1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1987, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005-2009 Robert N. M. Watson 7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray) 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 35 */ 36 37 /* 38 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 39 * based on memory types. Back end is implemented using the UMA(9) zone 40 * allocator. A set of fixed-size buckets are used for smaller allocations, 41 * and a special UMA allocation interface is used for larger allocations. 42 * Callers declare memory types, and statistics are maintained independently 43 * for each memory type. Statistics are maintained per-CPU for performance 44 * reasons. See malloc(9) and comments in malloc.h for a detailed 45 * description. 46 */ 47 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include "opt_ddb.h" 52 #include "opt_vm.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/asan.h> 57 #include <sys/kdb.h> 58 #include <sys/kernel.h> 59 #include <sys/lock.h> 60 #include <sys/malloc.h> 61 #include <sys/mutex.h> 62 #include <sys/vmmeter.h> 63 #include <sys/proc.h> 64 #include <sys/queue.h> 65 #include <sys/sbuf.h> 66 #include <sys/smp.h> 67 #include <sys/sysctl.h> 68 #include <sys/time.h> 69 #include <sys/vmem.h> 70 #ifdef EPOCH_TRACE 71 #include <sys/epoch.h> 72 #endif 73 74 #include <vm/vm.h> 75 #include <vm/pmap.h> 76 #include <vm/vm_domainset.h> 77 #include <vm/vm_pageout.h> 78 #include <vm/vm_param.h> 79 #include <vm/vm_kern.h> 80 #include <vm/vm_extern.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_phys.h> 84 #include <vm/vm_pagequeue.h> 85 #include <vm/uma.h> 86 #include <vm/uma_int.h> 87 #include <vm/uma_dbg.h> 88 89 #ifdef DEBUG_MEMGUARD 90 #include <vm/memguard.h> 91 #endif 92 #ifdef DEBUG_REDZONE 93 #include <vm/redzone.h> 94 #endif 95 96 #if defined(INVARIANTS) && defined(__i386__) 97 #include <machine/cpu.h> 98 #endif 99 100 #include <ddb/ddb.h> 101 102 #ifdef KDTRACE_HOOKS 103 #include <sys/dtrace_bsd.h> 104 105 bool __read_frequently dtrace_malloc_enabled; 106 dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; 107 #endif 108 109 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ 110 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) 111 #define MALLOC_DEBUG 1 112 #endif 113 114 #if defined(KASAN) || defined(DEBUG_REDZONE) 115 #define DEBUG_REDZONE_ARG_DEF , unsigned long osize 116 #define DEBUG_REDZONE_ARG , osize 117 #else 118 #define DEBUG_REDZONE_ARG_DEF 119 #define DEBUG_REDZONE_ARG 120 #endif 121 122 /* 123 * When realloc() is called, if the new size is sufficiently smaller than 124 * the old size, realloc() will allocate a new, smaller block to avoid 125 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 126 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 127 */ 128 #ifndef REALLOC_FRACTION 129 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 130 #endif 131 132 /* 133 * Centrally define some common malloc types. 134 */ 135 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 136 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 137 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 138 139 static struct malloc_type *kmemstatistics; 140 static int kmemcount; 141 142 #define KMEM_ZSHIFT 4 143 #define KMEM_ZBASE 16 144 #define KMEM_ZMASK (KMEM_ZBASE - 1) 145 146 #define KMEM_ZMAX 65536 147 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 148 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 149 150 #ifndef MALLOC_DEBUG_MAXZONES 151 #define MALLOC_DEBUG_MAXZONES 1 152 #endif 153 static int numzones = MALLOC_DEBUG_MAXZONES; 154 155 /* 156 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 157 * of various sizes. 158 * 159 * Warning: the layout of the struct is duplicated in libmemstat for KVM support. 160 * 161 * XXX: The comment here used to read "These won't be powers of two for 162 * long." It's possible that a significant amount of wasted memory could be 163 * recovered by tuning the sizes of these buckets. 164 */ 165 struct { 166 int kz_size; 167 const char *kz_name; 168 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 169 } kmemzones[] = { 170 {16, "malloc-16", }, 171 {32, "malloc-32", }, 172 {64, "malloc-64", }, 173 {128, "malloc-128", }, 174 {256, "malloc-256", }, 175 {384, "malloc-384", }, 176 {512, "malloc-512", }, 177 {1024, "malloc-1024", }, 178 {2048, "malloc-2048", }, 179 {4096, "malloc-4096", }, 180 {8192, "malloc-8192", }, 181 {16384, "malloc-16384", }, 182 {32768, "malloc-32768", }, 183 {65536, "malloc-65536", }, 184 {0, NULL}, 185 }; 186 187 u_long vm_kmem_size; 188 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 189 "Size of kernel memory"); 190 191 static u_long kmem_zmax = KMEM_ZMAX; 192 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, 193 "Maximum allocation size that malloc(9) would use UMA as backend"); 194 195 static u_long vm_kmem_size_min; 196 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 197 "Minimum size of kernel memory"); 198 199 static u_long vm_kmem_size_max; 200 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 201 "Maximum size of kernel memory"); 202 203 static u_int vm_kmem_size_scale; 204 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 205 "Scale factor for kernel memory size"); 206 207 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 208 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 209 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 210 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 211 212 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 213 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 214 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 215 sysctl_kmem_map_free, "LU", "Free space in kmem"); 216 217 static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 218 "Malloc information"); 219 220 static u_int vm_malloc_zone_count = nitems(kmemzones); 221 SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count, 222 CTLFLAG_RD, &vm_malloc_zone_count, 0, 223 "Number of malloc zones"); 224 225 static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS); 226 SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes, 227 CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0, 228 sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc"); 229 230 /* 231 * The malloc_mtx protects the kmemstatistics linked list. 232 */ 233 struct mtx malloc_mtx; 234 235 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 236 237 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 238 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 239 "Kernel malloc debugging options"); 240 #endif 241 242 /* 243 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 244 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 245 */ 246 #ifdef MALLOC_MAKE_FAILURES 247 static int malloc_failure_rate; 248 static int malloc_nowait_count; 249 static int malloc_failure_count; 250 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, 251 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 252 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 253 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 254 #endif 255 256 static int 257 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 258 { 259 u_long size; 260 261 size = uma_size(); 262 return (sysctl_handle_long(oidp, &size, 0, req)); 263 } 264 265 static int 266 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 267 { 268 u_long size, limit; 269 270 /* The sysctl is unsigned, implement as a saturation value. */ 271 size = uma_size(); 272 limit = uma_limit(); 273 if (size > limit) 274 size = 0; 275 else 276 size = limit - size; 277 return (sysctl_handle_long(oidp, &size, 0, req)); 278 } 279 280 static int 281 sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS) 282 { 283 int sizes[nitems(kmemzones)]; 284 int i; 285 286 for (i = 0; i < nitems(kmemzones); i++) { 287 sizes[i] = kmemzones[i].kz_size; 288 } 289 290 return (SYSCTL_OUT(req, &sizes, sizeof(sizes))); 291 } 292 293 /* 294 * malloc(9) uma zone separation -- sub-page buffer overruns in one 295 * malloc type will affect only a subset of other malloc types. 296 */ 297 #if MALLOC_DEBUG_MAXZONES > 1 298 static void 299 tunable_set_numzones(void) 300 { 301 302 TUNABLE_INT_FETCH("debug.malloc.numzones", 303 &numzones); 304 305 /* Sanity check the number of malloc uma zones. */ 306 if (numzones <= 0) 307 numzones = 1; 308 if (numzones > MALLOC_DEBUG_MAXZONES) 309 numzones = MALLOC_DEBUG_MAXZONES; 310 } 311 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 312 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 313 &numzones, 0, "Number of malloc uma subzones"); 314 315 /* 316 * Any number that changes regularly is an okay choice for the 317 * offset. Build numbers are pretty good of you have them. 318 */ 319 static u_int zone_offset = __FreeBSD_version; 320 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 321 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 322 &zone_offset, 0, "Separate malloc types by examining the " 323 "Nth character in the malloc type short description."); 324 325 static void 326 mtp_set_subzone(struct malloc_type *mtp) 327 { 328 struct malloc_type_internal *mtip; 329 const char *desc; 330 size_t len; 331 u_int val; 332 333 mtip = &mtp->ks_mti; 334 desc = mtp->ks_shortdesc; 335 if (desc == NULL || (len = strlen(desc)) == 0) 336 val = 0; 337 else 338 val = desc[zone_offset % len]; 339 mtip->mti_zone = (val % numzones); 340 } 341 342 static inline u_int 343 mtp_get_subzone(struct malloc_type *mtp) 344 { 345 struct malloc_type_internal *mtip; 346 347 mtip = &mtp->ks_mti; 348 349 KASSERT(mtip->mti_zone < numzones, 350 ("mti_zone %u out of range %d", 351 mtip->mti_zone, numzones)); 352 return (mtip->mti_zone); 353 } 354 #elif MALLOC_DEBUG_MAXZONES == 0 355 #error "MALLOC_DEBUG_MAXZONES must be positive." 356 #else 357 static void 358 mtp_set_subzone(struct malloc_type *mtp) 359 { 360 struct malloc_type_internal *mtip; 361 362 mtip = &mtp->ks_mti; 363 mtip->mti_zone = 0; 364 } 365 366 static inline u_int 367 mtp_get_subzone(struct malloc_type *mtp) 368 { 369 370 return (0); 371 } 372 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 373 374 /* 375 * An allocation has succeeded -- update malloc type statistics for the 376 * amount of bucket size. Occurs within a critical section so that the 377 * thread isn't preempted and doesn't migrate while updating per-PCU 378 * statistics. 379 */ 380 static void 381 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 382 int zindx) 383 { 384 struct malloc_type_internal *mtip; 385 struct malloc_type_stats *mtsp; 386 387 critical_enter(); 388 mtip = &mtp->ks_mti; 389 mtsp = zpcpu_get(mtip->mti_stats); 390 if (size > 0) { 391 mtsp->mts_memalloced += size; 392 mtsp->mts_numallocs++; 393 } 394 if (zindx != -1) 395 mtsp->mts_size |= 1 << zindx; 396 397 #ifdef KDTRACE_HOOKS 398 if (__predict_false(dtrace_malloc_enabled)) { 399 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 400 if (probe_id != 0) 401 (dtrace_malloc_probe)(probe_id, 402 (uintptr_t) mtp, (uintptr_t) mtip, 403 (uintptr_t) mtsp, size, zindx); 404 } 405 #endif 406 407 critical_exit(); 408 } 409 410 void 411 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 412 { 413 414 if (size > 0) 415 malloc_type_zone_allocated(mtp, size, -1); 416 } 417 418 /* 419 * A free operation has occurred -- update malloc type statistics for the 420 * amount of the bucket size. Occurs within a critical section so that the 421 * thread isn't preempted and doesn't migrate while updating per-CPU 422 * statistics. 423 */ 424 void 425 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 426 { 427 struct malloc_type_internal *mtip; 428 struct malloc_type_stats *mtsp; 429 430 critical_enter(); 431 mtip = &mtp->ks_mti; 432 mtsp = zpcpu_get(mtip->mti_stats); 433 mtsp->mts_memfreed += size; 434 mtsp->mts_numfrees++; 435 436 #ifdef KDTRACE_HOOKS 437 if (__predict_false(dtrace_malloc_enabled)) { 438 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 439 if (probe_id != 0) 440 (dtrace_malloc_probe)(probe_id, 441 (uintptr_t) mtp, (uintptr_t) mtip, 442 (uintptr_t) mtsp, size, 0); 443 } 444 #endif 445 446 critical_exit(); 447 } 448 449 /* 450 * contigmalloc: 451 * 452 * Allocate a block of physically contiguous memory. 453 * 454 * If M_NOWAIT is set, this routine will not block and return NULL if 455 * the allocation fails. 456 */ 457 void * 458 contigmalloc(unsigned long size, struct malloc_type *type, int flags, 459 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 460 vm_paddr_t boundary) 461 { 462 void *ret; 463 464 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, 465 boundary, VM_MEMATTR_DEFAULT); 466 if (ret != NULL) 467 malloc_type_allocated(type, round_page(size)); 468 return (ret); 469 } 470 471 void * 472 contigmalloc_domainset(unsigned long size, struct malloc_type *type, 473 struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, 474 unsigned long alignment, vm_paddr_t boundary) 475 { 476 void *ret; 477 478 ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high, 479 alignment, boundary, VM_MEMATTR_DEFAULT); 480 if (ret != NULL) 481 malloc_type_allocated(type, round_page(size)); 482 return (ret); 483 } 484 485 /* 486 * contigfree: 487 * 488 * Free a block of memory allocated by contigmalloc. 489 * 490 * This routine may not block. 491 */ 492 void 493 contigfree(void *addr, unsigned long size, struct malloc_type *type) 494 { 495 496 kmem_free((vm_offset_t)addr, size); 497 malloc_type_freed(type, round_page(size)); 498 } 499 500 #ifdef MALLOC_DEBUG 501 static int 502 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, 503 int flags) 504 { 505 #ifdef INVARIANTS 506 int indx; 507 508 KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version")); 509 /* 510 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 511 */ 512 indx = flags & (M_WAITOK | M_NOWAIT); 513 if (indx != M_NOWAIT && indx != M_WAITOK) { 514 static struct timeval lasterr; 515 static int curerr, once; 516 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 517 printf("Bad malloc flags: %x\n", indx); 518 kdb_backtrace(); 519 flags |= M_WAITOK; 520 once++; 521 } 522 } 523 #endif 524 #ifdef MALLOC_MAKE_FAILURES 525 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 526 atomic_add_int(&malloc_nowait_count, 1); 527 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 528 atomic_add_int(&malloc_failure_count, 1); 529 *vap = NULL; 530 return (EJUSTRETURN); 531 } 532 } 533 #endif 534 if (flags & M_WAITOK) { 535 KASSERT(curthread->td_intr_nesting_level == 0, 536 ("malloc(M_WAITOK) in interrupt context")); 537 if (__predict_false(!THREAD_CAN_SLEEP())) { 538 #ifdef EPOCH_TRACE 539 epoch_trace_list(curthread); 540 #endif 541 KASSERT(0, 542 ("malloc(M_WAITOK) with sleeping prohibited")); 543 } 544 } 545 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 546 ("malloc: called with spinlock or critical section held")); 547 548 #ifdef DEBUG_MEMGUARD 549 if (memguard_cmp_mtp(mtp, *sizep)) { 550 *vap = memguard_alloc(*sizep, flags); 551 if (*vap != NULL) 552 return (EJUSTRETURN); 553 /* This is unfortunate but should not be fatal. */ 554 } 555 #endif 556 557 #ifdef DEBUG_REDZONE 558 *sizep = redzone_size_ntor(*sizep); 559 #endif 560 561 return (0); 562 } 563 #endif 564 565 /* 566 * Handle large allocations and frees by using kmem_malloc directly. 567 */ 568 static inline bool 569 malloc_large_slab(uma_slab_t slab) 570 { 571 uintptr_t va; 572 573 va = (uintptr_t)slab; 574 return ((va & 1) != 0); 575 } 576 577 static inline size_t 578 malloc_large_size(uma_slab_t slab) 579 { 580 uintptr_t va; 581 582 va = (uintptr_t)slab; 583 return (va >> 1); 584 } 585 586 static caddr_t __noinline 587 malloc_large(size_t *size, struct malloc_type *mtp, struct domainset *policy, 588 int flags DEBUG_REDZONE_ARG_DEF) 589 { 590 vm_offset_t kva; 591 caddr_t va; 592 size_t sz; 593 594 sz = roundup(*size, PAGE_SIZE); 595 kva = kmem_malloc_domainset(policy, sz, flags); 596 if (kva != 0) { 597 /* The low bit is unused for slab pointers. */ 598 vsetzoneslab(kva, NULL, (void *)((sz << 1) | 1)); 599 uma_total_inc(sz); 600 *size = sz; 601 } 602 va = (caddr_t)kva; 603 malloc_type_allocated(mtp, va == NULL ? 0 : sz); 604 if (__predict_false(va == NULL)) { 605 KASSERT((flags & M_WAITOK) == 0, 606 ("malloc(M_WAITOK) returned NULL")); 607 } else { 608 #ifdef DEBUG_REDZONE 609 va = redzone_setup(va, osize); 610 #endif 611 kasan_mark((void *)va, osize, sz, KASAN_MALLOC_REDZONE); 612 } 613 return (va); 614 } 615 616 static void 617 free_large(void *addr, size_t size) 618 { 619 620 kmem_free((vm_offset_t)addr, size); 621 uma_total_dec(size); 622 } 623 624 /* 625 * malloc: 626 * 627 * Allocate a block of memory. 628 * 629 * If M_NOWAIT is set, this routine will not block and return NULL if 630 * the allocation fails. 631 */ 632 void * 633 (malloc)(size_t size, struct malloc_type *mtp, int flags) 634 { 635 int indx; 636 caddr_t va; 637 uma_zone_t zone; 638 #if defined(DEBUG_REDZONE) || defined(KASAN) 639 unsigned long osize = size; 640 #endif 641 642 MPASS((flags & M_EXEC) == 0); 643 644 #ifdef MALLOC_DEBUG 645 va = NULL; 646 if (malloc_dbg(&va, &size, mtp, flags) != 0) 647 return (va); 648 #endif 649 650 if (__predict_false(size > kmem_zmax)) 651 return (malloc_large(&size, mtp, DOMAINSET_RR(), flags 652 DEBUG_REDZONE_ARG)); 653 654 if (size & KMEM_ZMASK) 655 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 656 indx = kmemsize[size >> KMEM_ZSHIFT]; 657 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 658 va = uma_zalloc(zone, flags); 659 if (va != NULL) 660 size = zone->uz_size; 661 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 662 if (__predict_false(va == NULL)) { 663 KASSERT((flags & M_WAITOK) == 0, 664 ("malloc(M_WAITOK) returned NULL")); 665 } 666 #ifdef DEBUG_REDZONE 667 if (va != NULL) 668 va = redzone_setup(va, osize); 669 #endif 670 #ifdef KASAN 671 if (va != NULL) 672 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 673 #endif 674 return ((void *) va); 675 } 676 677 static void * 678 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain, 679 int flags) 680 { 681 uma_zone_t zone; 682 caddr_t va; 683 size_t size; 684 int indx; 685 686 size = *sizep; 687 KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0, 688 ("malloc_domain: Called with bad flag / size combination.")); 689 if (size & KMEM_ZMASK) 690 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 691 indx = kmemsize[size >> KMEM_ZSHIFT]; 692 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 693 va = uma_zalloc_domain(zone, NULL, domain, flags); 694 if (va != NULL) 695 *sizep = zone->uz_size; 696 *indxp = indx; 697 return ((void *)va); 698 } 699 700 void * 701 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, 702 int flags) 703 { 704 struct vm_domainset_iter di; 705 caddr_t va; 706 int domain; 707 int indx; 708 #if defined(KASAN) || defined(DEBUG_REDZONE) 709 unsigned long osize = size; 710 #endif 711 712 MPASS((flags & M_EXEC) == 0); 713 714 #ifdef MALLOC_DEBUG 715 va = NULL; 716 if (malloc_dbg(&va, &size, mtp, flags) != 0) 717 return (va); 718 #endif 719 720 if (__predict_false(size > kmem_zmax)) 721 return (malloc_large(&size, mtp, DOMAINSET_RR(), flags 722 DEBUG_REDZONE_ARG)); 723 724 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 725 do { 726 va = malloc_domain(&size, &indx, mtp, domain, flags); 727 } while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0); 728 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 729 if (__predict_false(va == NULL)) { 730 KASSERT((flags & M_WAITOK) == 0, 731 ("malloc(M_WAITOK) returned NULL")); 732 } 733 #ifdef DEBUG_REDZONE 734 if (va != NULL) 735 va = redzone_setup(va, osize); 736 #endif 737 #ifdef KASAN 738 if (va != NULL) 739 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 740 #endif 741 return (va); 742 } 743 744 /* 745 * Allocate an executable area. 746 */ 747 void * 748 malloc_exec(size_t size, struct malloc_type *mtp, int flags) 749 { 750 751 return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags)); 752 } 753 754 void * 755 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds, 756 int flags) 757 { 758 #if defined(DEBUG_REDZONE) || defined(KASAN) 759 unsigned long osize = size; 760 #endif 761 #ifdef MALLOC_DEBUG 762 caddr_t va; 763 #endif 764 765 flags |= M_EXEC; 766 767 #ifdef MALLOC_DEBUG 768 va = NULL; 769 if (malloc_dbg(&va, &size, mtp, flags) != 0) 770 return (va); 771 #endif 772 773 return (malloc_large(&size, mtp, ds, flags DEBUG_REDZONE_ARG)); 774 } 775 776 void * 777 malloc_domainset_aligned(size_t size, size_t align, 778 struct malloc_type *mtp, struct domainset *ds, int flags) 779 { 780 void *res; 781 size_t asize; 782 783 KASSERT(align != 0 && powerof2(align), 784 ("malloc_domainset_aligned: wrong align %#zx size %#zx", 785 align, size)); 786 KASSERT(align <= PAGE_SIZE, 787 ("malloc_domainset_aligned: align %#zx (size %#zx) too large", 788 align, size)); 789 790 /* 791 * Round the allocation size up to the next power of 2, 792 * because we can only guarantee alignment for 793 * power-of-2-sized allocations. Further increase the 794 * allocation size to align if the rounded size is less than 795 * align, since malloc zones provide alignment equal to their 796 * size. 797 */ 798 asize = size <= align ? align : 1UL << flsl(size - 1); 799 800 res = malloc_domainset(asize, mtp, ds, flags); 801 KASSERT(res == NULL || ((uintptr_t)res & (align - 1)) == 0, 802 ("malloc_domainset_aligned: result not aligned %p size %#zx " 803 "allocsize %#zx align %#zx", res, size, asize, align)); 804 return (res); 805 } 806 807 void * 808 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) 809 { 810 811 if (WOULD_OVERFLOW(nmemb, size)) 812 panic("mallocarray: %zu * %zu overflowed", nmemb, size); 813 814 return (malloc(size * nmemb, type, flags)); 815 } 816 817 void * 818 mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type, 819 struct domainset *ds, int flags) 820 { 821 822 if (WOULD_OVERFLOW(nmemb, size)) 823 panic("mallocarray_domainset: %zu * %zu overflowed", nmemb, size); 824 825 return (malloc_domainset(size * nmemb, type, ds, flags)); 826 } 827 828 #if defined(INVARIANTS) && !defined(KASAN) 829 static void 830 free_save_type(void *addr, struct malloc_type *mtp, u_long size) 831 { 832 struct malloc_type **mtpp = addr; 833 834 /* 835 * Cache a pointer to the malloc_type that most recently freed 836 * this memory here. This way we know who is most likely to 837 * have stepped on it later. 838 * 839 * This code assumes that size is a multiple of 8 bytes for 840 * 64 bit machines 841 */ 842 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 843 mtpp += (size - sizeof(struct malloc_type *)) / 844 sizeof(struct malloc_type *); 845 *mtpp = mtp; 846 } 847 #endif 848 849 #ifdef MALLOC_DEBUG 850 static int 851 free_dbg(void **addrp, struct malloc_type *mtp) 852 { 853 void *addr; 854 855 addr = *addrp; 856 KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version")); 857 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 858 ("free: called with spinlock or critical section held")); 859 860 /* free(NULL, ...) does nothing */ 861 if (addr == NULL) 862 return (EJUSTRETURN); 863 864 #ifdef DEBUG_MEMGUARD 865 if (is_memguard_addr(addr)) { 866 memguard_free(addr); 867 return (EJUSTRETURN); 868 } 869 #endif 870 871 #ifdef DEBUG_REDZONE 872 redzone_check(addr); 873 *addrp = redzone_addr_ntor(addr); 874 #endif 875 876 return (0); 877 } 878 #endif 879 880 /* 881 * free: 882 * 883 * Free a block of memory allocated by malloc. 884 * 885 * This routine may not block. 886 */ 887 void 888 free(void *addr, struct malloc_type *mtp) 889 { 890 uma_zone_t zone; 891 uma_slab_t slab; 892 u_long size; 893 894 #ifdef MALLOC_DEBUG 895 if (free_dbg(&addr, mtp) != 0) 896 return; 897 #endif 898 /* free(NULL, ...) does nothing */ 899 if (addr == NULL) 900 return; 901 902 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 903 if (slab == NULL) 904 panic("free: address %p(%p) has not been allocated.\n", 905 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 906 907 if (__predict_true(!malloc_large_slab(slab))) { 908 size = zone->uz_size; 909 #if defined(INVARIANTS) && !defined(KASAN) 910 free_save_type(addr, mtp, size); 911 #endif 912 uma_zfree_arg(zone, addr, slab); 913 } else { 914 size = malloc_large_size(slab); 915 free_large(addr, size); 916 } 917 malloc_type_freed(mtp, size); 918 } 919 920 /* 921 * zfree: 922 * 923 * Zero then free a block of memory allocated by malloc. 924 * 925 * This routine may not block. 926 */ 927 void 928 zfree(void *addr, struct malloc_type *mtp) 929 { 930 uma_zone_t zone; 931 uma_slab_t slab; 932 u_long size; 933 934 #ifdef MALLOC_DEBUG 935 if (free_dbg(&addr, mtp) != 0) 936 return; 937 #endif 938 /* free(NULL, ...) does nothing */ 939 if (addr == NULL) 940 return; 941 942 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 943 if (slab == NULL) 944 panic("free: address %p(%p) has not been allocated.\n", 945 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 946 947 if (__predict_true(!malloc_large_slab(slab))) { 948 size = zone->uz_size; 949 #if defined(INVARIANTS) && !defined(KASAN) 950 free_save_type(addr, mtp, size); 951 #endif 952 kasan_mark(addr, size, size, 0); 953 explicit_bzero(addr, size); 954 uma_zfree_arg(zone, addr, slab); 955 } else { 956 size = malloc_large_size(slab); 957 kasan_mark(addr, size, size, 0); 958 explicit_bzero(addr, size); 959 free_large(addr, size); 960 } 961 malloc_type_freed(mtp, size); 962 } 963 964 /* 965 * realloc: change the size of a memory block 966 */ 967 void * 968 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) 969 { 970 uma_zone_t zone; 971 uma_slab_t slab; 972 unsigned long alloc; 973 void *newaddr; 974 975 KASSERT(mtp->ks_version == M_VERSION, 976 ("realloc: bad malloc type version")); 977 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 978 ("realloc: called with spinlock or critical section held")); 979 980 /* realloc(NULL, ...) is equivalent to malloc(...) */ 981 if (addr == NULL) 982 return (malloc(size, mtp, flags)); 983 984 /* 985 * XXX: Should report free of old memory and alloc of new memory to 986 * per-CPU stats. 987 */ 988 989 #ifdef DEBUG_MEMGUARD 990 if (is_memguard_addr(addr)) 991 return (memguard_realloc(addr, size, mtp, flags)); 992 #endif 993 994 #ifdef DEBUG_REDZONE 995 slab = NULL; 996 zone = NULL; 997 alloc = redzone_get_size(addr); 998 #else 999 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1000 1001 /* Sanity check */ 1002 KASSERT(slab != NULL, 1003 ("realloc: address %p out of range", (void *)addr)); 1004 1005 /* Get the size of the original block */ 1006 if (!malloc_large_slab(slab)) 1007 alloc = zone->uz_size; 1008 else 1009 alloc = malloc_large_size(slab); 1010 1011 /* Reuse the original block if appropriate */ 1012 if (size <= alloc && 1013 (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) { 1014 kasan_mark((void *)addr, size, alloc, KASAN_MALLOC_REDZONE); 1015 return (addr); 1016 } 1017 #endif /* !DEBUG_REDZONE */ 1018 1019 /* Allocate a new, bigger (or smaller) block */ 1020 if ((newaddr = malloc(size, mtp, flags)) == NULL) 1021 return (NULL); 1022 1023 /* 1024 * Copy over original contents. For KASAN, the redzone must be marked 1025 * valid before performing the copy. 1026 */ 1027 kasan_mark(addr, alloc, alloc, 0); 1028 bcopy(addr, newaddr, min(size, alloc)); 1029 free(addr, mtp); 1030 return (newaddr); 1031 } 1032 1033 /* 1034 * reallocf: same as realloc() but free memory on failure. 1035 */ 1036 void * 1037 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) 1038 { 1039 void *mem; 1040 1041 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 1042 free(addr, mtp); 1043 return (mem); 1044 } 1045 1046 /* 1047 * malloc_size: returns the number of bytes allocated for a request of the 1048 * specified size 1049 */ 1050 size_t 1051 malloc_size(size_t size) 1052 { 1053 int indx; 1054 1055 if (size > kmem_zmax) 1056 return (0); 1057 if (size & KMEM_ZMASK) 1058 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 1059 indx = kmemsize[size >> KMEM_ZSHIFT]; 1060 return (kmemzones[indx].kz_size); 1061 } 1062 1063 /* 1064 * malloc_usable_size: returns the usable size of the allocation. 1065 */ 1066 size_t 1067 malloc_usable_size(const void *addr) 1068 { 1069 #ifndef DEBUG_REDZONE 1070 uma_zone_t zone; 1071 uma_slab_t slab; 1072 #endif 1073 u_long size; 1074 1075 if (addr == NULL) 1076 return (0); 1077 1078 #ifdef DEBUG_MEMGUARD 1079 if (is_memguard_addr(__DECONST(void *, addr))) 1080 return (memguard_get_req_size(addr)); 1081 #endif 1082 1083 #ifdef DEBUG_REDZONE 1084 size = redzone_get_size(__DECONST(void *, addr)); 1085 #else 1086 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1087 if (slab == NULL) 1088 panic("malloc_usable_size: address %p(%p) is not allocated.\n", 1089 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 1090 1091 if (!malloc_large_slab(slab)) 1092 size = zone->uz_size; 1093 else 1094 size = malloc_large_size(slab); 1095 #endif 1096 return (size); 1097 } 1098 1099 CTASSERT(VM_KMEM_SIZE_SCALE >= 1); 1100 1101 /* 1102 * Initialize the kernel memory (kmem) arena. 1103 */ 1104 void 1105 kmeminit(void) 1106 { 1107 u_long mem_size; 1108 u_long tmp; 1109 1110 #ifdef VM_KMEM_SIZE 1111 if (vm_kmem_size == 0) 1112 vm_kmem_size = VM_KMEM_SIZE; 1113 #endif 1114 #ifdef VM_KMEM_SIZE_MIN 1115 if (vm_kmem_size_min == 0) 1116 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 1117 #endif 1118 #ifdef VM_KMEM_SIZE_MAX 1119 if (vm_kmem_size_max == 0) 1120 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 1121 #endif 1122 /* 1123 * Calculate the amount of kernel virtual address (KVA) space that is 1124 * preallocated to the kmem arena. In order to support a wide range 1125 * of machines, it is a function of the physical memory size, 1126 * specifically, 1127 * 1128 * min(max(physical memory size / VM_KMEM_SIZE_SCALE, 1129 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) 1130 * 1131 * Every architecture must define an integral value for 1132 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN 1133 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and 1134 * ceiling on this preallocation, are optional. Typically, 1135 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on 1136 * a given architecture. 1137 */ 1138 mem_size = vm_cnt.v_page_count; 1139 if (mem_size <= 32768) /* delphij XXX 128MB */ 1140 kmem_zmax = PAGE_SIZE; 1141 1142 if (vm_kmem_size_scale < 1) 1143 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 1144 1145 /* 1146 * Check if we should use defaults for the "vm_kmem_size" 1147 * variable: 1148 */ 1149 if (vm_kmem_size == 0) { 1150 vm_kmem_size = mem_size / vm_kmem_size_scale; 1151 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ? 1152 vm_kmem_size_max : vm_kmem_size * PAGE_SIZE; 1153 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) 1154 vm_kmem_size = vm_kmem_size_min; 1155 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 1156 vm_kmem_size = vm_kmem_size_max; 1157 } 1158 if (vm_kmem_size == 0) 1159 panic("Tune VM_KMEM_SIZE_* for the platform"); 1160 1161 /* 1162 * The amount of KVA space that is preallocated to the 1163 * kmem arena can be set statically at compile-time or manually 1164 * through the kernel environment. However, it is still limited to 1165 * twice the physical memory size, which has been sufficient to handle 1166 * the most severe cases of external fragmentation in the kmem arena. 1167 */ 1168 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 1169 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 1170 1171 vm_kmem_size = round_page(vm_kmem_size); 1172 1173 #ifdef KASAN 1174 /* 1175 * With KASAN enabled, dynamically allocated kernel memory is shadowed. 1176 * Account for this when setting the UMA limit. 1177 */ 1178 vm_kmem_size = (vm_kmem_size * KASAN_SHADOW_SCALE) / 1179 (KASAN_SHADOW_SCALE + 1); 1180 #endif 1181 1182 #ifdef DEBUG_MEMGUARD 1183 tmp = memguard_fudge(vm_kmem_size, kernel_map); 1184 #else 1185 tmp = vm_kmem_size; 1186 #endif 1187 uma_set_limit(tmp); 1188 1189 #ifdef DEBUG_MEMGUARD 1190 /* 1191 * Initialize MemGuard if support compiled in. MemGuard is a 1192 * replacement allocator used for detecting tamper-after-free 1193 * scenarios as they occur. It is only used for debugging. 1194 */ 1195 memguard_init(kernel_arena); 1196 #endif 1197 } 1198 1199 /* 1200 * Initialize the kernel memory allocator 1201 */ 1202 /* ARGSUSED*/ 1203 static void 1204 mallocinit(void *dummy) 1205 { 1206 int i; 1207 uint8_t indx; 1208 1209 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 1210 1211 kmeminit(); 1212 1213 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) 1214 kmem_zmax = KMEM_ZMAX; 1215 1216 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 1217 int size = kmemzones[indx].kz_size; 1218 const char *name = kmemzones[indx].kz_name; 1219 size_t align; 1220 int subzone; 1221 1222 align = UMA_ALIGN_PTR; 1223 if (powerof2(size) && size > sizeof(void *)) 1224 align = MIN(size, PAGE_SIZE) - 1; 1225 for (subzone = 0; subzone < numzones; subzone++) { 1226 kmemzones[indx].kz_zone[subzone] = 1227 uma_zcreate(name, size, 1228 #if defined(INVARIANTS) && !defined(KASAN) 1229 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 1230 #else 1231 NULL, NULL, NULL, NULL, 1232 #endif 1233 align, UMA_ZONE_MALLOC); 1234 } 1235 for (;i <= size; i+= KMEM_ZBASE) 1236 kmemsize[i >> KMEM_ZSHIFT] = indx; 1237 } 1238 } 1239 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); 1240 1241 void 1242 malloc_init(void *data) 1243 { 1244 struct malloc_type_internal *mtip; 1245 struct malloc_type *mtp; 1246 1247 KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init")); 1248 1249 mtp = data; 1250 if (mtp->ks_version != M_VERSION) 1251 panic("malloc_init: type %s with unsupported version %lu", 1252 mtp->ks_shortdesc, mtp->ks_version); 1253 1254 mtip = &mtp->ks_mti; 1255 mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO); 1256 mtp_set_subzone(mtp); 1257 1258 mtx_lock(&malloc_mtx); 1259 mtp->ks_next = kmemstatistics; 1260 kmemstatistics = mtp; 1261 kmemcount++; 1262 mtx_unlock(&malloc_mtx); 1263 } 1264 1265 void 1266 malloc_uninit(void *data) 1267 { 1268 struct malloc_type_internal *mtip; 1269 struct malloc_type_stats *mtsp; 1270 struct malloc_type *mtp, *temp; 1271 long temp_allocs, temp_bytes; 1272 int i; 1273 1274 mtp = data; 1275 KASSERT(mtp->ks_version == M_VERSION, 1276 ("malloc_uninit: bad malloc type version")); 1277 1278 mtx_lock(&malloc_mtx); 1279 mtip = &mtp->ks_mti; 1280 if (mtp != kmemstatistics) { 1281 for (temp = kmemstatistics; temp != NULL; 1282 temp = temp->ks_next) { 1283 if (temp->ks_next == mtp) { 1284 temp->ks_next = mtp->ks_next; 1285 break; 1286 } 1287 } 1288 KASSERT(temp, 1289 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 1290 } else 1291 kmemstatistics = mtp->ks_next; 1292 kmemcount--; 1293 mtx_unlock(&malloc_mtx); 1294 1295 /* 1296 * Look for memory leaks. 1297 */ 1298 temp_allocs = temp_bytes = 0; 1299 for (i = 0; i <= mp_maxid; i++) { 1300 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1301 temp_allocs += mtsp->mts_numallocs; 1302 temp_allocs -= mtsp->mts_numfrees; 1303 temp_bytes += mtsp->mts_memalloced; 1304 temp_bytes -= mtsp->mts_memfreed; 1305 } 1306 if (temp_allocs > 0 || temp_bytes > 0) { 1307 printf("Warning: memory type %s leaked memory on destroy " 1308 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 1309 temp_allocs, temp_bytes); 1310 } 1311 1312 uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats); 1313 } 1314 1315 struct malloc_type * 1316 malloc_desc2type(const char *desc) 1317 { 1318 struct malloc_type *mtp; 1319 1320 mtx_assert(&malloc_mtx, MA_OWNED); 1321 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1322 if (strcmp(mtp->ks_shortdesc, desc) == 0) 1323 return (mtp); 1324 } 1325 return (NULL); 1326 } 1327 1328 static int 1329 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 1330 { 1331 struct malloc_type_stream_header mtsh; 1332 struct malloc_type_internal *mtip; 1333 struct malloc_type_stats *mtsp, zeromts; 1334 struct malloc_type_header mth; 1335 struct malloc_type *mtp; 1336 int error, i; 1337 struct sbuf sbuf; 1338 1339 error = sysctl_wire_old_buffer(req, 0); 1340 if (error != 0) 1341 return (error); 1342 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1343 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 1344 mtx_lock(&malloc_mtx); 1345 1346 bzero(&zeromts, sizeof(zeromts)); 1347 1348 /* 1349 * Insert stream header. 1350 */ 1351 bzero(&mtsh, sizeof(mtsh)); 1352 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 1353 mtsh.mtsh_maxcpus = MAXCPU; 1354 mtsh.mtsh_count = kmemcount; 1355 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 1356 1357 /* 1358 * Insert alternating sequence of type headers and type statistics. 1359 */ 1360 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1361 mtip = &mtp->ks_mti; 1362 1363 /* 1364 * Insert type header. 1365 */ 1366 bzero(&mth, sizeof(mth)); 1367 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 1368 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 1369 1370 /* 1371 * Insert type statistics for each CPU. 1372 */ 1373 for (i = 0; i <= mp_maxid; i++) { 1374 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1375 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); 1376 } 1377 /* 1378 * Fill in the missing CPUs. 1379 */ 1380 for (; i < MAXCPU; i++) { 1381 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); 1382 } 1383 } 1384 mtx_unlock(&malloc_mtx); 1385 error = sbuf_finish(&sbuf); 1386 sbuf_delete(&sbuf); 1387 return (error); 1388 } 1389 1390 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, 1391 CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0, 1392 sysctl_kern_malloc_stats, "s,malloc_type_ustats", 1393 "Return malloc types"); 1394 1395 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 1396 "Count of kernel malloc types"); 1397 1398 void 1399 malloc_type_list(malloc_type_list_func_t *func, void *arg) 1400 { 1401 struct malloc_type *mtp, **bufmtp; 1402 int count, i; 1403 size_t buflen; 1404 1405 mtx_lock(&malloc_mtx); 1406 restart: 1407 mtx_assert(&malloc_mtx, MA_OWNED); 1408 count = kmemcount; 1409 mtx_unlock(&malloc_mtx); 1410 1411 buflen = sizeof(struct malloc_type *) * count; 1412 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 1413 1414 mtx_lock(&malloc_mtx); 1415 1416 if (count < kmemcount) { 1417 free(bufmtp, M_TEMP); 1418 goto restart; 1419 } 1420 1421 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 1422 bufmtp[i] = mtp; 1423 1424 mtx_unlock(&malloc_mtx); 1425 1426 for (i = 0; i < count; i++) 1427 (func)(bufmtp[i], arg); 1428 1429 free(bufmtp, M_TEMP); 1430 } 1431 1432 #ifdef DDB 1433 static int64_t 1434 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs, 1435 uint64_t *inuse) 1436 { 1437 const struct malloc_type_stats *mtsp; 1438 uint64_t frees, alloced, freed; 1439 int i; 1440 1441 *allocs = 0; 1442 frees = 0; 1443 alloced = 0; 1444 freed = 0; 1445 for (i = 0; i <= mp_maxid; i++) { 1446 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1447 1448 *allocs += mtsp->mts_numallocs; 1449 frees += mtsp->mts_numfrees; 1450 alloced += mtsp->mts_memalloced; 1451 freed += mtsp->mts_memfreed; 1452 } 1453 *inuse = *allocs - frees; 1454 return (alloced - freed); 1455 } 1456 1457 DB_SHOW_COMMAND(malloc, db_show_malloc) 1458 { 1459 const char *fmt_hdr, *fmt_entry; 1460 struct malloc_type *mtp; 1461 uint64_t allocs, inuse; 1462 int64_t size; 1463 /* variables for sorting */ 1464 struct malloc_type *last_mtype, *cur_mtype; 1465 int64_t cur_size, last_size; 1466 int ties; 1467 1468 if (modif[0] == 'i') { 1469 fmt_hdr = "%s,%s,%s,%s\n"; 1470 fmt_entry = "\"%s\",%ju,%jdK,%ju\n"; 1471 } else { 1472 fmt_hdr = "%18s %12s %12s %12s\n"; 1473 fmt_entry = "%18s %12ju %12jdK %12ju\n"; 1474 } 1475 1476 db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests"); 1477 1478 /* Select sort, largest size first. */ 1479 last_mtype = NULL; 1480 last_size = INT64_MAX; 1481 for (;;) { 1482 cur_mtype = NULL; 1483 cur_size = -1; 1484 ties = 0; 1485 1486 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1487 /* 1488 * In the case of size ties, print out mtypes 1489 * in the order they are encountered. That is, 1490 * when we encounter the most recently output 1491 * mtype, we have already printed all preceding 1492 * ties, and we must print all following ties. 1493 */ 1494 if (mtp == last_mtype) { 1495 ties = 1; 1496 continue; 1497 } 1498 size = get_malloc_stats(&mtp->ks_mti, &allocs, 1499 &inuse); 1500 if (size > cur_size && size < last_size + ties) { 1501 cur_size = size; 1502 cur_mtype = mtp; 1503 } 1504 } 1505 if (cur_mtype == NULL) 1506 break; 1507 1508 size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse); 1509 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse, 1510 howmany(size, 1024), allocs); 1511 1512 if (db_pager_quit) 1513 break; 1514 1515 last_mtype = cur_mtype; 1516 last_size = cur_size; 1517 } 1518 } 1519 1520 #if MALLOC_DEBUG_MAXZONES > 1 1521 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1522 { 1523 struct malloc_type_internal *mtip; 1524 struct malloc_type *mtp; 1525 u_int subzone; 1526 1527 if (!have_addr) { 1528 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1529 return; 1530 } 1531 mtp = (void *)addr; 1532 if (mtp->ks_version != M_VERSION) { 1533 db_printf("Version %lx does not match expected %x\n", 1534 mtp->ks_version, M_VERSION); 1535 return; 1536 } 1537 1538 mtip = &mtp->ks_mti; 1539 subzone = mtip->mti_zone; 1540 1541 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1542 mtip = &mtp->ks_mti; 1543 if (mtip->mti_zone != subzone) 1544 continue; 1545 db_printf("%s\n", mtp->ks_shortdesc); 1546 if (db_pager_quit) 1547 break; 1548 } 1549 } 1550 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1551 #endif /* DDB */ 1552