1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1987, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005-2009 Robert N. M. Watson 7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray) 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 35 */ 36 37 /* 38 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 39 * based on memory types. Back end is implemented using the UMA(9) zone 40 * allocator. A set of fixed-size buckets are used for smaller allocations, 41 * and a special UMA allocation interface is used for larger allocations. 42 * Callers declare memory types, and statistics are maintained independently 43 * for each memory type. Statistics are maintained per-CPU for performance 44 * reasons. See malloc(9) and comments in malloc.h for a detailed 45 * description. 46 */ 47 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include "opt_ddb.h" 52 #include "opt_vm.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/kdb.h> 57 #include <sys/kernel.h> 58 #include <sys/lock.h> 59 #include <sys/malloc.h> 60 #include <sys/mutex.h> 61 #include <sys/vmmeter.h> 62 #include <sys/proc.h> 63 #include <sys/sbuf.h> 64 #include <sys/smp.h> 65 #include <sys/sysctl.h> 66 #include <sys/time.h> 67 #include <sys/vmem.h> 68 #ifdef EPOCH_TRACE 69 #include <sys/epoch.h> 70 #endif 71 72 #include <vm/vm.h> 73 #include <vm/pmap.h> 74 #include <vm/vm_domainset.h> 75 #include <vm/vm_pageout.h> 76 #include <vm/vm_param.h> 77 #include <vm/vm_kern.h> 78 #include <vm/vm_extern.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_page.h> 81 #include <vm/uma.h> 82 #include <vm/uma_int.h> 83 #include <vm/uma_dbg.h> 84 85 #ifdef DEBUG_MEMGUARD 86 #include <vm/memguard.h> 87 #endif 88 #ifdef DEBUG_REDZONE 89 #include <vm/redzone.h> 90 #endif 91 92 #if defined(INVARIANTS) && defined(__i386__) 93 #include <machine/cpu.h> 94 #endif 95 96 #include <ddb/ddb.h> 97 98 #ifdef KDTRACE_HOOKS 99 #include <sys/dtrace_bsd.h> 100 101 bool __read_frequently dtrace_malloc_enabled; 102 dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; 103 #endif 104 105 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ 106 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) 107 #define MALLOC_DEBUG 1 108 #endif 109 110 /* 111 * When realloc() is called, if the new size is sufficiently smaller than 112 * the old size, realloc() will allocate a new, smaller block to avoid 113 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 114 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 115 */ 116 #ifndef REALLOC_FRACTION 117 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 118 #endif 119 120 /* 121 * Centrally define some common malloc types. 122 */ 123 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 124 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 125 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 126 127 static struct malloc_type *kmemstatistics; 128 static int kmemcount; 129 130 #define KMEM_ZSHIFT 4 131 #define KMEM_ZBASE 16 132 #define KMEM_ZMASK (KMEM_ZBASE - 1) 133 134 #define KMEM_ZMAX 65536 135 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 136 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 137 138 #ifndef MALLOC_DEBUG_MAXZONES 139 #define MALLOC_DEBUG_MAXZONES 1 140 #endif 141 static int numzones = MALLOC_DEBUG_MAXZONES; 142 143 /* 144 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 145 * of various sizes. 146 * 147 * XXX: The comment here used to read "These won't be powers of two for 148 * long." It's possible that a significant amount of wasted memory could be 149 * recovered by tuning the sizes of these buckets. 150 */ 151 struct { 152 int kz_size; 153 char *kz_name; 154 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 155 } kmemzones[] = { 156 {16, "16", }, 157 {32, "32", }, 158 {64, "64", }, 159 {128, "128", }, 160 {256, "256", }, 161 {512, "512", }, 162 {1024, "1024", }, 163 {2048, "2048", }, 164 {4096, "4096", }, 165 {8192, "8192", }, 166 {16384, "16384", }, 167 {32768, "32768", }, 168 {65536, "65536", }, 169 {0, NULL}, 170 }; 171 172 /* 173 * Zone to allocate malloc type descriptions from. For ABI reasons, memory 174 * types are described by a data structure passed by the declaring code, but 175 * the malloc(9) implementation has its own data structure describing the 176 * type and statistics. This permits the malloc(9)-internal data structures 177 * to be modified without breaking binary-compiled kernel modules that 178 * declare malloc types. 179 */ 180 static uma_zone_t mt_zone; 181 static uma_zone_t mt_stats_zone; 182 183 u_long vm_kmem_size; 184 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 185 "Size of kernel memory"); 186 187 static u_long kmem_zmax = KMEM_ZMAX; 188 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, 189 "Maximum allocation size that malloc(9) would use UMA as backend"); 190 191 static u_long vm_kmem_size_min; 192 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 193 "Minimum size of kernel memory"); 194 195 static u_long vm_kmem_size_max; 196 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 197 "Maximum size of kernel memory"); 198 199 static u_int vm_kmem_size_scale; 200 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 201 "Scale factor for kernel memory size"); 202 203 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 204 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 205 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 206 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 207 208 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 209 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 210 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 211 sysctl_kmem_map_free, "LU", "Free space in kmem"); 212 213 /* 214 * The malloc_mtx protects the kmemstatistics linked list. 215 */ 216 struct mtx malloc_mtx; 217 218 #ifdef MALLOC_PROFILE 219 uint64_t krequests[KMEM_ZSIZE + 1]; 220 221 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 222 #endif 223 224 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 225 226 /* 227 * time_uptime of the last malloc(9) failure (induced or real). 228 */ 229 static time_t t_malloc_fail; 230 231 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 232 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0, 233 "Kernel malloc debugging options"); 234 #endif 235 236 /* 237 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 238 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 239 */ 240 #ifdef MALLOC_MAKE_FAILURES 241 static int malloc_failure_rate; 242 static int malloc_nowait_count; 243 static int malloc_failure_count; 244 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, 245 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 246 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 247 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 248 #endif 249 250 static int 251 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 252 { 253 u_long size; 254 255 size = uma_size(); 256 return (sysctl_handle_long(oidp, &size, 0, req)); 257 } 258 259 static int 260 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 261 { 262 u_long size, limit; 263 264 /* The sysctl is unsigned, implement as a saturation value. */ 265 size = uma_size(); 266 limit = uma_limit(); 267 if (size > limit) 268 size = 0; 269 else 270 size = limit - size; 271 return (sysctl_handle_long(oidp, &size, 0, req)); 272 } 273 274 /* 275 * malloc(9) uma zone separation -- sub-page buffer overruns in one 276 * malloc type will affect only a subset of other malloc types. 277 */ 278 #if MALLOC_DEBUG_MAXZONES > 1 279 static void 280 tunable_set_numzones(void) 281 { 282 283 TUNABLE_INT_FETCH("debug.malloc.numzones", 284 &numzones); 285 286 /* Sanity check the number of malloc uma zones. */ 287 if (numzones <= 0) 288 numzones = 1; 289 if (numzones > MALLOC_DEBUG_MAXZONES) 290 numzones = MALLOC_DEBUG_MAXZONES; 291 } 292 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 293 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 294 &numzones, 0, "Number of malloc uma subzones"); 295 296 /* 297 * Any number that changes regularly is an okay choice for the 298 * offset. Build numbers are pretty good of you have them. 299 */ 300 static u_int zone_offset = __FreeBSD_version; 301 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 302 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 303 &zone_offset, 0, "Separate malloc types by examining the " 304 "Nth character in the malloc type short description."); 305 306 static void 307 mtp_set_subzone(struct malloc_type *mtp) 308 { 309 struct malloc_type_internal *mtip; 310 const char *desc; 311 size_t len; 312 u_int val; 313 314 mtip = mtp->ks_handle; 315 desc = mtp->ks_shortdesc; 316 if (desc == NULL || (len = strlen(desc)) == 0) 317 val = 0; 318 else 319 val = desc[zone_offset % len]; 320 mtip->mti_zone = (val % numzones); 321 } 322 323 static inline u_int 324 mtp_get_subzone(struct malloc_type *mtp) 325 { 326 struct malloc_type_internal *mtip; 327 328 mtip = mtp->ks_handle; 329 330 KASSERT(mtip->mti_zone < numzones, 331 ("mti_zone %u out of range %d", 332 mtip->mti_zone, numzones)); 333 return (mtip->mti_zone); 334 } 335 #elif MALLOC_DEBUG_MAXZONES == 0 336 #error "MALLOC_DEBUG_MAXZONES must be positive." 337 #else 338 static void 339 mtp_set_subzone(struct malloc_type *mtp) 340 { 341 struct malloc_type_internal *mtip; 342 343 mtip = mtp->ks_handle; 344 mtip->mti_zone = 0; 345 } 346 347 static inline u_int 348 mtp_get_subzone(struct malloc_type *mtp) 349 { 350 351 return (0); 352 } 353 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 354 355 int 356 malloc_last_fail(void) 357 { 358 359 return (time_uptime - t_malloc_fail); 360 } 361 362 /* 363 * An allocation has succeeded -- update malloc type statistics for the 364 * amount of bucket size. Occurs within a critical section so that the 365 * thread isn't preempted and doesn't migrate while updating per-PCU 366 * statistics. 367 */ 368 static void 369 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 370 int zindx) 371 { 372 struct malloc_type_internal *mtip; 373 struct malloc_type_stats *mtsp; 374 375 critical_enter(); 376 mtip = mtp->ks_handle; 377 mtsp = zpcpu_get(mtip->mti_stats); 378 if (size > 0) { 379 mtsp->mts_memalloced += size; 380 mtsp->mts_numallocs++; 381 } 382 if (zindx != -1) 383 mtsp->mts_size |= 1 << zindx; 384 385 #ifdef KDTRACE_HOOKS 386 if (__predict_false(dtrace_malloc_enabled)) { 387 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 388 if (probe_id != 0) 389 (dtrace_malloc_probe)(probe_id, 390 (uintptr_t) mtp, (uintptr_t) mtip, 391 (uintptr_t) mtsp, size, zindx); 392 } 393 #endif 394 395 critical_exit(); 396 } 397 398 void 399 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 400 { 401 402 if (size > 0) 403 malloc_type_zone_allocated(mtp, size, -1); 404 } 405 406 /* 407 * A free operation has occurred -- update malloc type statistics for the 408 * amount of the bucket size. Occurs within a critical section so that the 409 * thread isn't preempted and doesn't migrate while updating per-CPU 410 * statistics. 411 */ 412 void 413 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 414 { 415 struct malloc_type_internal *mtip; 416 struct malloc_type_stats *mtsp; 417 418 critical_enter(); 419 mtip = mtp->ks_handle; 420 mtsp = zpcpu_get(mtip->mti_stats); 421 mtsp->mts_memfreed += size; 422 mtsp->mts_numfrees++; 423 424 #ifdef KDTRACE_HOOKS 425 if (__predict_false(dtrace_malloc_enabled)) { 426 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 427 if (probe_id != 0) 428 (dtrace_malloc_probe)(probe_id, 429 (uintptr_t) mtp, (uintptr_t) mtip, 430 (uintptr_t) mtsp, size, 0); 431 } 432 #endif 433 434 critical_exit(); 435 } 436 437 /* 438 * contigmalloc: 439 * 440 * Allocate a block of physically contiguous memory. 441 * 442 * If M_NOWAIT is set, this routine will not block and return NULL if 443 * the allocation fails. 444 */ 445 void * 446 contigmalloc(unsigned long size, struct malloc_type *type, int flags, 447 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 448 vm_paddr_t boundary) 449 { 450 void *ret; 451 452 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, 453 boundary, VM_MEMATTR_DEFAULT); 454 if (ret != NULL) 455 malloc_type_allocated(type, round_page(size)); 456 return (ret); 457 } 458 459 void * 460 contigmalloc_domainset(unsigned long size, struct malloc_type *type, 461 struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, 462 unsigned long alignment, vm_paddr_t boundary) 463 { 464 void *ret; 465 466 ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high, 467 alignment, boundary, VM_MEMATTR_DEFAULT); 468 if (ret != NULL) 469 malloc_type_allocated(type, round_page(size)); 470 return (ret); 471 } 472 473 /* 474 * contigfree: 475 * 476 * Free a block of memory allocated by contigmalloc. 477 * 478 * This routine may not block. 479 */ 480 void 481 contigfree(void *addr, unsigned long size, struct malloc_type *type) 482 { 483 484 kmem_free((vm_offset_t)addr, size); 485 malloc_type_freed(type, round_page(size)); 486 } 487 488 #ifdef MALLOC_DEBUG 489 static int 490 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, 491 int flags) 492 { 493 #ifdef INVARIANTS 494 int indx; 495 496 KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic")); 497 /* 498 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 499 */ 500 indx = flags & (M_WAITOK | M_NOWAIT); 501 if (indx != M_NOWAIT && indx != M_WAITOK) { 502 static struct timeval lasterr; 503 static int curerr, once; 504 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 505 printf("Bad malloc flags: %x\n", indx); 506 kdb_backtrace(); 507 flags |= M_WAITOK; 508 once++; 509 } 510 } 511 #endif 512 #ifdef MALLOC_MAKE_FAILURES 513 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 514 atomic_add_int(&malloc_nowait_count, 1); 515 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 516 atomic_add_int(&malloc_failure_count, 1); 517 t_malloc_fail = time_uptime; 518 *vap = NULL; 519 return (EJUSTRETURN); 520 } 521 } 522 #endif 523 if (flags & M_WAITOK) { 524 KASSERT(curthread->td_intr_nesting_level == 0, 525 ("malloc(M_WAITOK) in interrupt context")); 526 #ifdef EPOCH_TRACE 527 if (__predict_false(curthread->td_epochnest > 0)) 528 epoch_trace_list(curthread); 529 #endif 530 KASSERT(curthread->td_epochnest == 0, 531 ("malloc(M_WAITOK) in epoch context")); 532 } 533 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 534 ("malloc: called with spinlock or critical section held")); 535 536 #ifdef DEBUG_MEMGUARD 537 if (memguard_cmp_mtp(mtp, *sizep)) { 538 *vap = memguard_alloc(*sizep, flags); 539 if (*vap != NULL) 540 return (EJUSTRETURN); 541 /* This is unfortunate but should not be fatal. */ 542 } 543 #endif 544 545 #ifdef DEBUG_REDZONE 546 *sizep = redzone_size_ntor(*sizep); 547 #endif 548 549 return (0); 550 } 551 #endif 552 553 /* 554 * malloc: 555 * 556 * Allocate a block of memory. 557 * 558 * If M_NOWAIT is set, this routine will not block and return NULL if 559 * the allocation fails. 560 */ 561 void * 562 (malloc)(size_t size, struct malloc_type *mtp, int flags) 563 { 564 int indx; 565 caddr_t va; 566 uma_zone_t zone; 567 #if defined(DEBUG_REDZONE) 568 unsigned long osize = size; 569 #endif 570 571 #ifdef MALLOC_DEBUG 572 va = NULL; 573 if (malloc_dbg(&va, &size, mtp, flags) != 0) 574 return (va); 575 #endif 576 577 if (size <= kmem_zmax && (flags & M_EXEC) == 0) { 578 if (size & KMEM_ZMASK) 579 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 580 indx = kmemsize[size >> KMEM_ZSHIFT]; 581 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 582 #ifdef MALLOC_PROFILE 583 krequests[size >> KMEM_ZSHIFT]++; 584 #endif 585 va = uma_zalloc(zone, flags); 586 if (va != NULL) 587 size = zone->uz_size; 588 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 589 } else { 590 size = roundup(size, PAGE_SIZE); 591 zone = NULL; 592 va = uma_large_malloc(size, flags); 593 malloc_type_allocated(mtp, va == NULL ? 0 : size); 594 } 595 if (flags & M_WAITOK) 596 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 597 else if (va == NULL) 598 t_malloc_fail = time_uptime; 599 #ifdef DEBUG_REDZONE 600 if (va != NULL) 601 va = redzone_setup(va, osize); 602 #endif 603 return ((void *) va); 604 } 605 606 static void * 607 malloc_domain(size_t size, struct malloc_type *mtp, int domain, int flags) 608 { 609 int indx; 610 caddr_t va; 611 uma_zone_t zone; 612 #if defined(DEBUG_REDZONE) 613 unsigned long osize = size; 614 #endif 615 616 #ifdef MALLOC_DEBUG 617 va = NULL; 618 if (malloc_dbg(&va, &size, mtp, flags) != 0) 619 return (va); 620 #endif 621 if (size <= kmem_zmax && (flags & M_EXEC) == 0) { 622 if (size & KMEM_ZMASK) 623 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 624 indx = kmemsize[size >> KMEM_ZSHIFT]; 625 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 626 #ifdef MALLOC_PROFILE 627 krequests[size >> KMEM_ZSHIFT]++; 628 #endif 629 va = uma_zalloc_domain(zone, NULL, domain, flags); 630 if (va != NULL) 631 size = zone->uz_size; 632 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 633 } else { 634 size = roundup(size, PAGE_SIZE); 635 zone = NULL; 636 va = uma_large_malloc_domain(size, domain, flags); 637 malloc_type_allocated(mtp, va == NULL ? 0 : size); 638 } 639 if (flags & M_WAITOK) 640 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 641 else if (va == NULL) 642 t_malloc_fail = time_uptime; 643 #ifdef DEBUG_REDZONE 644 if (va != NULL) 645 va = redzone_setup(va, osize); 646 #endif 647 return ((void *) va); 648 } 649 650 void * 651 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, 652 int flags) 653 { 654 struct vm_domainset_iter di; 655 void *ret; 656 int domain; 657 658 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 659 do { 660 ret = malloc_domain(size, mtp, domain, flags); 661 if (ret != NULL) 662 break; 663 } while (vm_domainset_iter_policy(&di, &domain) == 0); 664 665 return (ret); 666 } 667 668 void * 669 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) 670 { 671 672 if (WOULD_OVERFLOW(nmemb, size)) 673 panic("mallocarray: %zu * %zu overflowed", nmemb, size); 674 675 return (malloc(size * nmemb, type, flags)); 676 } 677 678 #ifdef INVARIANTS 679 static void 680 free_save_type(void *addr, struct malloc_type *mtp, u_long size) 681 { 682 struct malloc_type **mtpp = addr; 683 684 /* 685 * Cache a pointer to the malloc_type that most recently freed 686 * this memory here. This way we know who is most likely to 687 * have stepped on it later. 688 * 689 * This code assumes that size is a multiple of 8 bytes for 690 * 64 bit machines 691 */ 692 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 693 mtpp += (size - sizeof(struct malloc_type *)) / 694 sizeof(struct malloc_type *); 695 *mtpp = mtp; 696 } 697 #endif 698 699 #ifdef MALLOC_DEBUG 700 static int 701 free_dbg(void **addrp, struct malloc_type *mtp) 702 { 703 void *addr; 704 705 addr = *addrp; 706 KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic")); 707 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 708 ("free: called with spinlock or critical section held")); 709 710 /* free(NULL, ...) does nothing */ 711 if (addr == NULL) 712 return (EJUSTRETURN); 713 714 #ifdef DEBUG_MEMGUARD 715 if (is_memguard_addr(addr)) { 716 memguard_free(addr); 717 return (EJUSTRETURN); 718 } 719 #endif 720 721 #ifdef DEBUG_REDZONE 722 redzone_check(addr); 723 *addrp = redzone_addr_ntor(addr); 724 #endif 725 726 return (0); 727 } 728 #endif 729 730 /* 731 * free: 732 * 733 * Free a block of memory allocated by malloc. 734 * 735 * This routine may not block. 736 */ 737 void 738 free(void *addr, struct malloc_type *mtp) 739 { 740 uma_slab_t slab; 741 u_long size; 742 743 #ifdef MALLOC_DEBUG 744 if (free_dbg(&addr, mtp) != 0) 745 return; 746 #endif 747 /* free(NULL, ...) does nothing */ 748 if (addr == NULL) 749 return; 750 751 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 752 if (slab == NULL) 753 panic("free: address %p(%p) has not been allocated.\n", 754 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 755 756 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 757 size = slab->us_keg->uk_size; 758 #ifdef INVARIANTS 759 free_save_type(addr, mtp, size); 760 #endif 761 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab); 762 } else { 763 size = slab->us_size; 764 uma_large_free(slab); 765 } 766 malloc_type_freed(mtp, size); 767 } 768 769 void 770 free_domain(void *addr, struct malloc_type *mtp) 771 { 772 uma_slab_t slab; 773 u_long size; 774 775 #ifdef MALLOC_DEBUG 776 if (free_dbg(&addr, mtp) != 0) 777 return; 778 #endif 779 780 /* free(NULL, ...) does nothing */ 781 if (addr == NULL) 782 return; 783 784 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 785 if (slab == NULL) 786 panic("free_domain: address %p(%p) has not been allocated.\n", 787 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 788 789 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 790 size = slab->us_keg->uk_size; 791 #ifdef INVARIANTS 792 free_save_type(addr, mtp, size); 793 #endif 794 uma_zfree_domain(LIST_FIRST(&slab->us_keg->uk_zones), 795 addr, slab); 796 } else { 797 size = slab->us_size; 798 uma_large_free(slab); 799 } 800 malloc_type_freed(mtp, size); 801 } 802 803 /* 804 * realloc: change the size of a memory block 805 */ 806 void * 807 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) 808 { 809 uma_slab_t slab; 810 unsigned long alloc; 811 void *newaddr; 812 813 KASSERT(mtp->ks_magic == M_MAGIC, 814 ("realloc: bad malloc type magic")); 815 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 816 ("realloc: called with spinlock or critical section held")); 817 818 /* realloc(NULL, ...) is equivalent to malloc(...) */ 819 if (addr == NULL) 820 return (malloc(size, mtp, flags)); 821 822 /* 823 * XXX: Should report free of old memory and alloc of new memory to 824 * per-CPU stats. 825 */ 826 827 #ifdef DEBUG_MEMGUARD 828 if (is_memguard_addr(addr)) 829 return (memguard_realloc(addr, size, mtp, flags)); 830 #endif 831 832 #ifdef DEBUG_REDZONE 833 slab = NULL; 834 alloc = redzone_get_size(addr); 835 #else 836 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); 837 838 /* Sanity check */ 839 KASSERT(slab != NULL, 840 ("realloc: address %p out of range", (void *)addr)); 841 842 /* Get the size of the original block */ 843 if (!(slab->us_flags & UMA_SLAB_MALLOC)) 844 alloc = slab->us_keg->uk_size; 845 else 846 alloc = slab->us_size; 847 848 /* Reuse the original block if appropriate */ 849 if (size <= alloc 850 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 851 return (addr); 852 #endif /* !DEBUG_REDZONE */ 853 854 /* Allocate a new, bigger (or smaller) block */ 855 if ((newaddr = malloc(size, mtp, flags)) == NULL) 856 return (NULL); 857 858 /* Copy over original contents */ 859 bcopy(addr, newaddr, min(size, alloc)); 860 free(addr, mtp); 861 return (newaddr); 862 } 863 864 /* 865 * reallocf: same as realloc() but free memory on failure. 866 */ 867 void * 868 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) 869 { 870 void *mem; 871 872 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 873 free(addr, mtp); 874 return (mem); 875 } 876 877 #ifndef __sparc64__ 878 CTASSERT(VM_KMEM_SIZE_SCALE >= 1); 879 #endif 880 881 /* 882 * Initialize the kernel memory (kmem) arena. 883 */ 884 void 885 kmeminit(void) 886 { 887 u_long mem_size; 888 u_long tmp; 889 890 #ifdef VM_KMEM_SIZE 891 if (vm_kmem_size == 0) 892 vm_kmem_size = VM_KMEM_SIZE; 893 #endif 894 #ifdef VM_KMEM_SIZE_MIN 895 if (vm_kmem_size_min == 0) 896 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 897 #endif 898 #ifdef VM_KMEM_SIZE_MAX 899 if (vm_kmem_size_max == 0) 900 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 901 #endif 902 /* 903 * Calculate the amount of kernel virtual address (KVA) space that is 904 * preallocated to the kmem arena. In order to support a wide range 905 * of machines, it is a function of the physical memory size, 906 * specifically, 907 * 908 * min(max(physical memory size / VM_KMEM_SIZE_SCALE, 909 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) 910 * 911 * Every architecture must define an integral value for 912 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN 913 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and 914 * ceiling on this preallocation, are optional. Typically, 915 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on 916 * a given architecture. 917 */ 918 mem_size = vm_cnt.v_page_count; 919 if (mem_size <= 32768) /* delphij XXX 128MB */ 920 kmem_zmax = PAGE_SIZE; 921 922 if (vm_kmem_size_scale < 1) 923 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 924 925 /* 926 * Check if we should use defaults for the "vm_kmem_size" 927 * variable: 928 */ 929 if (vm_kmem_size == 0) { 930 vm_kmem_size = mem_size / vm_kmem_size_scale; 931 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ? 932 vm_kmem_size_max : vm_kmem_size * PAGE_SIZE; 933 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) 934 vm_kmem_size = vm_kmem_size_min; 935 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 936 vm_kmem_size = vm_kmem_size_max; 937 } 938 if (vm_kmem_size == 0) 939 panic("Tune VM_KMEM_SIZE_* for the platform"); 940 941 /* 942 * The amount of KVA space that is preallocated to the 943 * kmem arena can be set statically at compile-time or manually 944 * through the kernel environment. However, it is still limited to 945 * twice the physical memory size, which has been sufficient to handle 946 * the most severe cases of external fragmentation in the kmem arena. 947 */ 948 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 949 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 950 951 vm_kmem_size = round_page(vm_kmem_size); 952 #ifdef DEBUG_MEMGUARD 953 tmp = memguard_fudge(vm_kmem_size, kernel_map); 954 #else 955 tmp = vm_kmem_size; 956 #endif 957 uma_set_limit(tmp); 958 959 #ifdef DEBUG_MEMGUARD 960 /* 961 * Initialize MemGuard if support compiled in. MemGuard is a 962 * replacement allocator used for detecting tamper-after-free 963 * scenarios as they occur. It is only used for debugging. 964 */ 965 memguard_init(kernel_arena); 966 #endif 967 } 968 969 /* 970 * Initialize the kernel memory allocator 971 */ 972 /* ARGSUSED*/ 973 static void 974 mallocinit(void *dummy) 975 { 976 int i; 977 uint8_t indx; 978 979 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 980 981 kmeminit(); 982 983 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) 984 kmem_zmax = KMEM_ZMAX; 985 986 mt_stats_zone = uma_zcreate("mt_stats_zone", 987 sizeof(struct malloc_type_stats), NULL, NULL, NULL, NULL, 988 UMA_ALIGN_PTR, UMA_ZONE_PCPU); 989 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal), 990 #ifdef INVARIANTS 991 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 992 #else 993 NULL, NULL, NULL, NULL, 994 #endif 995 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 996 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 997 int size = kmemzones[indx].kz_size; 998 char *name = kmemzones[indx].kz_name; 999 int subzone; 1000 1001 for (subzone = 0; subzone < numzones; subzone++) { 1002 kmemzones[indx].kz_zone[subzone] = 1003 uma_zcreate(name, size, 1004 #ifdef INVARIANTS 1005 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 1006 #else 1007 NULL, NULL, NULL, NULL, 1008 #endif 1009 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 1010 } 1011 for (;i <= size; i+= KMEM_ZBASE) 1012 kmemsize[i >> KMEM_ZSHIFT] = indx; 1013 1014 } 1015 } 1016 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); 1017 1018 void 1019 malloc_init(void *data) 1020 { 1021 struct malloc_type_internal *mtip; 1022 struct malloc_type *mtp; 1023 1024 KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init")); 1025 1026 mtp = data; 1027 if (mtp->ks_magic != M_MAGIC) 1028 panic("malloc_init: bad malloc type magic"); 1029 1030 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO); 1031 mtip->mti_stats = uma_zalloc_pcpu(mt_stats_zone, M_WAITOK | M_ZERO); 1032 mtp->ks_handle = mtip; 1033 mtp_set_subzone(mtp); 1034 1035 mtx_lock(&malloc_mtx); 1036 mtp->ks_next = kmemstatistics; 1037 kmemstatistics = mtp; 1038 kmemcount++; 1039 mtx_unlock(&malloc_mtx); 1040 } 1041 1042 void 1043 malloc_uninit(void *data) 1044 { 1045 struct malloc_type_internal *mtip; 1046 struct malloc_type_stats *mtsp; 1047 struct malloc_type *mtp, *temp; 1048 uma_slab_t slab; 1049 long temp_allocs, temp_bytes; 1050 int i; 1051 1052 mtp = data; 1053 KASSERT(mtp->ks_magic == M_MAGIC, 1054 ("malloc_uninit: bad malloc type magic")); 1055 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL")); 1056 1057 mtx_lock(&malloc_mtx); 1058 mtip = mtp->ks_handle; 1059 mtp->ks_handle = NULL; 1060 if (mtp != kmemstatistics) { 1061 for (temp = kmemstatistics; temp != NULL; 1062 temp = temp->ks_next) { 1063 if (temp->ks_next == mtp) { 1064 temp->ks_next = mtp->ks_next; 1065 break; 1066 } 1067 } 1068 KASSERT(temp, 1069 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 1070 } else 1071 kmemstatistics = mtp->ks_next; 1072 kmemcount--; 1073 mtx_unlock(&malloc_mtx); 1074 1075 /* 1076 * Look for memory leaks. 1077 */ 1078 temp_allocs = temp_bytes = 0; 1079 for (i = 0; i <= mp_maxid; i++) { 1080 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1081 temp_allocs += mtsp->mts_numallocs; 1082 temp_allocs -= mtsp->mts_numfrees; 1083 temp_bytes += mtsp->mts_memalloced; 1084 temp_bytes -= mtsp->mts_memfreed; 1085 } 1086 if (temp_allocs > 0 || temp_bytes > 0) { 1087 printf("Warning: memory type %s leaked memory on destroy " 1088 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 1089 temp_allocs, temp_bytes); 1090 } 1091 1092 slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK)); 1093 uma_zfree_pcpu(mt_stats_zone, mtip->mti_stats); 1094 uma_zfree_arg(mt_zone, mtip, slab); 1095 } 1096 1097 struct malloc_type * 1098 malloc_desc2type(const char *desc) 1099 { 1100 struct malloc_type *mtp; 1101 1102 mtx_assert(&malloc_mtx, MA_OWNED); 1103 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1104 if (strcmp(mtp->ks_shortdesc, desc) == 0) 1105 return (mtp); 1106 } 1107 return (NULL); 1108 } 1109 1110 static int 1111 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 1112 { 1113 struct malloc_type_stream_header mtsh; 1114 struct malloc_type_internal *mtip; 1115 struct malloc_type_stats *mtsp, zeromts; 1116 struct malloc_type_header mth; 1117 struct malloc_type *mtp; 1118 int error, i; 1119 struct sbuf sbuf; 1120 1121 error = sysctl_wire_old_buffer(req, 0); 1122 if (error != 0) 1123 return (error); 1124 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1125 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 1126 mtx_lock(&malloc_mtx); 1127 1128 bzero(&zeromts, sizeof(zeromts)); 1129 1130 /* 1131 * Insert stream header. 1132 */ 1133 bzero(&mtsh, sizeof(mtsh)); 1134 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 1135 mtsh.mtsh_maxcpus = MAXCPU; 1136 mtsh.mtsh_count = kmemcount; 1137 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 1138 1139 /* 1140 * Insert alternating sequence of type headers and type statistics. 1141 */ 1142 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1143 mtip = (struct malloc_type_internal *)mtp->ks_handle; 1144 1145 /* 1146 * Insert type header. 1147 */ 1148 bzero(&mth, sizeof(mth)); 1149 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 1150 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 1151 1152 /* 1153 * Insert type statistics for each CPU. 1154 */ 1155 for (i = 0; i <= mp_maxid; i++) { 1156 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1157 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); 1158 } 1159 /* 1160 * Fill in the missing CPUs. 1161 */ 1162 for (; i < MAXCPU; i++) { 1163 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); 1164 } 1165 1166 } 1167 mtx_unlock(&malloc_mtx); 1168 error = sbuf_finish(&sbuf); 1169 sbuf_delete(&sbuf); 1170 return (error); 1171 } 1172 1173 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 1174 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats", 1175 "Return malloc types"); 1176 1177 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 1178 "Count of kernel malloc types"); 1179 1180 void 1181 malloc_type_list(malloc_type_list_func_t *func, void *arg) 1182 { 1183 struct malloc_type *mtp, **bufmtp; 1184 int count, i; 1185 size_t buflen; 1186 1187 mtx_lock(&malloc_mtx); 1188 restart: 1189 mtx_assert(&malloc_mtx, MA_OWNED); 1190 count = kmemcount; 1191 mtx_unlock(&malloc_mtx); 1192 1193 buflen = sizeof(struct malloc_type *) * count; 1194 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 1195 1196 mtx_lock(&malloc_mtx); 1197 1198 if (count < kmemcount) { 1199 free(bufmtp, M_TEMP); 1200 goto restart; 1201 } 1202 1203 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 1204 bufmtp[i] = mtp; 1205 1206 mtx_unlock(&malloc_mtx); 1207 1208 for (i = 0; i < count; i++) 1209 (func)(bufmtp[i], arg); 1210 1211 free(bufmtp, M_TEMP); 1212 } 1213 1214 #ifdef DDB 1215 static int64_t 1216 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs, 1217 uint64_t *inuse) 1218 { 1219 const struct malloc_type_stats *mtsp; 1220 uint64_t frees, alloced, freed; 1221 int i; 1222 1223 *allocs = 0; 1224 frees = 0; 1225 alloced = 0; 1226 freed = 0; 1227 for (i = 0; i <= mp_maxid; i++) { 1228 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1229 1230 *allocs += mtsp->mts_numallocs; 1231 frees += mtsp->mts_numfrees; 1232 alloced += mtsp->mts_memalloced; 1233 freed += mtsp->mts_memfreed; 1234 } 1235 *inuse = *allocs - frees; 1236 return (alloced - freed); 1237 } 1238 1239 DB_SHOW_COMMAND(malloc, db_show_malloc) 1240 { 1241 const char *fmt_hdr, *fmt_entry; 1242 struct malloc_type *mtp; 1243 uint64_t allocs, inuse; 1244 int64_t size; 1245 /* variables for sorting */ 1246 struct malloc_type *last_mtype, *cur_mtype; 1247 int64_t cur_size, last_size; 1248 int ties; 1249 1250 if (modif[0] == 'i') { 1251 fmt_hdr = "%s,%s,%s,%s\n"; 1252 fmt_entry = "\"%s\",%ju,%jdK,%ju\n"; 1253 } else { 1254 fmt_hdr = "%18s %12s %12s %12s\n"; 1255 fmt_entry = "%18s %12ju %12jdK %12ju\n"; 1256 } 1257 1258 db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests"); 1259 1260 /* Select sort, largest size first. */ 1261 last_mtype = NULL; 1262 last_size = INT64_MAX; 1263 for (;;) { 1264 cur_mtype = NULL; 1265 cur_size = -1; 1266 ties = 0; 1267 1268 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1269 /* 1270 * In the case of size ties, print out mtypes 1271 * in the order they are encountered. That is, 1272 * when we encounter the most recently output 1273 * mtype, we have already printed all preceding 1274 * ties, and we must print all following ties. 1275 */ 1276 if (mtp == last_mtype) { 1277 ties = 1; 1278 continue; 1279 } 1280 size = get_malloc_stats(mtp->ks_handle, &allocs, 1281 &inuse); 1282 if (size > cur_size && size < last_size + ties) { 1283 cur_size = size; 1284 cur_mtype = mtp; 1285 } 1286 } 1287 if (cur_mtype == NULL) 1288 break; 1289 1290 size = get_malloc_stats(cur_mtype->ks_handle, &allocs, &inuse); 1291 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse, 1292 howmany(size, 1024), allocs); 1293 1294 if (db_pager_quit) 1295 break; 1296 1297 last_mtype = cur_mtype; 1298 last_size = cur_size; 1299 } 1300 } 1301 1302 #if MALLOC_DEBUG_MAXZONES > 1 1303 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1304 { 1305 struct malloc_type_internal *mtip; 1306 struct malloc_type *mtp; 1307 u_int subzone; 1308 1309 if (!have_addr) { 1310 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1311 return; 1312 } 1313 mtp = (void *)addr; 1314 if (mtp->ks_magic != M_MAGIC) { 1315 db_printf("Magic %lx does not match expected %x\n", 1316 mtp->ks_magic, M_MAGIC); 1317 return; 1318 } 1319 1320 mtip = mtp->ks_handle; 1321 subzone = mtip->mti_zone; 1322 1323 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1324 mtip = mtp->ks_handle; 1325 if (mtip->mti_zone != subzone) 1326 continue; 1327 db_printf("%s\n", mtp->ks_shortdesc); 1328 if (db_pager_quit) 1329 break; 1330 } 1331 } 1332 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1333 #endif /* DDB */ 1334 1335 #ifdef MALLOC_PROFILE 1336 1337 static int 1338 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 1339 { 1340 struct sbuf sbuf; 1341 uint64_t count; 1342 uint64_t waste; 1343 uint64_t mem; 1344 int error; 1345 int rsize; 1346 int size; 1347 int i; 1348 1349 waste = 0; 1350 mem = 0; 1351 1352 error = sysctl_wire_old_buffer(req, 0); 1353 if (error != 0) 1354 return (error); 1355 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1356 sbuf_printf(&sbuf, 1357 "\n Size Requests Real Size\n"); 1358 for (i = 0; i < KMEM_ZSIZE; i++) { 1359 size = i << KMEM_ZSHIFT; 1360 rsize = kmemzones[kmemsize[i]].kz_size; 1361 count = (long long unsigned)krequests[i]; 1362 1363 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size, 1364 (unsigned long long)count, rsize); 1365 1366 if ((rsize * count) > (size * count)) 1367 waste += (rsize * count) - (size * count); 1368 mem += (rsize * count); 1369 } 1370 sbuf_printf(&sbuf, 1371 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 1372 (unsigned long long)mem, (unsigned long long)waste); 1373 error = sbuf_finish(&sbuf); 1374 sbuf_delete(&sbuf); 1375 return (error); 1376 } 1377 1378 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 1379 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 1380 #endif /* MALLOC_PROFILE */ 1381