xref: /freebsd/sys/kern/kern_malloc.c (revision daf1cffce2e07931f27c6c6998652e90df6ba87e)
1 /*
2  * Copyright (c) 1987, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #include "opt_vm.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/vmmeter.h>
45 #include <sys/lock.h>
46 
47 #include <vm/vm.h>
48 #include <vm/vm_param.h>
49 #include <vm/vm_kern.h>
50 #include <vm/vm_extern.h>
51 #include <vm/pmap.h>
52 #include <vm/vm_map.h>
53 
54 #if defined(INVARIANTS) && defined(__i386__)
55 #include <machine/cpu.h>
56 #endif
57 
58 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
59 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
60 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
61 
62 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
63 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
64 
65 static void kmeminit __P((void *));
66 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
67 
68 static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
69 
70 static struct malloc_type *kmemstatistics;
71 static struct kmembuckets bucket[MINBUCKET + 16];
72 static struct kmemusage *kmemusage;
73 static char *kmembase;
74 static char *kmemlimit;
75 
76 u_int vm_kmem_size;
77 
78 #ifdef INVARIANTS
79 /*
80  * This structure provides a set of masks to catch unaligned frees.
81  */
82 static long addrmask[] = { 0,
83 	0x00000001, 0x00000003, 0x00000007, 0x0000000f,
84 	0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
85 	0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
86 	0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
87 };
88 
89 /*
90  * The WEIRD_ADDR is used as known text to copy into free objects so
91  * that modifications after frees can be detected.
92  */
93 #define WEIRD_ADDR	0xdeadc0de
94 #define MAX_COPY	64
95 
96 /*
97  * Normally the first word of the structure is used to hold the list
98  * pointer for free objects. However, when running with diagnostics,
99  * we use the third and fourth fields, so as to catch modifications
100  * in the most commonly trashed first two words.
101  */
102 struct freelist {
103 	long	spare0;
104 	struct malloc_type *type;
105 	long	spare1;
106 	caddr_t	next;
107 };
108 #else /* !INVARIANTS */
109 struct freelist {
110 	caddr_t	next;
111 };
112 #endif /* INVARIANTS */
113 
114 /*
115  *	malloc:
116  *
117  *	Allocate a block of memory.
118  *
119  *	If M_NOWAIT is set, this routine will not block and return NULL if
120  *	the allocation fails.
121  *
122  *	If M_ASLEEP is set (M_NOWAIT must also be set), this routine
123  *	will have the side effect of calling asleep() if it returns NULL,
124  *	allowing the parent to await() at some future time.
125  */
126 void *
127 malloc(size, type, flags)
128 	unsigned long size;
129 	struct malloc_type *type;
130 	int flags;
131 {
132 	register struct kmembuckets *kbp;
133 	register struct kmemusage *kup;
134 	register struct freelist *freep;
135 	long indx, npg, allocsize;
136 	int s;
137 	caddr_t va, cp, savedlist;
138 #ifdef INVARIANTS
139 	long *end, *lp;
140 	int copysize;
141 	const char *savedtype;
142 #endif
143 	register struct malloc_type *ksp = type;
144 
145 #if defined(INVARIANTS) && defined(__i386__)
146 	if (flags == M_WAITOK)
147 		KASSERT(intr_nesting_level == 0,
148 		   ("malloc(M_WAITOK) in interrupt context"));
149 #endif
150 	/*
151 	 * Must be at splmem() prior to initializing segment to handle
152 	 * potential initialization race.
153 	 */
154 
155 	s = splmem();
156 
157 	if (type->ks_limit == 0)
158 		malloc_init(type);
159 
160 	indx = BUCKETINDX(size);
161 	kbp = &bucket[indx];
162 
163 	while (ksp->ks_memuse >= ksp->ks_limit) {
164 		if (flags & M_ASLEEP) {
165 			if (ksp->ks_limblocks < 65535)
166 				ksp->ks_limblocks++;
167 			asleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
168 		}
169 		if (flags & M_NOWAIT) {
170 			splx(s);
171 			return ((void *) NULL);
172 		}
173 		if (ksp->ks_limblocks < 65535)
174 			ksp->ks_limblocks++;
175 		tsleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
176 	}
177 	ksp->ks_size |= 1 << indx;
178 #ifdef INVARIANTS
179 	copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
180 #endif
181 	if (kbp->kb_next == NULL) {
182 		kbp->kb_last = NULL;
183 		if (size > MAXALLOCSAVE)
184 			allocsize = roundup(size, PAGE_SIZE);
185 		else
186 			allocsize = 1 << indx;
187 		npg = btoc(allocsize);
188 		va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags);
189 		if (va == NULL) {
190 			splx(s);
191 			return ((void *) NULL);
192 		}
193 		kbp->kb_total += kbp->kb_elmpercl;
194 		kup = btokup(va);
195 		kup->ku_indx = indx;
196 		if (allocsize > MAXALLOCSAVE) {
197 			if (npg > 65535)
198 				panic("malloc: allocation too large");
199 			kup->ku_pagecnt = npg;
200 			ksp->ks_memuse += allocsize;
201 			goto out;
202 		}
203 		kup->ku_freecnt = kbp->kb_elmpercl;
204 		kbp->kb_totalfree += kbp->kb_elmpercl;
205 		/*
206 		 * Just in case we blocked while allocating memory,
207 		 * and someone else also allocated memory for this
208 		 * bucket, don't assume the list is still empty.
209 		 */
210 		savedlist = kbp->kb_next;
211 		kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize;
212 		for (;;) {
213 			freep = (struct freelist *)cp;
214 #ifdef INVARIANTS
215 			/*
216 			 * Copy in known text to detect modification
217 			 * after freeing.
218 			 */
219 			end = (long *)&cp[copysize];
220 			for (lp = (long *)cp; lp < end; lp++)
221 				*lp = WEIRD_ADDR;
222 			freep->type = M_FREE;
223 #endif /* INVARIANTS */
224 			if (cp <= va)
225 				break;
226 			cp -= allocsize;
227 			freep->next = cp;
228 		}
229 		freep->next = savedlist;
230 		if (kbp->kb_last == NULL)
231 			kbp->kb_last = (caddr_t)freep;
232 	}
233 	va = kbp->kb_next;
234 	kbp->kb_next = ((struct freelist *)va)->next;
235 #ifdef INVARIANTS
236 	freep = (struct freelist *)va;
237 	savedtype = (const char *) type->ks_shortdesc;
238 #if BYTE_ORDER == BIG_ENDIAN
239 	freep->type = (struct malloc_type *)WEIRD_ADDR >> 16;
240 #endif
241 #if BYTE_ORDER == LITTLE_ENDIAN
242 	freep->type = (struct malloc_type *)WEIRD_ADDR;
243 #endif
244 	if ((intptr_t)(void *)&freep->next & 0x2)
245 		freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
246 	else
247 		freep->next = (caddr_t)WEIRD_ADDR;
248 	end = (long *)&va[copysize];
249 	for (lp = (long *)va; lp < end; lp++) {
250 		if (*lp == WEIRD_ADDR)
251 			continue;
252 		printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n",
253 			"Data modified on freelist: word",
254 			(long)(lp - (long *)va), (void *)va, size,
255 			"previous type", savedtype, *lp, (u_long)WEIRD_ADDR);
256 		break;
257 	}
258 	freep->spare0 = 0;
259 #endif /* INVARIANTS */
260 	kup = btokup(va);
261 	if (kup->ku_indx != indx)
262 		panic("malloc: wrong bucket");
263 	if (kup->ku_freecnt == 0)
264 		panic("malloc: lost data");
265 	kup->ku_freecnt--;
266 	kbp->kb_totalfree--;
267 	ksp->ks_memuse += 1 << indx;
268 out:
269 	kbp->kb_calls++;
270 	ksp->ks_inuse++;
271 	ksp->ks_calls++;
272 	if (ksp->ks_memuse > ksp->ks_maxused)
273 		ksp->ks_maxused = ksp->ks_memuse;
274 	splx(s);
275 	return ((void *) va);
276 }
277 
278 /*
279  *	free:
280  *
281  *	Free a block of memory allocated by malloc.
282  *
283  *	This routine may not block.
284  */
285 void
286 free(addr, type)
287 	void *addr;
288 	struct malloc_type *type;
289 {
290 	register struct kmembuckets *kbp;
291 	register struct kmemusage *kup;
292 	register struct freelist *freep;
293 	long size;
294 	int s;
295 #ifdef INVARIANTS
296 	struct freelist *fp;
297 	long *end, *lp, alloc, copysize;
298 #endif
299 	register struct malloc_type *ksp = type;
300 
301 	if (type->ks_limit == 0)
302 		panic("freeing with unknown type (%s)", type->ks_shortdesc);
303 
304 	KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit,
305 	    ("free: address %p out of range", (void *)addr));
306 	kup = btokup(addr);
307 	size = 1 << kup->ku_indx;
308 	kbp = &bucket[kup->ku_indx];
309 	s = splmem();
310 #ifdef INVARIANTS
311 	/*
312 	 * Check for returns of data that do not point to the
313 	 * beginning of the allocation.
314 	 */
315 	if (size > PAGE_SIZE)
316 		alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
317 	else
318 		alloc = addrmask[kup->ku_indx];
319 	if (((uintptr_t)(void *)addr & alloc) != 0)
320 		panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
321 		    (void *)addr, size, type->ks_shortdesc, alloc);
322 #endif /* INVARIANTS */
323 	if (size > MAXALLOCSAVE) {
324 		kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
325 		size = kup->ku_pagecnt << PAGE_SHIFT;
326 		ksp->ks_memuse -= size;
327 		kup->ku_indx = 0;
328 		kup->ku_pagecnt = 0;
329 		if (ksp->ks_memuse + size >= ksp->ks_limit &&
330 		    ksp->ks_memuse < ksp->ks_limit)
331 			wakeup((caddr_t)ksp);
332 		ksp->ks_inuse--;
333 		kbp->kb_total -= 1;
334 		splx(s);
335 		return;
336 	}
337 	freep = (struct freelist *)addr;
338 #ifdef INVARIANTS
339 	/*
340 	 * Check for multiple frees. Use a quick check to see if
341 	 * it looks free before laboriously searching the freelist.
342 	 */
343 	if (freep->spare0 == WEIRD_ADDR) {
344 		fp = (struct freelist *)kbp->kb_next;
345 		while (fp) {
346 			if (fp->spare0 != WEIRD_ADDR)
347 				panic("free: free item %p modified", fp);
348 			else if (addr == (caddr_t)fp)
349 				panic("free: multiple freed item %p", addr);
350 			fp = (struct freelist *)fp->next;
351 		}
352 	}
353 	/*
354 	 * Copy in known text to detect modification after freeing
355 	 * and to make it look free. Also, save the type being freed
356 	 * so we can list likely culprit if modification is detected
357 	 * when the object is reallocated.
358 	 */
359 	copysize = size < MAX_COPY ? size : MAX_COPY;
360 	end = (long *)&((caddr_t)addr)[copysize];
361 	for (lp = (long *)addr; lp < end; lp++)
362 		*lp = WEIRD_ADDR;
363 	freep->type = type;
364 #endif /* INVARIANTS */
365 	kup->ku_freecnt++;
366 	if (kup->ku_freecnt >= kbp->kb_elmpercl) {
367 		if (kup->ku_freecnt > kbp->kb_elmpercl)
368 			panic("free: multiple frees");
369 		else if (kbp->kb_totalfree > kbp->kb_highwat)
370 			kbp->kb_couldfree++;
371 	}
372 	kbp->kb_totalfree++;
373 	ksp->ks_memuse -= size;
374 	if (ksp->ks_memuse + size >= ksp->ks_limit &&
375 	    ksp->ks_memuse < ksp->ks_limit)
376 		wakeup((caddr_t)ksp);
377 	ksp->ks_inuse--;
378 #ifdef OLD_MALLOC_MEMORY_POLICY
379 	if (kbp->kb_next == NULL)
380 		kbp->kb_next = addr;
381 	else
382 		((struct freelist *)kbp->kb_last)->next = addr;
383 	freep->next = NULL;
384 	kbp->kb_last = addr;
385 #else
386 	/*
387 	 * Return memory to the head of the queue for quick reuse.  This
388 	 * can improve performance by improving the probability of the
389 	 * item being in the cache when it is reused.
390 	 */
391 	if (kbp->kb_next == NULL) {
392 		kbp->kb_next = addr;
393 		kbp->kb_last = addr;
394 		freep->next = NULL;
395 	} else {
396 		freep->next = kbp->kb_next;
397 		kbp->kb_next = addr;
398 	}
399 #endif
400 	splx(s);
401 }
402 
403 /*
404  * Initialize the kernel memory allocator
405  */
406 /* ARGSUSED*/
407 static void
408 kmeminit(dummy)
409 	void *dummy;
410 {
411 	register long indx;
412 	u_long npg;
413 	u_long mem_size;
414 	u_long xvm_kmem_size;
415 
416 #if	((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
417 #error "kmeminit: MAXALLOCSAVE not power of 2"
418 #endif
419 #if	(MAXALLOCSAVE > MINALLOCSIZE * 32768)
420 #error "kmeminit: MAXALLOCSAVE too big"
421 #endif
422 #if	(MAXALLOCSAVE < PAGE_SIZE)
423 #error "kmeminit: MAXALLOCSAVE too small"
424 #endif
425 
426 	/*
427 	 * Try to auto-tune the kernel memory size, so that it is
428 	 * more applicable for a wider range of machine sizes.
429 	 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
430 	 * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
431 	 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
432 	 * available, and on an X86 with a total KVA space of 256MB,
433 	 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
434 	 *
435 	 * Note that the kmem_map is also used by the zone allocator,
436 	 * so make sure that there is enough space.
437 	 */
438 	xvm_kmem_size = VM_KMEM_SIZE;
439 	mem_size = cnt.v_page_count * PAGE_SIZE;
440 
441 #if defined(VM_KMEM_SIZE_SCALE)
442 	if ((mem_size / VM_KMEM_SIZE_SCALE) > xvm_kmem_size)
443 		xvm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
444 #endif
445 
446 #if defined(VM_KMEM_SIZE_MAX)
447 	if (xvm_kmem_size >= VM_KMEM_SIZE_MAX)
448 		xvm_kmem_size = VM_KMEM_SIZE_MAX;
449 #endif
450 
451 	/* Allow final override from the kernel environment */
452 	TUNABLE_INT_FETCH("kern.vm.kmem.size", xvm_kmem_size, vm_kmem_size);
453 
454 	/*
455 	 * Limit kmem virtual size to twice the physical memory.
456 	 * This allows for kmem map sparseness, but limits the size
457 	 * to something sane. Be careful to not overflow the 32bit
458 	 * ints while doing the check.
459 	 */
460 	if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE))
461 		vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
462 
463 	npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + vm_kmem_size)
464 		/ PAGE_SIZE;
465 
466 	kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
467 		(vm_size_t)(npg * sizeof(struct kmemusage)));
468 	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
469 		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
470 	kmem_map->system_map = 1;
471 	for (indx = 0; indx < MINBUCKET + 16; indx++) {
472 		if (1 << indx >= PAGE_SIZE)
473 			bucket[indx].kb_elmpercl = 1;
474 		else
475 			bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
476 		bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
477 	}
478 }
479 
480 void
481 malloc_init(data)
482 	void *data;
483 {
484 	struct malloc_type *type = (struct malloc_type *)data;
485 
486 	if (type->ks_magic != M_MAGIC)
487 		panic("malloc type lacks magic");
488 
489 	if (type->ks_limit != 0)
490 		return;
491 
492 	if (cnt.v_page_count == 0)
493 		panic("malloc_init not allowed before vm init");
494 
495 	/*
496 	 * The default limits for each malloc region is 1/2 of the
497 	 * malloc portion of the kmem map size.
498 	 */
499 	type->ks_limit = vm_kmem_size / 2;
500 	type->ks_next = kmemstatistics;
501 	kmemstatistics = type;
502 }
503 
504 void
505 malloc_uninit(data)
506 	void *data;
507 {
508 	struct malloc_type *type = (struct malloc_type *)data;
509 	struct malloc_type *t;
510 
511 	if (type->ks_magic != M_MAGIC)
512 		panic("malloc type lacks magic");
513 
514 	if (cnt.v_page_count == 0)
515 		panic("malloc_uninit not allowed before vm init");
516 
517 	if (type->ks_limit == 0)
518 		panic("malloc_uninit on uninitialized type");
519 
520 	if (type == kmemstatistics)
521 		kmemstatistics = type->ks_next;
522 	else {
523 		for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
524 			if (t->ks_next == type) {
525 				t->ks_next = type->ks_next;
526 				break;
527 			}
528 		}
529 	}
530 	type->ks_next = NULL;
531 	type->ks_limit = 0;
532 }
533