, cnt--) { 515 if (type->ks_calls == 0) 516 continue; 517 518 curline = linesize - 2; /* Leave room for the \n */ 519 len = snprintf(p, curline, "%13s%6lu%6luK%7luK%9llu", 520 type->ks_shortdesc, 521 type->ks_inuse, 522 (type->ks_memuse + 1023) / 1024, 523 (type->ks_maxused + 1023) / 1024, 524 (long long unsigned)type->ks_calls); 525 curline -= len; 526 p += len; 527 528 first = 1; 529 for (i = 0; i < 8 * sizeof(type->ks_size); i++) 530 if (type->ks_size & (1 << i)) { 531 if (first) 532 len = snprintf(p, curline, " "); 533 else 534 len = snprintf(p, curline, ","); 535 curline -= len; 536 p += len; 537 538 len = snprintf(p, curline, 539 "%s", kmemzones[i].kz_name); 540 curline -= len; 541 p += len; 542 543 first = 0; 544 } 545 546 len = snprintf(p, 2, "\n"); 547 p += len; 548 } 549 550 mtx_unlock(&malloc_mtx); 551 error = SYSCTL_OUT(req, buf, p - buf); 552 553 free(buf, M_TEMP); 554 return (error); 555 } 556 557 SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD, 558 NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats"); 559 560 #ifdef MALLOC_PROFILE 561 562 static int 563 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 564 { 565 int linesize = 64; 566 uint64_t count; 567 uint64_t waste; 568 uint64_t mem; 569 int bufsize; 570 int error; 571 char *buf; 572 int rsize; 573 int size; 574 char *p; 575 int len; 576 int i; 577 578 bufsize = linesize * (KMEM_ZSIZE + 1); 579 bufsize += 128; /* For the stats line */ 580 bufsize += 128; /* For the banner line */ 581 waste = 0; 582 mem = 0; 583 584 p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 585 len = snprintf(p, bufsize, 586 "\n Size Requests Real Size\n"); 587 bufsize -= len; 588 p += len; 589 590 for (i = 0; i < KMEM_ZSIZE; i++) { 591 size = i << KMEM_ZSHIFT; 592 rsize = kmemzones[kmemsize[i]].kz_size; 593 count = (long long unsigned)krequests[i]; 594 595 len = snprintf(p, bufsize, "%6d%28llu%11d\n", 596 size, (unsigned long long)count, rsize); 597 bufsize -= len; 598 p += len; 599 600 if ((rsize * count) > (size * count)) 601 waste += (rsize * count) - (size * count); 602 mem += (rsize * count); 603 } 604 605 len = snprintf(p, bufsize, 606 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 607 (unsigned long long)mem, (unsigned long long)waste); 608 p += len; 609 610 error = SYSCTL_OUT(req, buf, p - buf); 611 612 free(buf, M_TEMP); 613 return (error); 614 } 615 616 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 617 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 618 #endif /* MALLOC_PROFILE */ 619