xref: /freebsd/sys/kern/kern_malloc.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*-
2  * Copyright (c) 1987, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2005-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
36  * based on memory types.  Back end is implemented using the UMA(9) zone
37  * allocator.  A set of fixed-size buckets are used for smaller allocations,
38  * and a special UMA allocation interface is used for larger allocations.
39  * Callers declare memory types, and statistics are maintained independently
40  * for each memory type.  Statistics are maintained per-CPU for performance
41  * reasons.  See malloc(9) and comments in malloc.h for a detailed
42  * description.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_ddb.h"
49 #include "opt_kdtrace.h"
50 #include "opt_vm.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kdb.h>
55 #include <sys/kernel.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mbuf.h>
59 #include <sys/mutex.h>
60 #include <sys/vmmeter.h>
61 #include <sys/proc.h>
62 #include <sys/sbuf.h>
63 #include <sys/sysctl.h>
64 #include <sys/time.h>
65 #include <sys/vmem.h>
66 
67 #include <vm/vm.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_pageout.h>
70 #include <vm/vm_param.h>
71 #include <vm/vm_kern.h>
72 #include <vm/vm_extern.h>
73 #include <vm/vm_map.h>
74 #include <vm/vm_page.h>
75 #include <vm/uma.h>
76 #include <vm/uma_int.h>
77 #include <vm/uma_dbg.h>
78 
79 #ifdef DEBUG_MEMGUARD
80 #include <vm/memguard.h>
81 #endif
82 #ifdef DEBUG_REDZONE
83 #include <vm/redzone.h>
84 #endif
85 
86 #if defined(INVARIANTS) && defined(__i386__)
87 #include <machine/cpu.h>
88 #endif
89 
90 #include <ddb/ddb.h>
91 
92 #ifdef KDTRACE_HOOKS
93 #include <sys/dtrace_bsd.h>
94 
95 dtrace_malloc_probe_func_t	dtrace_malloc_probe;
96 #endif
97 
98 /*
99  * When realloc() is called, if the new size is sufficiently smaller than
100  * the old size, realloc() will allocate a new, smaller block to avoid
101  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
102  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
103  */
104 #ifndef REALLOC_FRACTION
105 #define	REALLOC_FRACTION	1	/* new block if <= half the size */
106 #endif
107 
108 /*
109  * Centrally define some common malloc types.
110  */
111 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
112 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
113 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
114 
115 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
116 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
117 
118 static struct malloc_type *kmemstatistics;
119 static int kmemcount;
120 
121 #define KMEM_ZSHIFT	4
122 #define KMEM_ZBASE	16
123 #define KMEM_ZMASK	(KMEM_ZBASE - 1)
124 
125 #define KMEM_ZMAX	PAGE_SIZE
126 #define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
127 static uint8_t kmemsize[KMEM_ZSIZE + 1];
128 
129 #ifndef MALLOC_DEBUG_MAXZONES
130 #define	MALLOC_DEBUG_MAXZONES	1
131 #endif
132 static int numzones = MALLOC_DEBUG_MAXZONES;
133 
134 /*
135  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
136  * of various sizes.
137  *
138  * XXX: The comment here used to read "These won't be powers of two for
139  * long."  It's possible that a significant amount of wasted memory could be
140  * recovered by tuning the sizes of these buckets.
141  */
142 struct {
143 	int kz_size;
144 	char *kz_name;
145 	uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
146 } kmemzones[] = {
147 	{16, "16", },
148 	{32, "32", },
149 	{64, "64", },
150 	{128, "128", },
151 	{256, "256", },
152 	{512, "512", },
153 	{1024, "1024", },
154 	{2048, "2048", },
155 	{4096, "4096", },
156 #if PAGE_SIZE > 4096
157 	{8192, "8192", },
158 #if PAGE_SIZE > 8192
159 	{16384, "16384", },
160 #if PAGE_SIZE > 16384
161 	{32768, "32768", },
162 #if PAGE_SIZE > 32768
163 	{65536, "65536", },
164 #if PAGE_SIZE > 65536
165 #error	"Unsupported PAGE_SIZE"
166 #endif	/* 65536 */
167 #endif	/* 32768 */
168 #endif	/* 16384 */
169 #endif	/* 8192 */
170 #endif	/* 4096 */
171 	{0, NULL},
172 };
173 
174 /*
175  * Zone to allocate malloc type descriptions from.  For ABI reasons, memory
176  * types are described by a data structure passed by the declaring code, but
177  * the malloc(9) implementation has its own data structure describing the
178  * type and statistics.  This permits the malloc(9)-internal data structures
179  * to be modified without breaking binary-compiled kernel modules that
180  * declare malloc types.
181  */
182 static uma_zone_t mt_zone;
183 
184 u_long vm_kmem_size;
185 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
186     "Size of kernel memory");
187 
188 static u_long vm_kmem_size_min;
189 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
190     "Minimum size of kernel memory");
191 
192 static u_long vm_kmem_size_max;
193 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
194     "Maximum size of kernel memory");
195 
196 static u_int vm_kmem_size_scale;
197 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
198     "Scale factor for kernel memory size");
199 
200 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
201 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
202     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
203     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
204 
205 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
206 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
207     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
208     sysctl_kmem_map_free, "LU", "Free space in kmem");
209 
210 /*
211  * The malloc_mtx protects the kmemstatistics linked list.
212  */
213 struct mtx malloc_mtx;
214 
215 #ifdef MALLOC_PROFILE
216 uint64_t krequests[KMEM_ZSIZE + 1];
217 
218 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
219 #endif
220 
221 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
222 
223 /*
224  * time_uptime of the last malloc(9) failure (induced or real).
225  */
226 static time_t t_malloc_fail;
227 
228 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
229 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
230     "Kernel malloc debugging options");
231 #endif
232 
233 /*
234  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
235  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
236  */
237 #ifdef MALLOC_MAKE_FAILURES
238 static int malloc_failure_rate;
239 static int malloc_nowait_count;
240 static int malloc_failure_count;
241 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
242     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
243 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
244 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
245     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
246 #endif
247 
248 static int
249 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
250 {
251 	u_long size;
252 
253 	size = vmem_size(kmem_arena, VMEM_ALLOC);
254 	return (sysctl_handle_long(oidp, &size, 0, req));
255 }
256 
257 static int
258 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
259 {
260 	u_long size;
261 
262 	size = vmem_size(kmem_arena, VMEM_FREE);
263 	return (sysctl_handle_long(oidp, &size, 0, req));
264 }
265 
266 /*
267  * malloc(9) uma zone separation -- sub-page buffer overruns in one
268  * malloc type will affect only a subset of other malloc types.
269  */
270 #if MALLOC_DEBUG_MAXZONES > 1
271 static void
272 tunable_set_numzones(void)
273 {
274 
275 	TUNABLE_INT_FETCH("debug.malloc.numzones",
276 	    &numzones);
277 
278 	/* Sanity check the number of malloc uma zones. */
279 	if (numzones <= 0)
280 		numzones = 1;
281 	if (numzones > MALLOC_DEBUG_MAXZONES)
282 		numzones = MALLOC_DEBUG_MAXZONES;
283 }
284 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
285 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN,
286     &numzones, 0, "Number of malloc uma subzones");
287 
288 /*
289  * Any number that changes regularly is an okay choice for the
290  * offset.  Build numbers are pretty good of you have them.
291  */
292 static u_int zone_offset = __FreeBSD_version;
293 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
294 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
295     &zone_offset, 0, "Separate malloc types by examining the "
296     "Nth character in the malloc type short description.");
297 
298 static u_int
299 mtp_get_subzone(const char *desc)
300 {
301 	size_t len;
302 	u_int val;
303 
304 	if (desc == NULL || (len = strlen(desc)) == 0)
305 		return (0);
306 	val = desc[zone_offset % len];
307 	return (val % numzones);
308 }
309 #elif MALLOC_DEBUG_MAXZONES == 0
310 #error "MALLOC_DEBUG_MAXZONES must be positive."
311 #else
312 static inline u_int
313 mtp_get_subzone(const char *desc)
314 {
315 
316 	return (0);
317 }
318 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
319 
320 int
321 malloc_last_fail(void)
322 {
323 
324 	return (time_uptime - t_malloc_fail);
325 }
326 
327 /*
328  * An allocation has succeeded -- update malloc type statistics for the
329  * amount of bucket size.  Occurs within a critical section so that the
330  * thread isn't preempted and doesn't migrate while updating per-PCU
331  * statistics.
332  */
333 static void
334 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
335     int zindx)
336 {
337 	struct malloc_type_internal *mtip;
338 	struct malloc_type_stats *mtsp;
339 
340 	critical_enter();
341 	mtip = mtp->ks_handle;
342 	mtsp = &mtip->mti_stats[curcpu];
343 	if (size > 0) {
344 		mtsp->mts_memalloced += size;
345 		mtsp->mts_numallocs++;
346 	}
347 	if (zindx != -1)
348 		mtsp->mts_size |= 1 << zindx;
349 
350 #ifdef KDTRACE_HOOKS
351 	if (dtrace_malloc_probe != NULL) {
352 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
353 		if (probe_id != 0)
354 			(dtrace_malloc_probe)(probe_id,
355 			    (uintptr_t) mtp, (uintptr_t) mtip,
356 			    (uintptr_t) mtsp, size, zindx);
357 	}
358 #endif
359 
360 	critical_exit();
361 }
362 
363 void
364 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
365 {
366 
367 	if (size > 0)
368 		malloc_type_zone_allocated(mtp, size, -1);
369 }
370 
371 /*
372  * A free operation has occurred -- update malloc type statistics for the
373  * amount of the bucket size.  Occurs within a critical section so that the
374  * thread isn't preempted and doesn't migrate while updating per-CPU
375  * statistics.
376  */
377 void
378 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
379 {
380 	struct malloc_type_internal *mtip;
381 	struct malloc_type_stats *mtsp;
382 
383 	critical_enter();
384 	mtip = mtp->ks_handle;
385 	mtsp = &mtip->mti_stats[curcpu];
386 	mtsp->mts_memfreed += size;
387 	mtsp->mts_numfrees++;
388 
389 #ifdef KDTRACE_HOOKS
390 	if (dtrace_malloc_probe != NULL) {
391 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
392 		if (probe_id != 0)
393 			(dtrace_malloc_probe)(probe_id,
394 			    (uintptr_t) mtp, (uintptr_t) mtip,
395 			    (uintptr_t) mtsp, size, 0);
396 	}
397 #endif
398 
399 	critical_exit();
400 }
401 
402 /*
403  *	contigmalloc:
404  *
405  *	Allocate a block of physically contiguous memory.
406  *
407  *	If M_NOWAIT is set, this routine will not block and return NULL if
408  *	the allocation fails.
409  */
410 void *
411 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
412     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
413     vm_paddr_t boundary)
414 {
415 	void *ret;
416 
417 	ret = (void *)kmem_alloc_contig(kernel_arena, size, flags, low, high,
418 	    alignment, boundary, VM_MEMATTR_DEFAULT);
419 	if (ret != NULL)
420 		malloc_type_allocated(type, round_page(size));
421 	return (ret);
422 }
423 
424 /*
425  *	contigfree:
426  *
427  *	Free a block of memory allocated by contigmalloc.
428  *
429  *	This routine may not block.
430  */
431 void
432 contigfree(void *addr, unsigned long size, struct malloc_type *type)
433 {
434 
435 	kmem_free(kernel_arena, (vm_offset_t)addr, size);
436 	malloc_type_freed(type, round_page(size));
437 }
438 
439 /*
440  *	malloc:
441  *
442  *	Allocate a block of memory.
443  *
444  *	If M_NOWAIT is set, this routine will not block and return NULL if
445  *	the allocation fails.
446  */
447 void *
448 malloc(unsigned long size, struct malloc_type *mtp, int flags)
449 {
450 	int indx;
451 	struct malloc_type_internal *mtip;
452 	caddr_t va;
453 	uma_zone_t zone;
454 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
455 	unsigned long osize = size;
456 #endif
457 
458 #ifdef INVARIANTS
459 	KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
460 	/*
461 	 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
462 	 */
463 	indx = flags & (M_WAITOK | M_NOWAIT);
464 	if (indx != M_NOWAIT && indx != M_WAITOK) {
465 		static	struct timeval lasterr;
466 		static	int curerr, once;
467 		if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
468 			printf("Bad malloc flags: %x\n", indx);
469 			kdb_backtrace();
470 			flags |= M_WAITOK;
471 			once++;
472 		}
473 	}
474 #endif
475 #ifdef MALLOC_MAKE_FAILURES
476 	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
477 		atomic_add_int(&malloc_nowait_count, 1);
478 		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
479 			atomic_add_int(&malloc_failure_count, 1);
480 			t_malloc_fail = time_uptime;
481 			return (NULL);
482 		}
483 	}
484 #endif
485 	if (flags & M_WAITOK)
486 		KASSERT(curthread->td_intr_nesting_level == 0,
487 		   ("malloc(M_WAITOK) in interrupt context"));
488 
489 #ifdef DEBUG_MEMGUARD
490 	if (memguard_cmp_mtp(mtp, size)) {
491 		va = memguard_alloc(size, flags);
492 		if (va != NULL)
493 			return (va);
494 		/* This is unfortunate but should not be fatal. */
495 	}
496 #endif
497 
498 #ifdef DEBUG_REDZONE
499 	size = redzone_size_ntor(size);
500 #endif
501 
502 	if (size <= KMEM_ZMAX) {
503 		mtip = mtp->ks_handle;
504 		if (size & KMEM_ZMASK)
505 			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
506 		indx = kmemsize[size >> KMEM_ZSHIFT];
507 		KASSERT(mtip->mti_zone < numzones,
508 		    ("mti_zone %u out of range %d",
509 		    mtip->mti_zone, numzones));
510 		zone = kmemzones[indx].kz_zone[mtip->mti_zone];
511 #ifdef MALLOC_PROFILE
512 		krequests[size >> KMEM_ZSHIFT]++;
513 #endif
514 		va = uma_zalloc(zone, flags);
515 		if (va != NULL)
516 			size = zone->uz_size;
517 		malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
518 	} else {
519 		size = roundup(size, PAGE_SIZE);
520 		zone = NULL;
521 		va = uma_large_malloc(size, flags);
522 		malloc_type_allocated(mtp, va == NULL ? 0 : size);
523 	}
524 	if (flags & M_WAITOK)
525 		KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
526 	else if (va == NULL)
527 		t_malloc_fail = time_uptime;
528 #ifdef DIAGNOSTIC
529 	if (va != NULL && !(flags & M_ZERO)) {
530 		memset(va, 0x70, osize);
531 	}
532 #endif
533 #ifdef DEBUG_REDZONE
534 	if (va != NULL)
535 		va = redzone_setup(va, osize);
536 #endif
537 	return ((void *) va);
538 }
539 
540 /*
541  *	free:
542  *
543  *	Free a block of memory allocated by malloc.
544  *
545  *	This routine may not block.
546  */
547 void
548 free(void *addr, struct malloc_type *mtp)
549 {
550 	uma_slab_t slab;
551 	u_long size;
552 
553 	KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
554 
555 	/* free(NULL, ...) does nothing */
556 	if (addr == NULL)
557 		return;
558 
559 #ifdef DEBUG_MEMGUARD
560 	if (is_memguard_addr(addr)) {
561 		memguard_free(addr);
562 		return;
563 	}
564 #endif
565 
566 #ifdef DEBUG_REDZONE
567 	redzone_check(addr);
568 	addr = redzone_addr_ntor(addr);
569 #endif
570 
571 	slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
572 
573 	if (slab == NULL)
574 		panic("free: address %p(%p) has not been allocated.\n",
575 		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
576 
577 	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
578 #ifdef INVARIANTS
579 		struct malloc_type **mtpp = addr;
580 #endif
581 		size = slab->us_keg->uk_size;
582 #ifdef INVARIANTS
583 		/*
584 		 * Cache a pointer to the malloc_type that most recently freed
585 		 * this memory here.  This way we know who is most likely to
586 		 * have stepped on it later.
587 		 *
588 		 * This code assumes that size is a multiple of 8 bytes for
589 		 * 64 bit machines
590 		 */
591 		mtpp = (struct malloc_type **)
592 		    ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
593 		mtpp += (size - sizeof(struct malloc_type *)) /
594 		    sizeof(struct malloc_type *);
595 		*mtpp = mtp;
596 #endif
597 		uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
598 	} else {
599 		size = slab->us_size;
600 		uma_large_free(slab);
601 	}
602 	malloc_type_freed(mtp, size);
603 }
604 
605 /*
606  *	realloc: change the size of a memory block
607  */
608 void *
609 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
610 {
611 	uma_slab_t slab;
612 	unsigned long alloc;
613 	void *newaddr;
614 
615 	KASSERT(mtp->ks_magic == M_MAGIC,
616 	    ("realloc: bad malloc type magic"));
617 
618 	/* realloc(NULL, ...) is equivalent to malloc(...) */
619 	if (addr == NULL)
620 		return (malloc(size, mtp, flags));
621 
622 	/*
623 	 * XXX: Should report free of old memory and alloc of new memory to
624 	 * per-CPU stats.
625 	 */
626 
627 #ifdef DEBUG_MEMGUARD
628 	if (is_memguard_addr(addr))
629 		return (memguard_realloc(addr, size, mtp, flags));
630 #endif
631 
632 #ifdef DEBUG_REDZONE
633 	slab = NULL;
634 	alloc = redzone_get_size(addr);
635 #else
636 	slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
637 
638 	/* Sanity check */
639 	KASSERT(slab != NULL,
640 	    ("realloc: address %p out of range", (void *)addr));
641 
642 	/* Get the size of the original block */
643 	if (!(slab->us_flags & UMA_SLAB_MALLOC))
644 		alloc = slab->us_keg->uk_size;
645 	else
646 		alloc = slab->us_size;
647 
648 	/* Reuse the original block if appropriate */
649 	if (size <= alloc
650 	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
651 		return (addr);
652 #endif /* !DEBUG_REDZONE */
653 
654 	/* Allocate a new, bigger (or smaller) block */
655 	if ((newaddr = malloc(size, mtp, flags)) == NULL)
656 		return (NULL);
657 
658 	/* Copy over original contents */
659 	bcopy(addr, newaddr, min(size, alloc));
660 	free(addr, mtp);
661 	return (newaddr);
662 }
663 
664 /*
665  *	reallocf: same as realloc() but free memory on failure.
666  */
667 void *
668 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
669 {
670 	void *mem;
671 
672 	if ((mem = realloc(addr, size, mtp, flags)) == NULL)
673 		free(addr, mtp);
674 	return (mem);
675 }
676 
677 /*
678  * Wake the page daemon when we exhaust KVA.  It will call the lowmem handler
679  * and uma_reclaim() callbacks in a context that is safe.
680  */
681 static void
682 kmem_reclaim(vmem_t *vm, int flags)
683 {
684 
685 	pagedaemon_wakeup();
686 }
687 
688 /*
689  * Initialize the kernel memory arena.
690  */
691 void
692 kmeminit(void)
693 {
694 	u_long mem_size, tmp;
695 
696 	/*
697 	 * Try to auto-tune the kernel memory size, so that it is
698 	 * more applicable for a wider range of machine sizes.  The
699 	 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
700 	 * available.
701 	 *
702 	 * Note that the kmem_map is also used by the zone allocator,
703 	 * so make sure that there is enough space.
704 	 */
705 	vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE;
706 	mem_size = cnt.v_page_count;
707 
708 #if defined(VM_KMEM_SIZE_SCALE)
709 	vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
710 #endif
711 	TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale);
712 	if (vm_kmem_size_scale > 0 &&
713 	    (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE))
714 		vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
715 
716 #if defined(VM_KMEM_SIZE_MIN)
717 	vm_kmem_size_min = VM_KMEM_SIZE_MIN;
718 #endif
719 	TUNABLE_ULONG_FETCH("vm.kmem_size_min", &vm_kmem_size_min);
720 	if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) {
721 		vm_kmem_size = vm_kmem_size_min;
722 	}
723 
724 #if defined(VM_KMEM_SIZE_MAX)
725 	vm_kmem_size_max = VM_KMEM_SIZE_MAX;
726 #endif
727 	TUNABLE_ULONG_FETCH("vm.kmem_size_max", &vm_kmem_size_max);
728 	if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
729 		vm_kmem_size = vm_kmem_size_max;
730 
731 	/* Allow final override from the kernel environment */
732 	TUNABLE_ULONG_FETCH("vm.kmem_size", &vm_kmem_size);
733 
734 	/*
735 	 * Limit kmem virtual size to twice the physical memory.
736 	 * This allows for kmem map sparseness, but limits the size
737 	 * to something sane.  Be careful to not overflow the 32bit
738 	 * ints while doing the check or the adjustment.
739 	 */
740 	if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
741 		vm_kmem_size = 2 * mem_size * PAGE_SIZE;
742 
743 	vm_kmem_size = round_page(vm_kmem_size);
744 #ifdef DEBUG_MEMGUARD
745 	tmp = memguard_fudge(vm_kmem_size, kernel_map);
746 #else
747 	tmp = vm_kmem_size;
748 #endif
749 	vmem_init(kmem_arena, "kmem arena", kva_alloc(tmp), tmp, PAGE_SIZE,
750 	    0, 0);
751 	vmem_set_reclaim(kmem_arena, kmem_reclaim);
752 
753 #ifdef DEBUG_MEMGUARD
754 	/*
755 	 * Initialize MemGuard if support compiled in.  MemGuard is a
756 	 * replacement allocator used for detecting tamper-after-free
757 	 * scenarios as they occur.  It is only used for debugging.
758 	 */
759 	memguard_init(kmem_arena);
760 #endif
761 }
762 
763 /*
764  * Initialize the kernel memory allocator
765  */
766 /* ARGSUSED*/
767 static void
768 mallocinit(void *dummy)
769 {
770 	int i;
771 	uint8_t indx;
772 
773 	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
774 
775 	kmeminit();
776 
777 	uma_startup2();
778 
779 	mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
780 #ifdef INVARIANTS
781 	    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
782 #else
783 	    NULL, NULL, NULL, NULL,
784 #endif
785 	    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
786 	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
787 		int size = kmemzones[indx].kz_size;
788 		char *name = kmemzones[indx].kz_name;
789 		int subzone;
790 
791 		for (subzone = 0; subzone < numzones; subzone++) {
792 			kmemzones[indx].kz_zone[subzone] =
793 			    uma_zcreate(name, size,
794 #ifdef INVARIANTS
795 			    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
796 #else
797 			    NULL, NULL, NULL, NULL,
798 #endif
799 			    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
800 		}
801 		for (;i <= size; i+= KMEM_ZBASE)
802 			kmemsize[i >> KMEM_ZSHIFT] = indx;
803 
804 	}
805 }
806 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, mallocinit, NULL);
807 
808 void
809 malloc_init(void *data)
810 {
811 	struct malloc_type_internal *mtip;
812 	struct malloc_type *mtp;
813 
814 	KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init"));
815 
816 	mtp = data;
817 	if (mtp->ks_magic != M_MAGIC)
818 		panic("malloc_init: bad malloc type magic");
819 
820 	mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
821 	mtp->ks_handle = mtip;
822 	mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
823 
824 	mtx_lock(&malloc_mtx);
825 	mtp->ks_next = kmemstatistics;
826 	kmemstatistics = mtp;
827 	kmemcount++;
828 	mtx_unlock(&malloc_mtx);
829 }
830 
831 void
832 malloc_uninit(void *data)
833 {
834 	struct malloc_type_internal *mtip;
835 	struct malloc_type_stats *mtsp;
836 	struct malloc_type *mtp, *temp;
837 	uma_slab_t slab;
838 	long temp_allocs, temp_bytes;
839 	int i;
840 
841 	mtp = data;
842 	KASSERT(mtp->ks_magic == M_MAGIC,
843 	    ("malloc_uninit: bad malloc type magic"));
844 	KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
845 
846 	mtx_lock(&malloc_mtx);
847 	mtip = mtp->ks_handle;
848 	mtp->ks_handle = NULL;
849 	if (mtp != kmemstatistics) {
850 		for (temp = kmemstatistics; temp != NULL;
851 		    temp = temp->ks_next) {
852 			if (temp->ks_next == mtp) {
853 				temp->ks_next = mtp->ks_next;
854 				break;
855 			}
856 		}
857 		KASSERT(temp,
858 		    ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
859 	} else
860 		kmemstatistics = mtp->ks_next;
861 	kmemcount--;
862 	mtx_unlock(&malloc_mtx);
863 
864 	/*
865 	 * Look for memory leaks.
866 	 */
867 	temp_allocs = temp_bytes = 0;
868 	for (i = 0; i < MAXCPU; i++) {
869 		mtsp = &mtip->mti_stats[i];
870 		temp_allocs += mtsp->mts_numallocs;
871 		temp_allocs -= mtsp->mts_numfrees;
872 		temp_bytes += mtsp->mts_memalloced;
873 		temp_bytes -= mtsp->mts_memfreed;
874 	}
875 	if (temp_allocs > 0 || temp_bytes > 0) {
876 		printf("Warning: memory type %s leaked memory on destroy "
877 		    "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
878 		    temp_allocs, temp_bytes);
879 	}
880 
881 	slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
882 	uma_zfree_arg(mt_zone, mtip, slab);
883 }
884 
885 struct malloc_type *
886 malloc_desc2type(const char *desc)
887 {
888 	struct malloc_type *mtp;
889 
890 	mtx_assert(&malloc_mtx, MA_OWNED);
891 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
892 		if (strcmp(mtp->ks_shortdesc, desc) == 0)
893 			return (mtp);
894 	}
895 	return (NULL);
896 }
897 
898 static int
899 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
900 {
901 	struct malloc_type_stream_header mtsh;
902 	struct malloc_type_internal *mtip;
903 	struct malloc_type_header mth;
904 	struct malloc_type *mtp;
905 	int error, i;
906 	struct sbuf sbuf;
907 
908 	error = sysctl_wire_old_buffer(req, 0);
909 	if (error != 0)
910 		return (error);
911 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
912 	mtx_lock(&malloc_mtx);
913 
914 	/*
915 	 * Insert stream header.
916 	 */
917 	bzero(&mtsh, sizeof(mtsh));
918 	mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
919 	mtsh.mtsh_maxcpus = MAXCPU;
920 	mtsh.mtsh_count = kmemcount;
921 	(void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
922 
923 	/*
924 	 * Insert alternating sequence of type headers and type statistics.
925 	 */
926 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
927 		mtip = (struct malloc_type_internal *)mtp->ks_handle;
928 
929 		/*
930 		 * Insert type header.
931 		 */
932 		bzero(&mth, sizeof(mth));
933 		strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
934 		(void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
935 
936 		/*
937 		 * Insert type statistics for each CPU.
938 		 */
939 		for (i = 0; i < MAXCPU; i++) {
940 			(void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
941 			    sizeof(mtip->mti_stats[i]));
942 		}
943 	}
944 	mtx_unlock(&malloc_mtx);
945 	error = sbuf_finish(&sbuf);
946 	sbuf_delete(&sbuf);
947 	return (error);
948 }
949 
950 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
951     0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
952     "Return malloc types");
953 
954 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
955     "Count of kernel malloc types");
956 
957 void
958 malloc_type_list(malloc_type_list_func_t *func, void *arg)
959 {
960 	struct malloc_type *mtp, **bufmtp;
961 	int count, i;
962 	size_t buflen;
963 
964 	mtx_lock(&malloc_mtx);
965 restart:
966 	mtx_assert(&malloc_mtx, MA_OWNED);
967 	count = kmemcount;
968 	mtx_unlock(&malloc_mtx);
969 
970 	buflen = sizeof(struct malloc_type *) * count;
971 	bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
972 
973 	mtx_lock(&malloc_mtx);
974 
975 	if (count < kmemcount) {
976 		free(bufmtp, M_TEMP);
977 		goto restart;
978 	}
979 
980 	for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
981 		bufmtp[i] = mtp;
982 
983 	mtx_unlock(&malloc_mtx);
984 
985 	for (i = 0; i < count; i++)
986 		(func)(bufmtp[i], arg);
987 
988 	free(bufmtp, M_TEMP);
989 }
990 
991 #ifdef DDB
992 DB_SHOW_COMMAND(malloc, db_show_malloc)
993 {
994 	struct malloc_type_internal *mtip;
995 	struct malloc_type *mtp;
996 	uint64_t allocs, frees;
997 	uint64_t alloced, freed;
998 	int i;
999 
1000 	db_printf("%18s %12s  %12s %12s\n", "Type", "InUse", "MemUse",
1001 	    "Requests");
1002 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1003 		mtip = (struct malloc_type_internal *)mtp->ks_handle;
1004 		allocs = 0;
1005 		frees = 0;
1006 		alloced = 0;
1007 		freed = 0;
1008 		for (i = 0; i < MAXCPU; i++) {
1009 			allocs += mtip->mti_stats[i].mts_numallocs;
1010 			frees += mtip->mti_stats[i].mts_numfrees;
1011 			alloced += mtip->mti_stats[i].mts_memalloced;
1012 			freed += mtip->mti_stats[i].mts_memfreed;
1013 		}
1014 		db_printf("%18s %12ju %12juK %12ju\n",
1015 		    mtp->ks_shortdesc, allocs - frees,
1016 		    (alloced - freed + 1023) / 1024, allocs);
1017 		if (db_pager_quit)
1018 			break;
1019 	}
1020 }
1021 
1022 #if MALLOC_DEBUG_MAXZONES > 1
1023 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
1024 {
1025 	struct malloc_type_internal *mtip;
1026 	struct malloc_type *mtp;
1027 	u_int subzone;
1028 
1029 	if (!have_addr) {
1030 		db_printf("Usage: show multizone_matches <malloc type/addr>\n");
1031 		return;
1032 	}
1033 	mtp = (void *)addr;
1034 	if (mtp->ks_magic != M_MAGIC) {
1035 		db_printf("Magic %lx does not match expected %x\n",
1036 		    mtp->ks_magic, M_MAGIC);
1037 		return;
1038 	}
1039 
1040 	mtip = mtp->ks_handle;
1041 	subzone = mtip->mti_zone;
1042 
1043 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1044 		mtip = mtp->ks_handle;
1045 		if (mtip->mti_zone != subzone)
1046 			continue;
1047 		db_printf("%s\n", mtp->ks_shortdesc);
1048 		if (db_pager_quit)
1049 			break;
1050 	}
1051 }
1052 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
1053 #endif /* DDB */
1054 
1055 #ifdef MALLOC_PROFILE
1056 
1057 static int
1058 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
1059 {
1060 	struct sbuf sbuf;
1061 	uint64_t count;
1062 	uint64_t waste;
1063 	uint64_t mem;
1064 	int error;
1065 	int rsize;
1066 	int size;
1067 	int i;
1068 
1069 	waste = 0;
1070 	mem = 0;
1071 
1072 	error = sysctl_wire_old_buffer(req, 0);
1073 	if (error != 0)
1074 		return (error);
1075 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1076 	sbuf_printf(&sbuf,
1077 	    "\n  Size                    Requests  Real Size\n");
1078 	for (i = 0; i < KMEM_ZSIZE; i++) {
1079 		size = i << KMEM_ZSHIFT;
1080 		rsize = kmemzones[kmemsize[i]].kz_size;
1081 		count = (long long unsigned)krequests[i];
1082 
1083 		sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
1084 		    (unsigned long long)count, rsize);
1085 
1086 		if ((rsize * count) > (size * count))
1087 			waste += (rsize * count) - (size * count);
1088 		mem += (rsize * count);
1089 	}
1090 	sbuf_printf(&sbuf,
1091 	    "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
1092 	    (unsigned long long)mem, (unsigned long long)waste);
1093 	error = sbuf_finish(&sbuf);
1094 	sbuf_delete(&sbuf);
1095 	return (error);
1096 }
1097 
1098 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
1099     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
1100 #endif /* MALLOC_PROFILE */
1101