1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1987, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005-2009 Robert N. M. Watson 7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray) 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 37 * based on memory types. Back end is implemented using the UMA(9) zone 38 * allocator. A set of fixed-size buckets are used for smaller allocations, 39 * and a special UMA allocation interface is used for larger allocations. 40 * Callers declare memory types, and statistics are maintained independently 41 * for each memory type. Statistics are maintained per-CPU for performance 42 * reasons. See malloc(9) and comments in malloc.h for a detailed 43 * description. 44 */ 45 46 #include <sys/cdefs.h> 47 #include "opt_ddb.h" 48 #include "opt_vm.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/asan.h> 53 #include <sys/kdb.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/msan.h> 58 #include <sys/mutex.h> 59 #include <sys/vmmeter.h> 60 #include <sys/proc.h> 61 #include <sys/queue.h> 62 #include <sys/sbuf.h> 63 #include <sys/smp.h> 64 #include <sys/sysctl.h> 65 #include <sys/time.h> 66 #include <sys/vmem.h> 67 #ifdef EPOCH_TRACE 68 #include <sys/epoch.h> 69 #endif 70 71 #include <vm/vm.h> 72 #include <vm/pmap.h> 73 #include <vm/vm_domainset.h> 74 #include <vm/vm_pageout.h> 75 #include <vm/vm_param.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_extern.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_page.h> 80 #include <vm/vm_phys.h> 81 #include <vm/vm_pagequeue.h> 82 #include <vm/uma.h> 83 #include <vm/uma_int.h> 84 #include <vm/uma_dbg.h> 85 86 #ifdef DEBUG_MEMGUARD 87 #include <vm/memguard.h> 88 #endif 89 #ifdef DEBUG_REDZONE 90 #include <vm/redzone.h> 91 #endif 92 93 #if defined(INVARIANTS) && defined(__i386__) 94 #include <machine/cpu.h> 95 #endif 96 97 #include <ddb/ddb.h> 98 99 #ifdef KDTRACE_HOOKS 100 #include <sys/dtrace_bsd.h> 101 102 bool __read_frequently dtrace_malloc_enabled; 103 dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; 104 #endif 105 106 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ 107 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) 108 #define MALLOC_DEBUG 1 109 #endif 110 111 #if defined(KASAN) || defined(DEBUG_REDZONE) 112 #define DEBUG_REDZONE_ARG_DEF , unsigned long osize 113 #define DEBUG_REDZONE_ARG , osize 114 #else 115 #define DEBUG_REDZONE_ARG_DEF 116 #define DEBUG_REDZONE_ARG 117 #endif 118 119 typedef enum { 120 SLAB_COOKIE_SLAB_PTR = 0x0, 121 SLAB_COOKIE_MALLOC_LARGE = 0x1, 122 SLAB_COOKIE_CONTIG_MALLOC = 0x2, 123 } slab_cookie_t; 124 #define SLAB_COOKIE_MASK 0x3 125 #define SLAB_COOKIE_SHIFT 2 126 #define GET_SLAB_COOKIE(_slab) \ 127 ((slab_cookie_t)(uintptr_t)(_slab) & SLAB_COOKIE_MASK) 128 129 /* 130 * When realloc() is called, if the new size is sufficiently smaller than 131 * the old size, realloc() will allocate a new, smaller block to avoid 132 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 133 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 134 */ 135 #ifndef REALLOC_FRACTION 136 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 137 #endif 138 139 /* 140 * Centrally define some common malloc types. 141 */ 142 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 143 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 144 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 145 146 static struct malloc_type *kmemstatistics; 147 static int kmemcount; 148 149 #define KMEM_ZSHIFT 4 150 #define KMEM_ZBASE 16 151 #define KMEM_ZMASK (KMEM_ZBASE - 1) 152 153 #define KMEM_ZMAX 65536 154 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 155 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 156 157 #ifndef MALLOC_DEBUG_MAXZONES 158 #define MALLOC_DEBUG_MAXZONES 1 159 #endif 160 static int numzones = MALLOC_DEBUG_MAXZONES; 161 162 /* 163 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 164 * of various sizes. 165 * 166 * Warning: the layout of the struct is duplicated in libmemstat for KVM support. 167 * 168 * XXX: The comment here used to read "These won't be powers of two for 169 * long." It's possible that a significant amount of wasted memory could be 170 * recovered by tuning the sizes of these buckets. 171 */ 172 struct { 173 int kz_size; 174 const char *kz_name; 175 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 176 } kmemzones[] = { 177 {16, "malloc-16", }, 178 {32, "malloc-32", }, 179 {64, "malloc-64", }, 180 {128, "malloc-128", }, 181 {256, "malloc-256", }, 182 {384, "malloc-384", }, 183 {512, "malloc-512", }, 184 {1024, "malloc-1024", }, 185 {2048, "malloc-2048", }, 186 {4096, "malloc-4096", }, 187 {8192, "malloc-8192", }, 188 {16384, "malloc-16384", }, 189 {32768, "malloc-32768", }, 190 {65536, "malloc-65536", }, 191 {0, NULL}, 192 }; 193 194 u_long vm_kmem_size; 195 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 196 "Size of kernel memory"); 197 198 static u_long kmem_zmax = KMEM_ZMAX; 199 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, 200 "Maximum allocation size that malloc(9) would use UMA as backend"); 201 202 static u_long vm_kmem_size_min; 203 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 204 "Minimum size of kernel memory"); 205 206 static u_long vm_kmem_size_max; 207 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 208 "Maximum size of kernel memory"); 209 210 static u_int vm_kmem_size_scale; 211 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 212 "Scale factor for kernel memory size"); 213 214 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 215 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 216 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 217 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 218 219 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 220 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 221 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 222 sysctl_kmem_map_free, "LU", "Free space in kmem"); 223 224 static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 225 "Malloc information"); 226 227 static u_int vm_malloc_zone_count = nitems(kmemzones); 228 SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count, 229 CTLFLAG_RD, &vm_malloc_zone_count, 0, 230 "Number of malloc zones"); 231 232 static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS); 233 SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes, 234 CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0, 235 sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc"); 236 237 /* 238 * The malloc_mtx protects the kmemstatistics linked list. 239 */ 240 struct mtx malloc_mtx; 241 242 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 243 244 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 245 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 246 "Kernel malloc debugging options"); 247 #endif 248 249 /* 250 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 251 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 252 */ 253 #ifdef MALLOC_MAKE_FAILURES 254 static int malloc_failure_rate; 255 static int malloc_nowait_count; 256 static int malloc_failure_count; 257 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, 258 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 259 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 260 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 261 #endif 262 263 static int 264 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 265 { 266 u_long size; 267 268 size = uma_size(); 269 return (sysctl_handle_long(oidp, &size, 0, req)); 270 } 271 272 static int 273 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 274 { 275 u_long size, limit; 276 277 /* The sysctl is unsigned, implement as a saturation value. */ 278 size = uma_size(); 279 limit = uma_limit(); 280 if (size > limit) 281 size = 0; 282 else 283 size = limit - size; 284 return (sysctl_handle_long(oidp, &size, 0, req)); 285 } 286 287 static int 288 sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS) 289 { 290 int sizes[nitems(kmemzones)]; 291 int i; 292 293 for (i = 0; i < nitems(kmemzones); i++) { 294 sizes[i] = kmemzones[i].kz_size; 295 } 296 297 return (SYSCTL_OUT(req, &sizes, sizeof(sizes))); 298 } 299 300 /* 301 * malloc(9) uma zone separation -- sub-page buffer overruns in one 302 * malloc type will affect only a subset of other malloc types. 303 */ 304 #if MALLOC_DEBUG_MAXZONES > 1 305 static void 306 tunable_set_numzones(void) 307 { 308 309 TUNABLE_INT_FETCH("debug.malloc.numzones", 310 &numzones); 311 312 /* Sanity check the number of malloc uma zones. */ 313 if (numzones <= 0) 314 numzones = 1; 315 if (numzones > MALLOC_DEBUG_MAXZONES) 316 numzones = MALLOC_DEBUG_MAXZONES; 317 } 318 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 319 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 320 &numzones, 0, "Number of malloc uma subzones"); 321 322 /* 323 * Any number that changes regularly is an okay choice for the 324 * offset. Build numbers are pretty good of you have them. 325 */ 326 static u_int zone_offset = __FreeBSD_version; 327 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 328 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 329 &zone_offset, 0, "Separate malloc types by examining the " 330 "Nth character in the malloc type short description."); 331 332 static void 333 mtp_set_subzone(struct malloc_type *mtp) 334 { 335 struct malloc_type_internal *mtip; 336 const char *desc; 337 size_t len; 338 u_int val; 339 340 mtip = &mtp->ks_mti; 341 desc = mtp->ks_shortdesc; 342 if (desc == NULL || (len = strlen(desc)) == 0) 343 val = 0; 344 else 345 val = desc[zone_offset % len]; 346 mtip->mti_zone = (val % numzones); 347 } 348 349 static inline u_int 350 mtp_get_subzone(struct malloc_type *mtp) 351 { 352 struct malloc_type_internal *mtip; 353 354 mtip = &mtp->ks_mti; 355 356 KASSERT(mtip->mti_zone < numzones, 357 ("mti_zone %u out of range %d", 358 mtip->mti_zone, numzones)); 359 return (mtip->mti_zone); 360 } 361 #elif MALLOC_DEBUG_MAXZONES == 0 362 #error "MALLOC_DEBUG_MAXZONES must be positive." 363 #else 364 static void 365 mtp_set_subzone(struct malloc_type *mtp) 366 { 367 struct malloc_type_internal *mtip; 368 369 mtip = &mtp->ks_mti; 370 mtip->mti_zone = 0; 371 } 372 373 static inline u_int 374 mtp_get_subzone(struct malloc_type *mtp) 375 { 376 377 return (0); 378 } 379 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 380 381 /* 382 * An allocation has succeeded -- update malloc type statistics for the 383 * amount of bucket size. Occurs within a critical section so that the 384 * thread isn't preempted and doesn't migrate while updating per-PCU 385 * statistics. 386 */ 387 static void 388 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 389 int zindx) 390 { 391 struct malloc_type_internal *mtip; 392 struct malloc_type_stats *mtsp; 393 394 critical_enter(); 395 mtip = &mtp->ks_mti; 396 mtsp = zpcpu_get(mtip->mti_stats); 397 if (size > 0) { 398 mtsp->mts_memalloced += size; 399 mtsp->mts_numallocs++; 400 } 401 if (zindx != -1) 402 mtsp->mts_size |= 1 << zindx; 403 404 #ifdef KDTRACE_HOOKS 405 if (__predict_false(dtrace_malloc_enabled)) { 406 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 407 if (probe_id != 0) 408 (dtrace_malloc_probe)(probe_id, 409 (uintptr_t) mtp, (uintptr_t) mtip, 410 (uintptr_t) mtsp, size, zindx); 411 } 412 #endif 413 414 critical_exit(); 415 } 416 417 void 418 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 419 { 420 421 if (size > 0) 422 malloc_type_zone_allocated(mtp, size, -1); 423 } 424 425 /* 426 * A free operation has occurred -- update malloc type statistics for the 427 * amount of the bucket size. Occurs within a critical section so that the 428 * thread isn't preempted and doesn't migrate while updating per-CPU 429 * statistics. 430 */ 431 void 432 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 433 { 434 struct malloc_type_internal *mtip; 435 struct malloc_type_stats *mtsp; 436 437 critical_enter(); 438 mtip = &mtp->ks_mti; 439 mtsp = zpcpu_get(mtip->mti_stats); 440 mtsp->mts_memfreed += size; 441 mtsp->mts_numfrees++; 442 443 #ifdef KDTRACE_HOOKS 444 if (__predict_false(dtrace_malloc_enabled)) { 445 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 446 if (probe_id != 0) 447 (dtrace_malloc_probe)(probe_id, 448 (uintptr_t) mtp, (uintptr_t) mtip, 449 (uintptr_t) mtsp, size, 0); 450 } 451 #endif 452 453 critical_exit(); 454 } 455 456 /* 457 * contigmalloc: 458 * 459 * Allocate a block of physically contiguous memory. 460 * 461 * If M_NOWAIT is set, this routine will not block and return NULL if 462 * the allocation fails. 463 */ 464 #define IS_CONTIG_MALLOC(_slab) \ 465 (GET_SLAB_COOKIE(_slab) == SLAB_COOKIE_CONTIG_MALLOC) 466 #define CONTIG_MALLOC_SLAB(_size) \ 467 ((void *)(((_size) << SLAB_COOKIE_SHIFT) | SLAB_COOKIE_CONTIG_MALLOC)) 468 static inline size_t 469 contigmalloc_size(uma_slab_t slab) 470 { 471 uintptr_t va; 472 473 KASSERT(IS_CONTIG_MALLOC(slab), 474 ("%s: called on non-contigmalloc allocation: %p", __func__, slab)); 475 va = (uintptr_t)slab; 476 return (va >> SLAB_COOKIE_SHIFT); 477 } 478 479 void * 480 contigmalloc(unsigned long size, struct malloc_type *type, int flags, 481 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 482 vm_paddr_t boundary) 483 { 484 void *ret; 485 486 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, 487 boundary, VM_MEMATTR_DEFAULT); 488 if (ret != NULL) { 489 /* Use low bits unused for slab pointers. */ 490 vsetzoneslab((uintptr_t)ret, NULL, CONTIG_MALLOC_SLAB(size)); 491 malloc_type_allocated(type, round_page(size)); 492 } 493 return (ret); 494 } 495 496 void * 497 contigmalloc_domainset(unsigned long size, struct malloc_type *type, 498 struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, 499 unsigned long alignment, vm_paddr_t boundary) 500 { 501 void *ret; 502 503 ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high, 504 alignment, boundary, VM_MEMATTR_DEFAULT); 505 if (ret != NULL) { 506 /* Use low bits unused for slab pointers. */ 507 vsetzoneslab((uintptr_t)ret, NULL, CONTIG_MALLOC_SLAB(size)); 508 malloc_type_allocated(type, round_page(size)); 509 } 510 return (ret); 511 } 512 #undef IS_CONTIG_MALLOC 513 #undef CONTIG_MALLOC_SLAB 514 515 /* contigfree(9) is deprecated. */ 516 void 517 contigfree(void *addr, unsigned long size __unused, struct malloc_type *type) 518 { 519 free(addr, type); 520 } 521 522 #ifdef MALLOC_DEBUG 523 static int 524 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, 525 int flags) 526 { 527 #ifdef INVARIANTS 528 int indx; 529 530 KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version")); 531 /* 532 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 533 */ 534 indx = flags & (M_WAITOK | M_NOWAIT); 535 if (indx != M_NOWAIT && indx != M_WAITOK) { 536 static struct timeval lasterr; 537 static int curerr, once; 538 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 539 printf("Bad malloc flags: %x\n", indx); 540 kdb_backtrace(); 541 flags |= M_WAITOK; 542 once++; 543 } 544 } 545 #endif 546 #ifdef MALLOC_MAKE_FAILURES 547 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 548 atomic_add_int(&malloc_nowait_count, 1); 549 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 550 atomic_add_int(&malloc_failure_count, 1); 551 *vap = NULL; 552 return (EJUSTRETURN); 553 } 554 } 555 #endif 556 if (flags & M_WAITOK) { 557 KASSERT(curthread->td_intr_nesting_level == 0, 558 ("malloc(M_WAITOK) in interrupt context")); 559 if (__predict_false(!THREAD_CAN_SLEEP())) { 560 #ifdef EPOCH_TRACE 561 epoch_trace_list(curthread); 562 #endif 563 KASSERT(0, 564 ("malloc(M_WAITOK) with sleeping prohibited")); 565 } 566 } 567 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 568 ("malloc: called with spinlock or critical section held")); 569 570 #ifdef DEBUG_MEMGUARD 571 if (memguard_cmp_mtp(mtp, *sizep)) { 572 *vap = memguard_alloc(*sizep, flags); 573 if (*vap != NULL) 574 return (EJUSTRETURN); 575 /* This is unfortunate but should not be fatal. */ 576 } 577 #endif 578 579 #ifdef DEBUG_REDZONE 580 *sizep = redzone_size_ntor(*sizep); 581 #endif 582 583 return (0); 584 } 585 #endif 586 587 /* 588 * Handle large allocations and frees by using kmem_malloc directly. 589 */ 590 #define IS_MALLOC_LARGE(_slab) \ 591 (GET_SLAB_COOKIE(_slab) == SLAB_COOKIE_MALLOC_LARGE) 592 #define MALLOC_LARGE_SLAB(_size) \ 593 ((void *)(((_size) << SLAB_COOKIE_SHIFT) | SLAB_COOKIE_MALLOC_LARGE)) 594 static inline size_t 595 malloc_large_size(uma_slab_t slab) 596 { 597 uintptr_t va; 598 599 va = (uintptr_t)slab; 600 KASSERT(IS_MALLOC_LARGE(slab), 601 ("%s: called on non-malloc_large allocation: %p", __func__, slab)); 602 return (va >> SLAB_COOKIE_SHIFT); 603 } 604 605 static caddr_t __noinline 606 malloc_large(size_t size, struct malloc_type *mtp, struct domainset *policy, 607 int flags DEBUG_REDZONE_ARG_DEF) 608 { 609 void *va; 610 611 size = roundup(size, PAGE_SIZE); 612 va = kmem_malloc_domainset(policy, size, flags); 613 if (va != NULL) { 614 /* Use low bits unused for slab pointers. */ 615 vsetzoneslab((uintptr_t)va, NULL, MALLOC_LARGE_SLAB(size)); 616 uma_total_inc(size); 617 } 618 malloc_type_allocated(mtp, va == NULL ? 0 : size); 619 if (__predict_false(va == NULL)) { 620 KASSERT((flags & M_WAITOK) == 0, 621 ("malloc(M_WAITOK) returned NULL")); 622 } else { 623 #ifdef DEBUG_REDZONE 624 va = redzone_setup(va, osize); 625 #endif 626 kasan_mark(va, osize, size, KASAN_MALLOC_REDZONE); 627 } 628 return (va); 629 } 630 631 static void 632 free_large(void *addr, size_t size) 633 { 634 635 kmem_free(addr, size); 636 uma_total_dec(size); 637 } 638 #undef IS_MALLOC_LARGE 639 #undef MALLOC_LARGE_SLAB 640 641 /* 642 * malloc: 643 * 644 * Allocate a block of memory. 645 * 646 * If M_NOWAIT is set, this routine will not block and return NULL if 647 * the allocation fails. 648 */ 649 void * 650 (malloc)(size_t size, struct malloc_type *mtp, int flags) 651 { 652 int indx; 653 caddr_t va; 654 uma_zone_t zone; 655 #if defined(DEBUG_REDZONE) || defined(KASAN) 656 unsigned long osize = size; 657 #endif 658 659 MPASS((flags & M_EXEC) == 0); 660 661 #ifdef MALLOC_DEBUG 662 va = NULL; 663 if (malloc_dbg(&va, &size, mtp, flags) != 0) 664 return (va); 665 #endif 666 667 if (__predict_false(size > kmem_zmax)) 668 return (malloc_large(size, mtp, DOMAINSET_RR(), flags 669 DEBUG_REDZONE_ARG)); 670 671 if (size & KMEM_ZMASK) 672 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 673 indx = kmemsize[size >> KMEM_ZSHIFT]; 674 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 675 va = uma_zalloc_arg(zone, zone, flags); 676 if (va != NULL) { 677 size = zone->uz_size; 678 if ((flags & M_ZERO) == 0) { 679 kmsan_mark(va, size, KMSAN_STATE_UNINIT); 680 kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR); 681 } 682 } 683 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 684 if (__predict_false(va == NULL)) { 685 KASSERT((flags & M_WAITOK) == 0, 686 ("malloc(M_WAITOK) returned NULL")); 687 } 688 #ifdef DEBUG_REDZONE 689 if (va != NULL) 690 va = redzone_setup(va, osize); 691 #endif 692 #ifdef KASAN 693 if (va != NULL) 694 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 695 #endif 696 return ((void *) va); 697 } 698 699 static void * 700 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain, 701 int flags) 702 { 703 uma_zone_t zone; 704 caddr_t va; 705 size_t size; 706 int indx; 707 708 size = *sizep; 709 KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0, 710 ("malloc_domain: Called with bad flag / size combination")); 711 if (size & KMEM_ZMASK) 712 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 713 indx = kmemsize[size >> KMEM_ZSHIFT]; 714 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 715 va = uma_zalloc_domain(zone, zone, domain, flags); 716 if (va != NULL) 717 *sizep = zone->uz_size; 718 *indxp = indx; 719 return ((void *)va); 720 } 721 722 void * 723 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, 724 int flags) 725 { 726 struct vm_domainset_iter di; 727 caddr_t va; 728 int domain; 729 int indx; 730 #if defined(KASAN) || defined(DEBUG_REDZONE) 731 unsigned long osize = size; 732 #endif 733 734 MPASS((flags & M_EXEC) == 0); 735 736 #ifdef MALLOC_DEBUG 737 va = NULL; 738 if (malloc_dbg(&va, &size, mtp, flags) != 0) 739 return (va); 740 #endif 741 742 if (__predict_false(size > kmem_zmax)) 743 return (malloc_large(size, mtp, DOMAINSET_RR(), flags 744 DEBUG_REDZONE_ARG)); 745 746 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 747 do { 748 va = malloc_domain(&size, &indx, mtp, domain, flags); 749 } while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0); 750 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 751 if (__predict_false(va == NULL)) { 752 KASSERT((flags & M_WAITOK) == 0, 753 ("malloc(M_WAITOK) returned NULL")); 754 } 755 #ifdef DEBUG_REDZONE 756 if (va != NULL) 757 va = redzone_setup(va, osize); 758 #endif 759 #ifdef KASAN 760 if (va != NULL) 761 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 762 #endif 763 #ifdef KMSAN 764 if ((flags & M_ZERO) == 0) { 765 kmsan_mark(va, size, KMSAN_STATE_UNINIT); 766 kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR); 767 } 768 #endif 769 return (va); 770 } 771 772 /* 773 * Allocate an executable area. 774 */ 775 void * 776 malloc_exec(size_t size, struct malloc_type *mtp, int flags) 777 { 778 779 return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags)); 780 } 781 782 void * 783 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds, 784 int flags) 785 { 786 #if defined(DEBUG_REDZONE) || defined(KASAN) 787 unsigned long osize = size; 788 #endif 789 #ifdef MALLOC_DEBUG 790 caddr_t va; 791 #endif 792 793 flags |= M_EXEC; 794 795 #ifdef MALLOC_DEBUG 796 va = NULL; 797 if (malloc_dbg(&va, &size, mtp, flags) != 0) 798 return (va); 799 #endif 800 801 return (malloc_large(size, mtp, ds, flags DEBUG_REDZONE_ARG)); 802 } 803 804 void * 805 malloc_aligned(size_t size, size_t align, struct malloc_type *type, int flags) 806 { 807 return (malloc_domainset_aligned(size, align, type, DOMAINSET_RR(), 808 flags)); 809 } 810 811 void * 812 malloc_domainset_aligned(size_t size, size_t align, 813 struct malloc_type *mtp, struct domainset *ds, int flags) 814 { 815 void *res; 816 size_t asize; 817 818 KASSERT(powerof2(align), 819 ("malloc_domainset_aligned: wrong align %#zx size %#zx", 820 align, size)); 821 KASSERT(align <= PAGE_SIZE, 822 ("malloc_domainset_aligned: align %#zx (size %#zx) too large", 823 align, size)); 824 825 /* 826 * Round the allocation size up to the next power of 2, 827 * because we can only guarantee alignment for 828 * power-of-2-sized allocations. Further increase the 829 * allocation size to align if the rounded size is less than 830 * align, since malloc zones provide alignment equal to their 831 * size. 832 */ 833 if (size == 0) 834 size = 1; 835 asize = size <= align ? align : 1UL << flsl(size - 1); 836 837 res = malloc_domainset(asize, mtp, ds, flags); 838 KASSERT(res == NULL || ((uintptr_t)res & (align - 1)) == 0, 839 ("malloc_domainset_aligned: result not aligned %p size %#zx " 840 "allocsize %#zx align %#zx", res, size, asize, align)); 841 return (res); 842 } 843 844 void * 845 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) 846 { 847 848 if (WOULD_OVERFLOW(nmemb, size)) 849 panic("mallocarray: %zu * %zu overflowed", nmemb, size); 850 851 return (malloc(size * nmemb, type, flags)); 852 } 853 854 void * 855 mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type, 856 struct domainset *ds, int flags) 857 { 858 859 if (WOULD_OVERFLOW(nmemb, size)) 860 panic("mallocarray_domainset: %zu * %zu overflowed", nmemb, size); 861 862 return (malloc_domainset(size * nmemb, type, ds, flags)); 863 } 864 865 #if defined(INVARIANTS) && !defined(KASAN) 866 static void 867 free_save_type(void *addr, struct malloc_type *mtp, u_long size) 868 { 869 struct malloc_type **mtpp = addr; 870 871 /* 872 * Cache a pointer to the malloc_type that most recently freed 873 * this memory here. This way we know who is most likely to 874 * have stepped on it later. 875 * 876 * This code assumes that size is a multiple of 8 bytes for 877 * 64 bit machines 878 */ 879 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 880 mtpp += (size - sizeof(struct malloc_type *)) / 881 sizeof(struct malloc_type *); 882 *mtpp = mtp; 883 } 884 #endif 885 886 #ifdef MALLOC_DEBUG 887 static int 888 free_dbg(void **addrp, struct malloc_type *mtp) 889 { 890 void *addr; 891 892 addr = *addrp; 893 KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version")); 894 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 895 ("free: called with spinlock or critical section held")); 896 897 /* free(NULL, ...) does nothing */ 898 if (addr == NULL) 899 return (EJUSTRETURN); 900 901 #ifdef DEBUG_MEMGUARD 902 if (is_memguard_addr(addr)) { 903 memguard_free(addr); 904 return (EJUSTRETURN); 905 } 906 #endif 907 908 #ifdef DEBUG_REDZONE 909 redzone_check(addr); 910 *addrp = redzone_addr_ntor(addr); 911 #endif 912 913 return (0); 914 } 915 #endif 916 917 static __always_inline void 918 _free(void *addr, struct malloc_type *mtp, bool dozero) 919 { 920 uma_zone_t zone; 921 uma_slab_t slab; 922 u_long size; 923 924 #ifdef MALLOC_DEBUG 925 if (free_dbg(&addr, mtp) != 0) 926 return; 927 #endif 928 /* free(NULL, ...) does nothing */ 929 if (addr == NULL) 930 return; 931 932 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 933 if (slab == NULL) 934 panic("%s(%d): address %p(%p) has not been allocated", __func__, 935 dozero, addr, (void *)((uintptr_t)addr & (~UMA_SLAB_MASK))); 936 937 switch (GET_SLAB_COOKIE(slab)) { 938 case __predict_true(SLAB_COOKIE_SLAB_PTR): 939 size = zone->uz_size; 940 #if defined(INVARIANTS) && !defined(KASAN) 941 free_save_type(addr, mtp, size); 942 #endif 943 if (dozero) { 944 kasan_mark(addr, size, size, 0); 945 explicit_bzero(addr, size); 946 } 947 uma_zfree_arg(zone, addr, slab); 948 break; 949 case SLAB_COOKIE_MALLOC_LARGE: 950 size = malloc_large_size(slab); 951 if (dozero) { 952 kasan_mark(addr, size, size, 0); 953 explicit_bzero(addr, size); 954 } 955 free_large(addr, size); 956 break; 957 case SLAB_COOKIE_CONTIG_MALLOC: 958 size = round_page(contigmalloc_size(slab)); 959 if (dozero) 960 explicit_bzero(addr, size); 961 kmem_free(addr, size); 962 break; 963 default: 964 panic("%s(%d): addr %p slab %p with unknown cookie %d", 965 __func__, dozero, addr, slab, GET_SLAB_COOKIE(slab)); 966 /* NOTREACHED */ 967 } 968 malloc_type_freed(mtp, size); 969 } 970 971 /* 972 * free: 973 * Free a block of memory allocated by malloc/contigmalloc. 974 * This routine may not block. 975 */ 976 void 977 free(void *addr, struct malloc_type *mtp) 978 { 979 _free(addr, mtp, false); 980 } 981 982 /* 983 * zfree: 984 * Zero then free a block of memory allocated by malloc/contigmalloc. 985 * This routine may not block. 986 */ 987 void 988 zfree(void *addr, struct malloc_type *mtp) 989 { 990 _free(addr, mtp, true); 991 } 992 993 /* 994 * realloc: change the size of a memory block 995 */ 996 void * 997 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) 998 { 999 #ifndef DEBUG_REDZONE 1000 uma_zone_t zone; 1001 uma_slab_t slab; 1002 #endif 1003 unsigned long alloc; 1004 void *newaddr; 1005 1006 KASSERT(mtp->ks_version == M_VERSION, 1007 ("realloc: bad malloc type version")); 1008 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 1009 ("realloc: called with spinlock or critical section held")); 1010 1011 /* realloc(NULL, ...) is equivalent to malloc(...) */ 1012 if (addr == NULL) 1013 return (malloc(size, mtp, flags)); 1014 1015 /* 1016 * XXX: Should report free of old memory and alloc of new memory to 1017 * per-CPU stats. 1018 */ 1019 1020 #ifdef DEBUG_MEMGUARD 1021 if (is_memguard_addr(addr)) 1022 return (memguard_realloc(addr, size, mtp, flags)); 1023 #endif 1024 1025 #ifdef DEBUG_REDZONE 1026 alloc = redzone_get_size(addr); 1027 #else 1028 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1029 1030 /* Sanity check */ 1031 KASSERT(slab != NULL, 1032 ("realloc: address %p out of range", (void *)addr)); 1033 1034 /* Get the size of the original block */ 1035 switch (GET_SLAB_COOKIE(slab)) { 1036 case __predict_true(SLAB_COOKIE_SLAB_PTR): 1037 alloc = zone->uz_size; 1038 break; 1039 case SLAB_COOKIE_MALLOC_LARGE: 1040 alloc = malloc_large_size(slab); 1041 break; 1042 default: 1043 #ifdef INVARIANTS 1044 panic("%s: called for addr %p of unsupported allocation type; " 1045 "slab %p cookie %d", __func__, addr, slab, GET_SLAB_COOKIE(slab)); 1046 #endif 1047 return (NULL); 1048 } 1049 1050 /* Reuse the original block if appropriate */ 1051 if (size <= alloc && 1052 (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) { 1053 kasan_mark((void *)addr, size, alloc, KASAN_MALLOC_REDZONE); 1054 return (addr); 1055 } 1056 #endif /* !DEBUG_REDZONE */ 1057 1058 /* Allocate a new, bigger (or smaller) block */ 1059 if ((newaddr = malloc(size, mtp, flags)) == NULL) 1060 return (NULL); 1061 1062 /* 1063 * Copy over original contents. For KASAN, the redzone must be marked 1064 * valid before performing the copy. 1065 */ 1066 kasan_mark(addr, alloc, alloc, 0); 1067 bcopy(addr, newaddr, min(size, alloc)); 1068 free(addr, mtp); 1069 return (newaddr); 1070 } 1071 1072 /* 1073 * reallocf: same as realloc() but free memory on failure. 1074 */ 1075 void * 1076 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) 1077 { 1078 void *mem; 1079 1080 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 1081 free(addr, mtp); 1082 return (mem); 1083 } 1084 1085 /* 1086 * malloc_size: returns the number of bytes allocated for a request of the 1087 * specified size 1088 */ 1089 size_t 1090 malloc_size(size_t size) 1091 { 1092 int indx; 1093 1094 if (size > kmem_zmax) 1095 return (round_page(size)); 1096 if (size & KMEM_ZMASK) 1097 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 1098 indx = kmemsize[size >> KMEM_ZSHIFT]; 1099 return (kmemzones[indx].kz_size); 1100 } 1101 1102 /* 1103 * malloc_usable_size: returns the usable size of the allocation. 1104 */ 1105 size_t 1106 malloc_usable_size(const void *addr) 1107 { 1108 #ifndef DEBUG_REDZONE 1109 uma_zone_t zone; 1110 uma_slab_t slab; 1111 #endif 1112 u_long size; 1113 1114 if (addr == NULL) 1115 return (0); 1116 1117 #ifdef DEBUG_MEMGUARD 1118 if (is_memguard_addr(__DECONST(void *, addr))) 1119 return (memguard_get_req_size(addr)); 1120 #endif 1121 1122 #ifdef DEBUG_REDZONE 1123 size = redzone_get_size(__DECONST(void *, addr)); 1124 #else 1125 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1126 if (slab == NULL) 1127 panic("malloc_usable_size: address %p(%p) is not allocated", 1128 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 1129 1130 switch (GET_SLAB_COOKIE(slab)) { 1131 case __predict_true(SLAB_COOKIE_SLAB_PTR): 1132 size = zone->uz_size; 1133 break; 1134 case SLAB_COOKIE_MALLOC_LARGE: 1135 size = malloc_large_size(slab); 1136 break; 1137 default: 1138 __assert_unreachable(); 1139 size = 0; 1140 break; 1141 } 1142 #endif 1143 1144 /* 1145 * Unmark the redzone to avoid reports from consumers who are 1146 * (presumably) about to use the full allocation size. 1147 */ 1148 kasan_mark(addr, size, size, 0); 1149 1150 return (size); 1151 } 1152 1153 CTASSERT(VM_KMEM_SIZE_SCALE >= 1); 1154 1155 /* 1156 * Initialize the kernel memory (kmem) arena. 1157 */ 1158 void 1159 kmeminit(void) 1160 { 1161 u_long mem_size; 1162 u_long tmp; 1163 1164 #ifdef VM_KMEM_SIZE 1165 if (vm_kmem_size == 0) 1166 vm_kmem_size = VM_KMEM_SIZE; 1167 #endif 1168 #ifdef VM_KMEM_SIZE_MIN 1169 if (vm_kmem_size_min == 0) 1170 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 1171 #endif 1172 #ifdef VM_KMEM_SIZE_MAX 1173 if (vm_kmem_size_max == 0) 1174 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 1175 #endif 1176 /* 1177 * Calculate the amount of kernel virtual address (KVA) space that is 1178 * preallocated to the kmem arena. In order to support a wide range 1179 * of machines, it is a function of the physical memory size, 1180 * specifically, 1181 * 1182 * min(max(physical memory size / VM_KMEM_SIZE_SCALE, 1183 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) 1184 * 1185 * Every architecture must define an integral value for 1186 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN 1187 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and 1188 * ceiling on this preallocation, are optional. Typically, 1189 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on 1190 * a given architecture. 1191 */ 1192 mem_size = vm_cnt.v_page_count; 1193 if (mem_size <= 32768) /* delphij XXX 128MB */ 1194 kmem_zmax = PAGE_SIZE; 1195 1196 if (vm_kmem_size_scale < 1) 1197 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 1198 1199 /* 1200 * Check if we should use defaults for the "vm_kmem_size" 1201 * variable: 1202 */ 1203 if (vm_kmem_size == 0) { 1204 vm_kmem_size = mem_size / vm_kmem_size_scale; 1205 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ? 1206 vm_kmem_size_max : vm_kmem_size * PAGE_SIZE; 1207 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) 1208 vm_kmem_size = vm_kmem_size_min; 1209 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 1210 vm_kmem_size = vm_kmem_size_max; 1211 } 1212 if (vm_kmem_size == 0) 1213 panic("Tune VM_KMEM_SIZE_* for the platform"); 1214 1215 /* 1216 * The amount of KVA space that is preallocated to the 1217 * kmem arena can be set statically at compile-time or manually 1218 * through the kernel environment. However, it is still limited to 1219 * twice the physical memory size, which has been sufficient to handle 1220 * the most severe cases of external fragmentation in the kmem arena. 1221 */ 1222 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 1223 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 1224 1225 vm_kmem_size = round_page(vm_kmem_size); 1226 1227 /* 1228 * With KASAN or KMSAN enabled, dynamically allocated kernel memory is 1229 * shadowed. Account for this when setting the UMA limit. 1230 */ 1231 #if defined(KASAN) 1232 vm_kmem_size = (vm_kmem_size * KASAN_SHADOW_SCALE) / 1233 (KASAN_SHADOW_SCALE + 1); 1234 #elif defined(KMSAN) 1235 vm_kmem_size /= 3; 1236 #endif 1237 1238 #ifdef DEBUG_MEMGUARD 1239 tmp = memguard_fudge(vm_kmem_size, kernel_map); 1240 #else 1241 tmp = vm_kmem_size; 1242 #endif 1243 uma_set_limit(tmp); 1244 1245 #ifdef DEBUG_MEMGUARD 1246 /* 1247 * Initialize MemGuard if support compiled in. MemGuard is a 1248 * replacement allocator used for detecting tamper-after-free 1249 * scenarios as they occur. It is only used for debugging. 1250 */ 1251 memguard_init(kernel_arena); 1252 #endif 1253 } 1254 1255 /* 1256 * Initialize the kernel memory allocator 1257 */ 1258 /* ARGSUSED*/ 1259 static void 1260 mallocinit(void *dummy) 1261 { 1262 int i; 1263 uint8_t indx; 1264 1265 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 1266 1267 kmeminit(); 1268 1269 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) 1270 kmem_zmax = KMEM_ZMAX; 1271 1272 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 1273 int size = kmemzones[indx].kz_size; 1274 const char *name = kmemzones[indx].kz_name; 1275 size_t align; 1276 int subzone; 1277 1278 align = UMA_ALIGN_PTR; 1279 if (powerof2(size) && size > sizeof(void *)) 1280 align = MIN(size, PAGE_SIZE) - 1; 1281 for (subzone = 0; subzone < numzones; subzone++) { 1282 kmemzones[indx].kz_zone[subzone] = 1283 uma_zcreate(name, size, 1284 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 1285 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 1286 #else 1287 NULL, NULL, NULL, NULL, 1288 #endif 1289 align, UMA_ZONE_MALLOC); 1290 } 1291 for (;i <= size; i+= KMEM_ZBASE) 1292 kmemsize[i >> KMEM_ZSHIFT] = indx; 1293 } 1294 } 1295 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); 1296 1297 void 1298 malloc_init(void *data) 1299 { 1300 struct malloc_type_internal *mtip; 1301 struct malloc_type *mtp; 1302 1303 KASSERT(vm_cnt.v_page_count != 0, 1304 ("malloc_init() called before vm_mem_init()")); 1305 1306 mtp = data; 1307 if (mtp->ks_version != M_VERSION) 1308 panic("malloc_init: type %s with unsupported version %lu", 1309 mtp->ks_shortdesc, mtp->ks_version); 1310 1311 mtip = &mtp->ks_mti; 1312 mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO); 1313 mtp_set_subzone(mtp); 1314 1315 mtx_lock(&malloc_mtx); 1316 mtp->ks_next = kmemstatistics; 1317 kmemstatistics = mtp; 1318 kmemcount++; 1319 mtx_unlock(&malloc_mtx); 1320 } 1321 1322 void 1323 malloc_uninit(void *data) 1324 { 1325 struct malloc_type_internal *mtip; 1326 struct malloc_type_stats *mtsp; 1327 struct malloc_type *mtp, *temp; 1328 long temp_allocs, temp_bytes; 1329 int i; 1330 1331 mtp = data; 1332 KASSERT(mtp->ks_version == M_VERSION, 1333 ("malloc_uninit: bad malloc type version")); 1334 1335 mtx_lock(&malloc_mtx); 1336 mtip = &mtp->ks_mti; 1337 if (mtp != kmemstatistics) { 1338 for (temp = kmemstatistics; temp != NULL; 1339 temp = temp->ks_next) { 1340 if (temp->ks_next == mtp) { 1341 temp->ks_next = mtp->ks_next; 1342 break; 1343 } 1344 } 1345 KASSERT(temp, 1346 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 1347 } else 1348 kmemstatistics = mtp->ks_next; 1349 kmemcount--; 1350 mtx_unlock(&malloc_mtx); 1351 1352 /* 1353 * Look for memory leaks. 1354 */ 1355 temp_allocs = temp_bytes = 0; 1356 for (i = 0; i <= mp_maxid; i++) { 1357 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1358 temp_allocs += mtsp->mts_numallocs; 1359 temp_allocs -= mtsp->mts_numfrees; 1360 temp_bytes += mtsp->mts_memalloced; 1361 temp_bytes -= mtsp->mts_memfreed; 1362 } 1363 if (temp_allocs > 0 || temp_bytes > 0) { 1364 printf("Warning: memory type %s leaked memory on destroy " 1365 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 1366 temp_allocs, temp_bytes); 1367 } 1368 1369 uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats); 1370 } 1371 1372 struct malloc_type * 1373 malloc_desc2type(const char *desc) 1374 { 1375 struct malloc_type *mtp; 1376 1377 mtx_assert(&malloc_mtx, MA_OWNED); 1378 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1379 if (strcmp(mtp->ks_shortdesc, desc) == 0) 1380 return (mtp); 1381 } 1382 return (NULL); 1383 } 1384 1385 static int 1386 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 1387 { 1388 struct malloc_type_stream_header mtsh; 1389 struct malloc_type_internal *mtip; 1390 struct malloc_type_stats *mtsp, zeromts; 1391 struct malloc_type_header mth; 1392 struct malloc_type *mtp; 1393 int error, i; 1394 struct sbuf sbuf; 1395 1396 error = sysctl_wire_old_buffer(req, 0); 1397 if (error != 0) 1398 return (error); 1399 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1400 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 1401 mtx_lock(&malloc_mtx); 1402 1403 bzero(&zeromts, sizeof(zeromts)); 1404 1405 /* 1406 * Insert stream header. 1407 */ 1408 bzero(&mtsh, sizeof(mtsh)); 1409 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 1410 mtsh.mtsh_maxcpus = MAXCPU; 1411 mtsh.mtsh_count = kmemcount; 1412 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 1413 1414 /* 1415 * Insert alternating sequence of type headers and type statistics. 1416 */ 1417 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1418 mtip = &mtp->ks_mti; 1419 1420 /* 1421 * Insert type header. 1422 */ 1423 bzero(&mth, sizeof(mth)); 1424 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 1425 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 1426 1427 /* 1428 * Insert type statistics for each CPU. 1429 */ 1430 for (i = 0; i <= mp_maxid; i++) { 1431 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1432 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); 1433 } 1434 /* 1435 * Fill in the missing CPUs. 1436 */ 1437 for (; i < MAXCPU; i++) { 1438 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); 1439 } 1440 } 1441 mtx_unlock(&malloc_mtx); 1442 error = sbuf_finish(&sbuf); 1443 sbuf_delete(&sbuf); 1444 return (error); 1445 } 1446 1447 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, 1448 CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0, 1449 sysctl_kern_malloc_stats, "s,malloc_type_ustats", 1450 "Return malloc types"); 1451 1452 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 1453 "Count of kernel malloc types"); 1454 1455 void 1456 malloc_type_list(malloc_type_list_func_t *func, void *arg) 1457 { 1458 struct malloc_type *mtp, **bufmtp; 1459 int count, i; 1460 size_t buflen; 1461 1462 mtx_lock(&malloc_mtx); 1463 restart: 1464 mtx_assert(&malloc_mtx, MA_OWNED); 1465 count = kmemcount; 1466 mtx_unlock(&malloc_mtx); 1467 1468 buflen = sizeof(struct malloc_type *) * count; 1469 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 1470 1471 mtx_lock(&malloc_mtx); 1472 1473 if (count < kmemcount) { 1474 free(bufmtp, M_TEMP); 1475 goto restart; 1476 } 1477 1478 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 1479 bufmtp[i] = mtp; 1480 1481 mtx_unlock(&malloc_mtx); 1482 1483 for (i = 0; i < count; i++) 1484 (func)(bufmtp[i], arg); 1485 1486 free(bufmtp, M_TEMP); 1487 } 1488 1489 #ifdef DDB 1490 static int64_t 1491 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs, 1492 uint64_t *inuse) 1493 { 1494 const struct malloc_type_stats *mtsp; 1495 uint64_t frees, alloced, freed; 1496 int i; 1497 1498 *allocs = 0; 1499 frees = 0; 1500 alloced = 0; 1501 freed = 0; 1502 for (i = 0; i <= mp_maxid; i++) { 1503 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1504 1505 *allocs += mtsp->mts_numallocs; 1506 frees += mtsp->mts_numfrees; 1507 alloced += mtsp->mts_memalloced; 1508 freed += mtsp->mts_memfreed; 1509 } 1510 *inuse = *allocs - frees; 1511 return (alloced - freed); 1512 } 1513 1514 DB_SHOW_COMMAND_FLAGS(malloc, db_show_malloc, DB_CMD_MEMSAFE) 1515 { 1516 const char *fmt_hdr, *fmt_entry; 1517 struct malloc_type *mtp; 1518 uint64_t allocs, inuse; 1519 int64_t size; 1520 /* variables for sorting */ 1521 struct malloc_type *last_mtype, *cur_mtype; 1522 int64_t cur_size, last_size; 1523 int ties; 1524 1525 if (modif[0] == 'i') { 1526 fmt_hdr = "%s,%s,%s,%s\n"; 1527 fmt_entry = "\"%s\",%ju,%jdK,%ju\n"; 1528 } else { 1529 fmt_hdr = "%18s %12s %12s %12s\n"; 1530 fmt_entry = "%18s %12ju %12jdK %12ju\n"; 1531 } 1532 1533 db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests"); 1534 1535 /* Select sort, largest size first. */ 1536 last_mtype = NULL; 1537 last_size = INT64_MAX; 1538 for (;;) { 1539 cur_mtype = NULL; 1540 cur_size = -1; 1541 ties = 0; 1542 1543 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1544 /* 1545 * In the case of size ties, print out mtypes 1546 * in the order they are encountered. That is, 1547 * when we encounter the most recently output 1548 * mtype, we have already printed all preceding 1549 * ties, and we must print all following ties. 1550 */ 1551 if (mtp == last_mtype) { 1552 ties = 1; 1553 continue; 1554 } 1555 size = get_malloc_stats(&mtp->ks_mti, &allocs, 1556 &inuse); 1557 if (size > cur_size && size < last_size + ties) { 1558 cur_size = size; 1559 cur_mtype = mtp; 1560 } 1561 } 1562 if (cur_mtype == NULL) 1563 break; 1564 1565 size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse); 1566 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse, 1567 howmany(size, 1024), allocs); 1568 1569 if (db_pager_quit) 1570 break; 1571 1572 last_mtype = cur_mtype; 1573 last_size = cur_size; 1574 } 1575 } 1576 1577 #if MALLOC_DEBUG_MAXZONES > 1 1578 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1579 { 1580 struct malloc_type_internal *mtip; 1581 struct malloc_type *mtp; 1582 u_int subzone; 1583 1584 if (!have_addr) { 1585 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1586 return; 1587 } 1588 mtp = (void *)addr; 1589 if (mtp->ks_version != M_VERSION) { 1590 db_printf("Version %lx does not match expected %x\n", 1591 mtp->ks_version, M_VERSION); 1592 return; 1593 } 1594 1595 mtip = &mtp->ks_mti; 1596 subzone = mtip->mti_zone; 1597 1598 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1599 mtip = &mtp->ks_mti; 1600 if (mtip->mti_zone != subzone) 1601 continue; 1602 db_printf("%s\n", mtp->ks_shortdesc); 1603 if (db_pager_quit) 1604 break; 1605 } 1606 } 1607 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1608 #endif /* DDB */ 1609