xref: /freebsd/sys/kern/kern_malloc.c (revision dce6e6518b85561495cff38a3074a69d29d58a55)
1 /*
2  * Copyright (c) 1987, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_vm.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/mutex.h>
48 #include <sys/vmmeter.h>
49 #include <sys/proc.h>
50 #include <sys/sysctl.h>
51 #include <sys/time.h>
52 
53 #include <vm/vm.h>
54 #include <vm/pmap.h>
55 #include <vm/vm_param.h>
56 #include <vm/vm_kern.h>
57 #include <vm/vm_extern.h>
58 #include <vm/vm_map.h>
59 #include <vm/vm_page.h>
60 #include <vm/uma.h>
61 #include <vm/uma_int.h>
62 #include <vm/uma_dbg.h>
63 
64 #if defined(INVARIANTS) && defined(__i386__)
65 #include <machine/cpu.h>
66 #endif
67 
68 /*
69  * When realloc() is called, if the new size is sufficiently smaller than
70  * the old size, realloc() will allocate a new, smaller block to avoid
71  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
72  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
73  */
74 #ifndef REALLOC_FRACTION
75 #define	REALLOC_FRACTION	1	/* new block if <= half the size */
76 #endif
77 
78 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
79 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
80 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
81 
82 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
83 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
84 
85 static void kmeminit(void *);
86 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
87 
88 static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
89 
90 static struct malloc_type *kmemstatistics;
91 static char *kmembase;
92 static char *kmemlimit;
93 
94 #define KMEM_ZSHIFT	4
95 #define KMEM_ZBASE	16
96 #define KMEM_ZMASK	(KMEM_ZBASE - 1)
97 
98 #define KMEM_ZMAX	65536
99 #define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
100 static u_int8_t kmemsize[KMEM_ZSIZE + 1];
101 
102 /* These won't be powers of two for long */
103 struct {
104 	int kz_size;
105 	char *kz_name;
106 	uma_zone_t kz_zone;
107 } kmemzones[] = {
108 	{16, "16", NULL},
109 	{32, "32", NULL},
110 	{64, "64", NULL},
111 	{128, "128", NULL},
112 	{256, "256", NULL},
113 	{512, "512", NULL},
114 	{1024, "1024", NULL},
115 	{2048, "2048", NULL},
116 	{4096, "4096", NULL},
117 	{8192, "8192", NULL},
118 	{16384, "16384", NULL},
119 	{32768, "32768", NULL},
120 	{65536, "65536", NULL},
121 	{0, NULL},
122 };
123 
124 u_int vm_kmem_size;
125 
126 /*
127  * The malloc_mtx protects the kmemstatistics linked list.
128  */
129 
130 struct mtx malloc_mtx;
131 
132 #ifdef MALLOC_PROFILE
133 uint64_t krequests[KMEM_ZSIZE + 1];
134 
135 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
136 #endif
137 
138 static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS);
139 
140 /* time_uptime of last malloc(9) failure */
141 static time_t t_malloc_fail;
142 
143 #ifdef MALLOC_MAKE_FAILURES
144 /*
145  * Causes malloc failures every (n) mallocs with M_NOWAIT.  If set to 0,
146  * doesn't cause failures.
147  */
148 SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
149     "Kernel malloc debugging options");
150 
151 static int malloc_failure_rate;
152 static int malloc_nowait_count;
153 static int malloc_failure_count;
154 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
155     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
156 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
157 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
158     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
159 #endif
160 
161 int
162 malloc_last_fail(void)
163 {
164 
165 	return (time_uptime - t_malloc_fail);
166 }
167 
168 /*
169  *	malloc:
170  *
171  *	Allocate a block of memory.
172  *
173  *	If M_NOWAIT is set, this routine will not block and return NULL if
174  *	the allocation fails.
175  */
176 void *
177 malloc(size, type, flags)
178 	unsigned long size;
179 	struct malloc_type *type;
180 	int flags;
181 {
182 	int indx;
183 	caddr_t va;
184 	uma_zone_t zone;
185 #ifdef DIAGNOSTIC
186 	unsigned long osize = size;
187 #endif
188 	register struct malloc_type *ksp = type;
189 
190 #ifdef INVARIANTS
191 	/*
192 	 * To make sure that WAITOK or NOWAIT is set, but not more than
193 	 * one, and check against the API botches that are common.
194 	 */
195 	indx = flags & (M_WAITOK | M_NOWAIT | M_DONTWAIT | M_TRYWAIT);
196 	if (indx != M_NOWAIT && indx != M_WAITOK) {
197 		static	struct timeval lasterr;
198 		static	int curerr, once;
199 		if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
200 			printf("Bad malloc flags: %x\n", indx);
201 			backtrace();
202 			flags |= M_WAITOK;
203 			once++;
204 		}
205 	}
206 #endif
207 #if 0
208 	if (size == 0)
209 		Debugger("zero size malloc");
210 #endif
211 #ifdef MALLOC_MAKE_FAILURES
212 	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
213 		atomic_add_int(&malloc_nowait_count, 1);
214 		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
215 			atomic_add_int(&malloc_failure_count, 1);
216 			t_malloc_fail = time_uptime;
217 			return (NULL);
218 		}
219 	}
220 #endif
221 	if (flags & M_WAITOK)
222 		KASSERT(curthread->td_intr_nesting_level == 0,
223 		   ("malloc(M_WAITOK) in interrupt context"));
224 	if (size <= KMEM_ZMAX) {
225 		if (size & KMEM_ZMASK)
226 			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
227 		indx = kmemsize[size >> KMEM_ZSHIFT];
228 		zone = kmemzones[indx].kz_zone;
229 #ifdef MALLOC_PROFILE
230 		krequests[size >> KMEM_ZSHIFT]++;
231 #endif
232 		va = uma_zalloc(zone, flags);
233 		mtx_lock(&ksp->ks_mtx);
234 		if (va == NULL)
235 			goto out;
236 
237 		ksp->ks_size |= 1 << indx;
238 		size = zone->uz_size;
239 	} else {
240 		size = roundup(size, PAGE_SIZE);
241 		zone = NULL;
242 		va = uma_large_malloc(size, flags);
243 		mtx_lock(&ksp->ks_mtx);
244 		if (va == NULL)
245 			goto out;
246 	}
247 	ksp->ks_memuse += size;
248 	ksp->ks_inuse++;
249 out:
250 	ksp->ks_calls++;
251 	if (ksp->ks_memuse > ksp->ks_maxused)
252 		ksp->ks_maxused = ksp->ks_memuse;
253 
254 	mtx_unlock(&ksp->ks_mtx);
255 	if (flags & M_WAITOK)
256 		KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
257 	else if (va == NULL)
258 		t_malloc_fail = time_uptime;
259 #ifdef DIAGNOSTIC
260 	if (va != NULL && !(flags & M_ZERO)) {
261 		memset(va, 0x70, osize);
262 	}
263 #endif
264 	return ((void *) va);
265 }
266 
267 /*
268  *	free:
269  *
270  *	Free a block of memory allocated by malloc.
271  *
272  *	This routine may not block.
273  */
274 void
275 free(addr, type)
276 	void *addr;
277 	struct malloc_type *type;
278 {
279 	register struct malloc_type *ksp = type;
280 	uma_slab_t slab;
281 	u_long size;
282 
283 	/* free(NULL, ...) does nothing */
284 	if (addr == NULL)
285 		return;
286 
287 	KASSERT(ksp->ks_memuse > 0,
288 		("malloc(9)/free(9) confusion.\n%s",
289 		 "Probably freeing with wrong type, but maybe not here."));
290 	size = 0;
291 
292 	slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
293 
294 	if (slab == NULL)
295 		panic("free: address %p(%p) has not been allocated.\n",
296 		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
297 
298 
299 	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
300 #ifdef INVARIANTS
301 		struct malloc_type **mtp = addr;
302 #endif
303 		size = slab->us_zone->uz_size;
304 #ifdef INVARIANTS
305 		/*
306 		 * Cache a pointer to the malloc_type that most recently freed
307 		 * this memory here.  This way we know who is most likely to
308 		 * have stepped on it later.
309 		 *
310 		 * This code assumes that size is a multiple of 8 bytes for
311 		 * 64 bit machines
312 		 */
313 		mtp = (struct malloc_type **)
314 		    ((unsigned long)mtp & ~UMA_ALIGN_PTR);
315 		mtp += (size - sizeof(struct malloc_type *)) /
316 		    sizeof(struct malloc_type *);
317 		*mtp = type;
318 #endif
319 		uma_zfree_arg(slab->us_zone, addr, slab);
320 	} else {
321 		size = slab->us_size;
322 		uma_large_free(slab);
323 	}
324 	mtx_lock(&ksp->ks_mtx);
325 	KASSERT(size <= ksp->ks_memuse,
326 		("malloc(9)/free(9) confusion.\n%s",
327 		 "Probably freeing with wrong type, but maybe not here."));
328 	ksp->ks_memuse -= size;
329 	ksp->ks_inuse--;
330 	mtx_unlock(&ksp->ks_mtx);
331 }
332 
333 /*
334  *	realloc: change the size of a memory block
335  */
336 void *
337 realloc(addr, size, type, flags)
338 	void *addr;
339 	unsigned long size;
340 	struct malloc_type *type;
341 	int flags;
342 {
343 	uma_slab_t slab;
344 	unsigned long alloc;
345 	void *newaddr;
346 
347 	/* realloc(NULL, ...) is equivalent to malloc(...) */
348 	if (addr == NULL)
349 		return (malloc(size, type, flags));
350 
351 	slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
352 
353 	/* Sanity check */
354 	KASSERT(slab != NULL,
355 	    ("realloc: address %p out of range", (void *)addr));
356 
357 	/* Get the size of the original block */
358 	if (slab->us_zone)
359 		alloc = slab->us_zone->uz_size;
360 	else
361 		alloc = slab->us_size;
362 
363 	/* Reuse the original block if appropriate */
364 	if (size <= alloc
365 	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
366 		return (addr);
367 
368 	/* Allocate a new, bigger (or smaller) block */
369 	if ((newaddr = malloc(size, type, flags)) == NULL)
370 		return (NULL);
371 
372 	/* Copy over original contents */
373 	bcopy(addr, newaddr, min(size, alloc));
374 	free(addr, type);
375 	return (newaddr);
376 }
377 
378 /*
379  *	reallocf: same as realloc() but free memory on failure.
380  */
381 void *
382 reallocf(addr, size, type, flags)
383 	void *addr;
384 	unsigned long size;
385 	struct malloc_type *type;
386 	int flags;
387 {
388 	void *mem;
389 
390 	if ((mem = realloc(addr, size, type, flags)) == NULL)
391 		free(addr, type);
392 	return (mem);
393 }
394 
395 /*
396  * Initialize the kernel memory allocator
397  */
398 /* ARGSUSED*/
399 static void
400 kmeminit(dummy)
401 	void *dummy;
402 {
403 	u_int8_t indx;
404 	u_long npg;
405 	u_long mem_size;
406 	int i;
407 
408 	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
409 
410 	/*
411 	 * Try to auto-tune the kernel memory size, so that it is
412 	 * more applicable for a wider range of machine sizes.
413 	 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
414 	 * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
415 	 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
416 	 * available, and on an X86 with a total KVA space of 256MB,
417 	 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
418 	 *
419 	 * Note that the kmem_map is also used by the zone allocator,
420 	 * so make sure that there is enough space.
421 	 */
422 	vm_kmem_size = VM_KMEM_SIZE;
423 	mem_size = cnt.v_page_count;
424 
425 #if defined(VM_KMEM_SIZE_SCALE)
426 	if ((mem_size / VM_KMEM_SIZE_SCALE) > (vm_kmem_size / PAGE_SIZE))
427 		vm_kmem_size = (mem_size / VM_KMEM_SIZE_SCALE) * PAGE_SIZE;
428 #endif
429 
430 #if defined(VM_KMEM_SIZE_MAX)
431 	if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
432 		vm_kmem_size = VM_KMEM_SIZE_MAX;
433 #endif
434 
435 	/* Allow final override from the kernel environment */
436 	TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size);
437 
438 	/*
439 	 * Limit kmem virtual size to twice the physical memory.
440 	 * This allows for kmem map sparseness, but limits the size
441 	 * to something sane. Be careful to not overflow the 32bit
442 	 * ints while doing the check.
443 	 */
444 	if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count)
445 		vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
446 
447 	/*
448 	 * In mbuf_init(), we set up submaps for mbufs and clusters, in which
449 	 * case we rounddown() (nmbufs * MSIZE) and (nmbclusters * MCLBYTES),
450 	 * respectively. Mathematically, this means that what we do here may
451 	 * amount to slightly more address space than we need for the submaps,
452 	 * but it never hurts to have an extra page in kmem_map.
453 	 */
454 	npg = (nmbufs*MSIZE + nmbclusters*MCLBYTES + vm_kmem_size) / PAGE_SIZE;
455 
456 	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
457 		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
458 	kmem_map->system_map = 1;
459 
460 	uma_startup2();
461 
462 	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
463 		int size = kmemzones[indx].kz_size;
464 		char *name = kmemzones[indx].kz_name;
465 
466 		kmemzones[indx].kz_zone = uma_zcreate(name, size,
467 #ifdef INVARIANTS
468 		    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
469 #else
470 		    NULL, NULL, NULL, NULL,
471 #endif
472 		    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
473 
474 		for (;i <= size; i+= KMEM_ZBASE)
475 			kmemsize[i >> KMEM_ZSHIFT] = indx;
476 
477 	}
478 }
479 
480 void
481 malloc_init(data)
482 	void *data;
483 {
484 	struct malloc_type *type = (struct malloc_type *)data;
485 
486 	mtx_lock(&malloc_mtx);
487 	if (type->ks_magic != M_MAGIC)
488 		panic("malloc type lacks magic");
489 
490 	if (cnt.v_page_count == 0)
491 		panic("malloc_init not allowed before vm init");
492 
493 	if (type->ks_next != NULL)
494 		return;
495 
496 	type->ks_next = kmemstatistics;
497 	kmemstatistics = type;
498 	mtx_init(&type->ks_mtx, type->ks_shortdesc, "Malloc Stats", MTX_DEF);
499 	mtx_unlock(&malloc_mtx);
500 }
501 
502 void
503 malloc_uninit(data)
504 	void *data;
505 {
506 	struct malloc_type *type = (struct malloc_type *)data;
507 	struct malloc_type *t;
508 
509 	mtx_lock(&malloc_mtx);
510 	mtx_lock(&type->ks_mtx);
511 	if (type->ks_magic != M_MAGIC)
512 		panic("malloc type lacks magic");
513 
514 	if (cnt.v_page_count == 0)
515 		panic("malloc_uninit not allowed before vm init");
516 
517 	if (type == kmemstatistics)
518 		kmemstatistics = type->ks_next;
519 	else {
520 		for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
521 			if (t->ks_next == type) {
522 				t->ks_next = type->ks_next;
523 				break;
524 			}
525 		}
526 	}
527 	type->ks_next = NULL;
528 	mtx_destroy(&type->ks_mtx);
529 	mtx_unlock(&malloc_mtx);
530 }
531 
532 static int
533 sysctl_kern_malloc(SYSCTL_HANDLER_ARGS)
534 {
535 	struct malloc_type *type;
536 	int linesize = 128;
537 	int curline;
538 	int bufsize;
539 	int first;
540 	int error;
541 	char *buf;
542 	char *p;
543 	int cnt;
544 	int len;
545 	int i;
546 
547 	cnt = 0;
548 
549 	mtx_lock(&malloc_mtx);
550 	for (type = kmemstatistics; type != NULL; type = type->ks_next)
551 		cnt++;
552 
553 	mtx_unlock(&malloc_mtx);
554 	bufsize = linesize * (cnt + 1);
555 	p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
556 	mtx_lock(&malloc_mtx);
557 
558 	len = snprintf(p, linesize,
559 	    "\n        Type  InUse MemUse HighUse Requests  Size(s)\n");
560 	p += len;
561 
562 	for (type = kmemstatistics; cnt != 0 && type != NULL;
563 	    type = type->ks_next, cnt--) {
564 		if (type->ks_calls == 0)
565 			continue;
566 
567 		curline = linesize - 2;	/* Leave room for the \n */
568 		len = snprintf(p, curline, "%13s%6lu%6luK%7luK%9llu",
569 			type->ks_shortdesc,
570 			type->ks_inuse,
571 			(type->ks_memuse + 1023) / 1024,
572 			(type->ks_maxused + 1023) / 1024,
573 			(long long unsigned)type->ks_calls);
574 		curline -= len;
575 		p += len;
576 
577 		first = 1;
578 		for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1;
579 		    i++) {
580 			if (type->ks_size & (1 << i)) {
581 				if (first)
582 					len = snprintf(p, curline, "  ");
583 				else
584 					len = snprintf(p, curline, ",");
585 				curline -= len;
586 				p += len;
587 
588 				len = snprintf(p, curline,
589 				    "%s", kmemzones[i].kz_name);
590 				curline -= len;
591 				p += len;
592 
593 				first = 0;
594 			}
595 		}
596 
597 		len = snprintf(p, 2, "\n");
598 		p += len;
599 	}
600 
601 	mtx_unlock(&malloc_mtx);
602 	error = SYSCTL_OUT(req, buf, p - buf);
603 
604 	free(buf, M_TEMP);
605 	return (error);
606 }
607 
608 SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD,
609     NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats");
610 
611 #ifdef MALLOC_PROFILE
612 
613 static int
614 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
615 {
616 	int linesize = 64;
617 	uint64_t count;
618 	uint64_t waste;
619 	uint64_t mem;
620 	int bufsize;
621 	int error;
622 	char *buf;
623 	int rsize;
624 	int size;
625 	char *p;
626 	int len;
627 	int i;
628 
629 	bufsize = linesize * (KMEM_ZSIZE + 1);
630 	bufsize += 128; 	/* For the stats line */
631 	bufsize += 128; 	/* For the banner line */
632 	waste = 0;
633 	mem = 0;
634 
635 	p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
636 	len = snprintf(p, bufsize,
637 	    "\n  Size                    Requests  Real Size\n");
638 	bufsize -= len;
639 	p += len;
640 
641 	for (i = 0; i < KMEM_ZSIZE; i++) {
642 		size = i << KMEM_ZSHIFT;
643 		rsize = kmemzones[kmemsize[i]].kz_size;
644 		count = (long long unsigned)krequests[i];
645 
646 		len = snprintf(p, bufsize, "%6d%28llu%11d\n",
647 		    size, (unsigned long long)count, rsize);
648 		bufsize -= len;
649 		p += len;
650 
651 		if ((rsize * count) > (size * count))
652 			waste += (rsize * count) - (size * count);
653 		mem += (rsize * count);
654 	}
655 
656 	len = snprintf(p, bufsize,
657 	    "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
658 	    (unsigned long long)mem, (unsigned long long)waste);
659 	p += len;
660 
661 	error = SYSCTL_OUT(req, buf, p - buf);
662 
663 	free(buf, M_TEMP);
664 	return (error);
665 }
666 
667 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
668     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
669 #endif /* MALLOC_PROFILE */
670