1 /*- 2 * Copyright (c) 1987, 1991, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2005-2009 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 32 */ 33 34 /* 35 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 36 * based on memory types. Back end is implemented using the UMA(9) zone 37 * allocator. A set of fixed-size buckets are used for smaller allocations, 38 * and a special UMA allocation interface is used for larger allocations. 39 * Callers declare memory types, and statistics are maintained independently 40 * for each memory type. Statistics are maintained per-CPU for performance 41 * reasons. See malloc(9) and comments in malloc.h for a detailed 42 * description. 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_ddb.h" 49 #include "opt_kdtrace.h" 50 #include "opt_vm.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/kdb.h> 55 #include <sys/kernel.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mbuf.h> 59 #include <sys/mutex.h> 60 #include <sys/vmmeter.h> 61 #include <sys/proc.h> 62 #include <sys/sbuf.h> 63 #include <sys/sysctl.h> 64 #include <sys/time.h> 65 #include <sys/vmem.h> 66 67 #include <vm/vm.h> 68 #include <vm/pmap.h> 69 #include <vm/vm_pageout.h> 70 #include <vm/vm_param.h> 71 #include <vm/vm_kern.h> 72 #include <vm/vm_extern.h> 73 #include <vm/vm_map.h> 74 #include <vm/vm_page.h> 75 #include <vm/uma.h> 76 #include <vm/uma_int.h> 77 #include <vm/uma_dbg.h> 78 79 #ifdef DEBUG_MEMGUARD 80 #include <vm/memguard.h> 81 #endif 82 #ifdef DEBUG_REDZONE 83 #include <vm/redzone.h> 84 #endif 85 86 #if defined(INVARIANTS) && defined(__i386__) 87 #include <machine/cpu.h> 88 #endif 89 90 #include <ddb/ddb.h> 91 92 #ifdef KDTRACE_HOOKS 93 #include <sys/dtrace_bsd.h> 94 95 dtrace_malloc_probe_func_t dtrace_malloc_probe; 96 #endif 97 98 /* 99 * When realloc() is called, if the new size is sufficiently smaller than 100 * the old size, realloc() will allocate a new, smaller block to avoid 101 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 102 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 103 */ 104 #ifndef REALLOC_FRACTION 105 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 106 #endif 107 108 /* 109 * Centrally define some common malloc types. 110 */ 111 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 112 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 113 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 114 115 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 116 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 117 118 static struct malloc_type *kmemstatistics; 119 static int kmemcount; 120 121 #define KMEM_ZSHIFT 4 122 #define KMEM_ZBASE 16 123 #define KMEM_ZMASK (KMEM_ZBASE - 1) 124 125 #define KMEM_ZMAX PAGE_SIZE 126 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 127 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 128 129 #ifndef MALLOC_DEBUG_MAXZONES 130 #define MALLOC_DEBUG_MAXZONES 1 131 #endif 132 static int numzones = MALLOC_DEBUG_MAXZONES; 133 134 /* 135 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 136 * of various sizes. 137 * 138 * XXX: The comment here used to read "These won't be powers of two for 139 * long." It's possible that a significant amount of wasted memory could be 140 * recovered by tuning the sizes of these buckets. 141 */ 142 struct { 143 int kz_size; 144 char *kz_name; 145 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 146 } kmemzones[] = { 147 {16, "16", }, 148 {32, "32", }, 149 {64, "64", }, 150 {128, "128", }, 151 {256, "256", }, 152 {512, "512", }, 153 {1024, "1024", }, 154 {2048, "2048", }, 155 {4096, "4096", }, 156 #if PAGE_SIZE > 4096 157 {8192, "8192", }, 158 #if PAGE_SIZE > 8192 159 {16384, "16384", }, 160 #if PAGE_SIZE > 16384 161 {32768, "32768", }, 162 #if PAGE_SIZE > 32768 163 {65536, "65536", }, 164 #if PAGE_SIZE > 65536 165 #error "Unsupported PAGE_SIZE" 166 #endif /* 65536 */ 167 #endif /* 32768 */ 168 #endif /* 16384 */ 169 #endif /* 8192 */ 170 #endif /* 4096 */ 171 {0, NULL}, 172 }; 173 174 /* 175 * Zone to allocate malloc type descriptions from. For ABI reasons, memory 176 * types are described by a data structure passed by the declaring code, but 177 * the malloc(9) implementation has its own data structure describing the 178 * type and statistics. This permits the malloc(9)-internal data structures 179 * to be modified without breaking binary-compiled kernel modules that 180 * declare malloc types. 181 */ 182 static uma_zone_t mt_zone; 183 184 u_long vm_kmem_size; 185 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 186 "Size of kernel memory"); 187 188 static u_long vm_kmem_size_min; 189 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 190 "Minimum size of kernel memory"); 191 192 static u_long vm_kmem_size_max; 193 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 194 "Maximum size of kernel memory"); 195 196 static u_int vm_kmem_size_scale; 197 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 198 "Scale factor for kernel memory size"); 199 200 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 201 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 202 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 203 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 204 205 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 206 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 207 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 208 sysctl_kmem_map_free, "LU", "Free space in kmem"); 209 210 /* 211 * The malloc_mtx protects the kmemstatistics linked list. 212 */ 213 struct mtx malloc_mtx; 214 215 #ifdef MALLOC_PROFILE 216 uint64_t krequests[KMEM_ZSIZE + 1]; 217 218 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 219 #endif 220 221 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 222 223 /* 224 * time_uptime of the last malloc(9) failure (induced or real). 225 */ 226 static time_t t_malloc_fail; 227 228 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 229 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0, 230 "Kernel malloc debugging options"); 231 #endif 232 233 /* 234 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 235 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 236 */ 237 #ifdef MALLOC_MAKE_FAILURES 238 static int malloc_failure_rate; 239 static int malloc_nowait_count; 240 static int malloc_failure_count; 241 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW, 242 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 243 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate); 244 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 245 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 246 #endif 247 248 static int 249 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 250 { 251 u_long size; 252 253 size = vmem_size(kmem_arena, VMEM_ALLOC); 254 return (sysctl_handle_long(oidp, &size, 0, req)); 255 } 256 257 static int 258 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 259 { 260 u_long size; 261 262 size = vmem_size(kmem_arena, VMEM_FREE); 263 return (sysctl_handle_long(oidp, &size, 0, req)); 264 } 265 266 /* 267 * malloc(9) uma zone separation -- sub-page buffer overruns in one 268 * malloc type will affect only a subset of other malloc types. 269 */ 270 #if MALLOC_DEBUG_MAXZONES > 1 271 static void 272 tunable_set_numzones(void) 273 { 274 275 TUNABLE_INT_FETCH("debug.malloc.numzones", 276 &numzones); 277 278 /* Sanity check the number of malloc uma zones. */ 279 if (numzones <= 0) 280 numzones = 1; 281 if (numzones > MALLOC_DEBUG_MAXZONES) 282 numzones = MALLOC_DEBUG_MAXZONES; 283 } 284 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 285 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN, 286 &numzones, 0, "Number of malloc uma subzones"); 287 288 /* 289 * Any number that changes regularly is an okay choice for the 290 * offset. Build numbers are pretty good of you have them. 291 */ 292 static u_int zone_offset = __FreeBSD_version; 293 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 294 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 295 &zone_offset, 0, "Separate malloc types by examining the " 296 "Nth character in the malloc type short description."); 297 298 static u_int 299 mtp_get_subzone(const char *desc) 300 { 301 size_t len; 302 u_int val; 303 304 if (desc == NULL || (len = strlen(desc)) == 0) 305 return (0); 306 val = desc[zone_offset % len]; 307 return (val % numzones); 308 } 309 #elif MALLOC_DEBUG_MAXZONES == 0 310 #error "MALLOC_DEBUG_MAXZONES must be positive." 311 #else 312 static inline u_int 313 mtp_get_subzone(const char *desc) 314 { 315 316 return (0); 317 } 318 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 319 320 int 321 malloc_last_fail(void) 322 { 323 324 return (time_uptime - t_malloc_fail); 325 } 326 327 /* 328 * An allocation has succeeded -- update malloc type statistics for the 329 * amount of bucket size. Occurs within a critical section so that the 330 * thread isn't preempted and doesn't migrate while updating per-PCU 331 * statistics. 332 */ 333 static void 334 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 335 int zindx) 336 { 337 struct malloc_type_internal *mtip; 338 struct malloc_type_stats *mtsp; 339 340 critical_enter(); 341 mtip = mtp->ks_handle; 342 mtsp = &mtip->mti_stats[curcpu]; 343 if (size > 0) { 344 mtsp->mts_memalloced += size; 345 mtsp->mts_numallocs++; 346 } 347 if (zindx != -1) 348 mtsp->mts_size |= 1 << zindx; 349 350 #ifdef KDTRACE_HOOKS 351 if (dtrace_malloc_probe != NULL) { 352 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 353 if (probe_id != 0) 354 (dtrace_malloc_probe)(probe_id, 355 (uintptr_t) mtp, (uintptr_t) mtip, 356 (uintptr_t) mtsp, size, zindx); 357 } 358 #endif 359 360 critical_exit(); 361 } 362 363 void 364 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 365 { 366 367 if (size > 0) 368 malloc_type_zone_allocated(mtp, size, -1); 369 } 370 371 /* 372 * A free operation has occurred -- update malloc type statistics for the 373 * amount of the bucket size. Occurs within a critical section so that the 374 * thread isn't preempted and doesn't migrate while updating per-CPU 375 * statistics. 376 */ 377 void 378 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 379 { 380 struct malloc_type_internal *mtip; 381 struct malloc_type_stats *mtsp; 382 383 critical_enter(); 384 mtip = mtp->ks_handle; 385 mtsp = &mtip->mti_stats[curcpu]; 386 mtsp->mts_memfreed += size; 387 mtsp->mts_numfrees++; 388 389 #ifdef KDTRACE_HOOKS 390 if (dtrace_malloc_probe != NULL) { 391 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 392 if (probe_id != 0) 393 (dtrace_malloc_probe)(probe_id, 394 (uintptr_t) mtp, (uintptr_t) mtip, 395 (uintptr_t) mtsp, size, 0); 396 } 397 #endif 398 399 critical_exit(); 400 } 401 402 /* 403 * contigmalloc: 404 * 405 * Allocate a block of physically contiguous memory. 406 * 407 * If M_NOWAIT is set, this routine will not block and return NULL if 408 * the allocation fails. 409 */ 410 void * 411 contigmalloc(unsigned long size, struct malloc_type *type, int flags, 412 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 413 vm_paddr_t boundary) 414 { 415 void *ret; 416 417 ret = (void *)kmem_alloc_contig(kernel_arena, size, flags, low, high, 418 alignment, boundary, VM_MEMATTR_DEFAULT); 419 if (ret != NULL) 420 malloc_type_allocated(type, round_page(size)); 421 return (ret); 422 } 423 424 /* 425 * contigfree: 426 * 427 * Free a block of memory allocated by contigmalloc. 428 * 429 * This routine may not block. 430 */ 431 void 432 contigfree(void *addr, unsigned long size, struct malloc_type *type) 433 { 434 435 kmem_free(kernel_arena, (vm_offset_t)addr, size); 436 malloc_type_freed(type, round_page(size)); 437 } 438 439 /* 440 * malloc: 441 * 442 * Allocate a block of memory. 443 * 444 * If M_NOWAIT is set, this routine will not block and return NULL if 445 * the allocation fails. 446 */ 447 void * 448 malloc(unsigned long size, struct malloc_type *mtp, int flags) 449 { 450 int indx; 451 struct malloc_type_internal *mtip; 452 caddr_t va; 453 uma_zone_t zone; 454 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE) 455 unsigned long osize = size; 456 #endif 457 458 #ifdef INVARIANTS 459 KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic")); 460 /* 461 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 462 */ 463 indx = flags & (M_WAITOK | M_NOWAIT); 464 if (indx != M_NOWAIT && indx != M_WAITOK) { 465 static struct timeval lasterr; 466 static int curerr, once; 467 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 468 printf("Bad malloc flags: %x\n", indx); 469 kdb_backtrace(); 470 flags |= M_WAITOK; 471 once++; 472 } 473 } 474 #endif 475 #ifdef MALLOC_MAKE_FAILURES 476 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 477 atomic_add_int(&malloc_nowait_count, 1); 478 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 479 atomic_add_int(&malloc_failure_count, 1); 480 t_malloc_fail = time_uptime; 481 return (NULL); 482 } 483 } 484 #endif 485 if (flags & M_WAITOK) 486 KASSERT(curthread->td_intr_nesting_level == 0, 487 ("malloc(M_WAITOK) in interrupt context")); 488 489 #ifdef DEBUG_MEMGUARD 490 if (memguard_cmp_mtp(mtp, size)) { 491 va = memguard_alloc(size, flags); 492 if (va != NULL) 493 return (va); 494 /* This is unfortunate but should not be fatal. */ 495 } 496 #endif 497 498 #ifdef DEBUG_REDZONE 499 size = redzone_size_ntor(size); 500 #endif 501 502 if (size <= KMEM_ZMAX) { 503 mtip = mtp->ks_handle; 504 if (size & KMEM_ZMASK) 505 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 506 indx = kmemsize[size >> KMEM_ZSHIFT]; 507 KASSERT(mtip->mti_zone < numzones, 508 ("mti_zone %u out of range %d", 509 mtip->mti_zone, numzones)); 510 zone = kmemzones[indx].kz_zone[mtip->mti_zone]; 511 #ifdef MALLOC_PROFILE 512 krequests[size >> KMEM_ZSHIFT]++; 513 #endif 514 va = uma_zalloc(zone, flags); 515 if (va != NULL) 516 size = zone->uz_size; 517 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 518 } else { 519 size = roundup(size, PAGE_SIZE); 520 zone = NULL; 521 va = uma_large_malloc(size, flags); 522 malloc_type_allocated(mtp, va == NULL ? 0 : size); 523 } 524 if (flags & M_WAITOK) 525 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 526 else if (va == NULL) 527 t_malloc_fail = time_uptime; 528 #ifdef DIAGNOSTIC 529 if (va != NULL && !(flags & M_ZERO)) { 530 memset(va, 0x70, osize); 531 } 532 #endif 533 #ifdef DEBUG_REDZONE 534 if (va != NULL) 535 va = redzone_setup(va, osize); 536 #endif 537 return ((void *) va); 538 } 539 540 /* 541 * free: 542 * 543 * Free a block of memory allocated by malloc. 544 * 545 * This routine may not block. 546 */ 547 void 548 free(void *addr, struct malloc_type *mtp) 549 { 550 uma_slab_t slab; 551 u_long size; 552 553 KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic")); 554 555 /* free(NULL, ...) does nothing */ 556 if (addr == NULL) 557 return; 558 559 #ifdef DEBUG_MEMGUARD 560 if (is_memguard_addr(addr)) { 561 memguard_free(addr); 562 return; 563 } 564 #endif 565 566 #ifdef DEBUG_REDZONE 567 redzone_check(addr); 568 addr = redzone_addr_ntor(addr); 569 #endif 570 571 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 572 573 if (slab == NULL) 574 panic("free: address %p(%p) has not been allocated.\n", 575 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 576 577 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 578 #ifdef INVARIANTS 579 struct malloc_type **mtpp = addr; 580 #endif 581 size = slab->us_keg->uk_size; 582 #ifdef INVARIANTS 583 /* 584 * Cache a pointer to the malloc_type that most recently freed 585 * this memory here. This way we know who is most likely to 586 * have stepped on it later. 587 * 588 * This code assumes that size is a multiple of 8 bytes for 589 * 64 bit machines 590 */ 591 mtpp = (struct malloc_type **) 592 ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 593 mtpp += (size - sizeof(struct malloc_type *)) / 594 sizeof(struct malloc_type *); 595 *mtpp = mtp; 596 #endif 597 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab); 598 } else { 599 size = slab->us_size; 600 uma_large_free(slab); 601 } 602 malloc_type_freed(mtp, size); 603 } 604 605 /* 606 * realloc: change the size of a memory block 607 */ 608 void * 609 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags) 610 { 611 uma_slab_t slab; 612 unsigned long alloc; 613 void *newaddr; 614 615 KASSERT(mtp->ks_magic == M_MAGIC, 616 ("realloc: bad malloc type magic")); 617 618 /* realloc(NULL, ...) is equivalent to malloc(...) */ 619 if (addr == NULL) 620 return (malloc(size, mtp, flags)); 621 622 /* 623 * XXX: Should report free of old memory and alloc of new memory to 624 * per-CPU stats. 625 */ 626 627 #ifdef DEBUG_MEMGUARD 628 if (is_memguard_addr(addr)) 629 return (memguard_realloc(addr, size, mtp, flags)); 630 #endif 631 632 #ifdef DEBUG_REDZONE 633 slab = NULL; 634 alloc = redzone_get_size(addr); 635 #else 636 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); 637 638 /* Sanity check */ 639 KASSERT(slab != NULL, 640 ("realloc: address %p out of range", (void *)addr)); 641 642 /* Get the size of the original block */ 643 if (!(slab->us_flags & UMA_SLAB_MALLOC)) 644 alloc = slab->us_keg->uk_size; 645 else 646 alloc = slab->us_size; 647 648 /* Reuse the original block if appropriate */ 649 if (size <= alloc 650 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 651 return (addr); 652 #endif /* !DEBUG_REDZONE */ 653 654 /* Allocate a new, bigger (or smaller) block */ 655 if ((newaddr = malloc(size, mtp, flags)) == NULL) 656 return (NULL); 657 658 /* Copy over original contents */ 659 bcopy(addr, newaddr, min(size, alloc)); 660 free(addr, mtp); 661 return (newaddr); 662 } 663 664 /* 665 * reallocf: same as realloc() but free memory on failure. 666 */ 667 void * 668 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags) 669 { 670 void *mem; 671 672 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 673 free(addr, mtp); 674 return (mem); 675 } 676 677 /* 678 * Wake the page daemon when we exhaust KVA. It will call the lowmem handler 679 * and uma_reclaim() callbacks in a context that is safe. 680 */ 681 static void 682 kmem_reclaim(vmem_t *vm, int flags) 683 { 684 685 pagedaemon_wakeup(); 686 } 687 688 /* 689 * Initialize the kernel memory arena. 690 */ 691 void 692 kmeminit(void) 693 { 694 u_long mem_size, tmp; 695 696 /* 697 * Try to auto-tune the kernel memory size, so that it is 698 * more applicable for a wider range of machine sizes. The 699 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space 700 * available. 701 * 702 * Note that the kmem_map is also used by the zone allocator, 703 * so make sure that there is enough space. 704 */ 705 vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE; 706 mem_size = cnt.v_page_count; 707 708 #if defined(VM_KMEM_SIZE_SCALE) 709 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 710 #endif 711 TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale); 712 if (vm_kmem_size_scale > 0 && 713 (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE)) 714 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE; 715 716 #if defined(VM_KMEM_SIZE_MIN) 717 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 718 #endif 719 TUNABLE_ULONG_FETCH("vm.kmem_size_min", &vm_kmem_size_min); 720 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) { 721 vm_kmem_size = vm_kmem_size_min; 722 } 723 724 #if defined(VM_KMEM_SIZE_MAX) 725 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 726 #endif 727 TUNABLE_ULONG_FETCH("vm.kmem_size_max", &vm_kmem_size_max); 728 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 729 vm_kmem_size = vm_kmem_size_max; 730 731 /* Allow final override from the kernel environment */ 732 TUNABLE_ULONG_FETCH("vm.kmem_size", &vm_kmem_size); 733 734 /* 735 * Limit kmem virtual size to twice the physical memory. 736 * This allows for kmem map sparseness, but limits the size 737 * to something sane. Be careful to not overflow the 32bit 738 * ints while doing the check or the adjustment. 739 */ 740 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 741 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 742 743 vm_kmem_size = round_page(vm_kmem_size); 744 #ifdef DEBUG_MEMGUARD 745 tmp = memguard_fudge(vm_kmem_size, kernel_map); 746 #else 747 tmp = vm_kmem_size; 748 #endif 749 vmem_init(kmem_arena, "kmem arena", kva_alloc(tmp), tmp, PAGE_SIZE, 750 0, 0); 751 vmem_set_reclaim(kmem_arena, kmem_reclaim); 752 753 #ifdef DEBUG_MEMGUARD 754 /* 755 * Initialize MemGuard if support compiled in. MemGuard is a 756 * replacement allocator used for detecting tamper-after-free 757 * scenarios as they occur. It is only used for debugging. 758 */ 759 memguard_init(kmem_arena); 760 #endif 761 } 762 763 /* 764 * Initialize the kernel memory allocator 765 */ 766 /* ARGSUSED*/ 767 static void 768 mallocinit(void *dummy) 769 { 770 int i; 771 uint8_t indx; 772 773 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 774 775 kmeminit(); 776 777 uma_startup2(); 778 779 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal), 780 #ifdef INVARIANTS 781 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 782 #else 783 NULL, NULL, NULL, NULL, 784 #endif 785 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 786 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 787 int size = kmemzones[indx].kz_size; 788 char *name = kmemzones[indx].kz_name; 789 int subzone; 790 791 for (subzone = 0; subzone < numzones; subzone++) { 792 kmemzones[indx].kz_zone[subzone] = 793 uma_zcreate(name, size, 794 #ifdef INVARIANTS 795 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 796 #else 797 NULL, NULL, NULL, NULL, 798 #endif 799 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 800 } 801 for (;i <= size; i+= KMEM_ZBASE) 802 kmemsize[i >> KMEM_ZSHIFT] = indx; 803 804 } 805 } 806 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, mallocinit, NULL); 807 808 void 809 malloc_init(void *data) 810 { 811 struct malloc_type_internal *mtip; 812 struct malloc_type *mtp; 813 814 KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init")); 815 816 mtp = data; 817 if (mtp->ks_magic != M_MAGIC) 818 panic("malloc_init: bad malloc type magic"); 819 820 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO); 821 mtp->ks_handle = mtip; 822 mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc); 823 824 mtx_lock(&malloc_mtx); 825 mtp->ks_next = kmemstatistics; 826 kmemstatistics = mtp; 827 kmemcount++; 828 mtx_unlock(&malloc_mtx); 829 } 830 831 void 832 malloc_uninit(void *data) 833 { 834 struct malloc_type_internal *mtip; 835 struct malloc_type_stats *mtsp; 836 struct malloc_type *mtp, *temp; 837 uma_slab_t slab; 838 long temp_allocs, temp_bytes; 839 int i; 840 841 mtp = data; 842 KASSERT(mtp->ks_magic == M_MAGIC, 843 ("malloc_uninit: bad malloc type magic")); 844 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL")); 845 846 mtx_lock(&malloc_mtx); 847 mtip = mtp->ks_handle; 848 mtp->ks_handle = NULL; 849 if (mtp != kmemstatistics) { 850 for (temp = kmemstatistics; temp != NULL; 851 temp = temp->ks_next) { 852 if (temp->ks_next == mtp) { 853 temp->ks_next = mtp->ks_next; 854 break; 855 } 856 } 857 KASSERT(temp, 858 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 859 } else 860 kmemstatistics = mtp->ks_next; 861 kmemcount--; 862 mtx_unlock(&malloc_mtx); 863 864 /* 865 * Look for memory leaks. 866 */ 867 temp_allocs = temp_bytes = 0; 868 for (i = 0; i < MAXCPU; i++) { 869 mtsp = &mtip->mti_stats[i]; 870 temp_allocs += mtsp->mts_numallocs; 871 temp_allocs -= mtsp->mts_numfrees; 872 temp_bytes += mtsp->mts_memalloced; 873 temp_bytes -= mtsp->mts_memfreed; 874 } 875 if (temp_allocs > 0 || temp_bytes > 0) { 876 printf("Warning: memory type %s leaked memory on destroy " 877 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 878 temp_allocs, temp_bytes); 879 } 880 881 slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK)); 882 uma_zfree_arg(mt_zone, mtip, slab); 883 } 884 885 struct malloc_type * 886 malloc_desc2type(const char *desc) 887 { 888 struct malloc_type *mtp; 889 890 mtx_assert(&malloc_mtx, MA_OWNED); 891 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 892 if (strcmp(mtp->ks_shortdesc, desc) == 0) 893 return (mtp); 894 } 895 return (NULL); 896 } 897 898 static int 899 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 900 { 901 struct malloc_type_stream_header mtsh; 902 struct malloc_type_internal *mtip; 903 struct malloc_type_header mth; 904 struct malloc_type *mtp; 905 int error, i; 906 struct sbuf sbuf; 907 908 error = sysctl_wire_old_buffer(req, 0); 909 if (error != 0) 910 return (error); 911 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 912 mtx_lock(&malloc_mtx); 913 914 /* 915 * Insert stream header. 916 */ 917 bzero(&mtsh, sizeof(mtsh)); 918 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 919 mtsh.mtsh_maxcpus = MAXCPU; 920 mtsh.mtsh_count = kmemcount; 921 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 922 923 /* 924 * Insert alternating sequence of type headers and type statistics. 925 */ 926 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 927 mtip = (struct malloc_type_internal *)mtp->ks_handle; 928 929 /* 930 * Insert type header. 931 */ 932 bzero(&mth, sizeof(mth)); 933 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 934 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 935 936 /* 937 * Insert type statistics for each CPU. 938 */ 939 for (i = 0; i < MAXCPU; i++) { 940 (void)sbuf_bcat(&sbuf, &mtip->mti_stats[i], 941 sizeof(mtip->mti_stats[i])); 942 } 943 } 944 mtx_unlock(&malloc_mtx); 945 error = sbuf_finish(&sbuf); 946 sbuf_delete(&sbuf); 947 return (error); 948 } 949 950 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 951 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats", 952 "Return malloc types"); 953 954 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 955 "Count of kernel malloc types"); 956 957 void 958 malloc_type_list(malloc_type_list_func_t *func, void *arg) 959 { 960 struct malloc_type *mtp, **bufmtp; 961 int count, i; 962 size_t buflen; 963 964 mtx_lock(&malloc_mtx); 965 restart: 966 mtx_assert(&malloc_mtx, MA_OWNED); 967 count = kmemcount; 968 mtx_unlock(&malloc_mtx); 969 970 buflen = sizeof(struct malloc_type *) * count; 971 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 972 973 mtx_lock(&malloc_mtx); 974 975 if (count < kmemcount) { 976 free(bufmtp, M_TEMP); 977 goto restart; 978 } 979 980 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 981 bufmtp[i] = mtp; 982 983 mtx_unlock(&malloc_mtx); 984 985 for (i = 0; i < count; i++) 986 (func)(bufmtp[i], arg); 987 988 free(bufmtp, M_TEMP); 989 } 990 991 #ifdef DDB 992 DB_SHOW_COMMAND(malloc, db_show_malloc) 993 { 994 struct malloc_type_internal *mtip; 995 struct malloc_type *mtp; 996 uint64_t allocs, frees; 997 uint64_t alloced, freed; 998 int i; 999 1000 db_printf("%18s %12s %12s %12s\n", "Type", "InUse", "MemUse", 1001 "Requests"); 1002 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1003 mtip = (struct malloc_type_internal *)mtp->ks_handle; 1004 allocs = 0; 1005 frees = 0; 1006 alloced = 0; 1007 freed = 0; 1008 for (i = 0; i < MAXCPU; i++) { 1009 allocs += mtip->mti_stats[i].mts_numallocs; 1010 frees += mtip->mti_stats[i].mts_numfrees; 1011 alloced += mtip->mti_stats[i].mts_memalloced; 1012 freed += mtip->mti_stats[i].mts_memfreed; 1013 } 1014 db_printf("%18s %12ju %12juK %12ju\n", 1015 mtp->ks_shortdesc, allocs - frees, 1016 (alloced - freed + 1023) / 1024, allocs); 1017 if (db_pager_quit) 1018 break; 1019 } 1020 } 1021 1022 #if MALLOC_DEBUG_MAXZONES > 1 1023 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1024 { 1025 struct malloc_type_internal *mtip; 1026 struct malloc_type *mtp; 1027 u_int subzone; 1028 1029 if (!have_addr) { 1030 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1031 return; 1032 } 1033 mtp = (void *)addr; 1034 if (mtp->ks_magic != M_MAGIC) { 1035 db_printf("Magic %lx does not match expected %x\n", 1036 mtp->ks_magic, M_MAGIC); 1037 return; 1038 } 1039 1040 mtip = mtp->ks_handle; 1041 subzone = mtip->mti_zone; 1042 1043 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1044 mtip = mtp->ks_handle; 1045 if (mtip->mti_zone != subzone) 1046 continue; 1047 db_printf("%s\n", mtp->ks_shortdesc); 1048 if (db_pager_quit) 1049 break; 1050 } 1051 } 1052 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1053 #endif /* DDB */ 1054 1055 #ifdef MALLOC_PROFILE 1056 1057 static int 1058 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 1059 { 1060 struct sbuf sbuf; 1061 uint64_t count; 1062 uint64_t waste; 1063 uint64_t mem; 1064 int error; 1065 int rsize; 1066 int size; 1067 int i; 1068 1069 waste = 0; 1070 mem = 0; 1071 1072 error = sysctl_wire_old_buffer(req, 0); 1073 if (error != 0) 1074 return (error); 1075 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1076 sbuf_printf(&sbuf, 1077 "\n Size Requests Real Size\n"); 1078 for (i = 0; i < KMEM_ZSIZE; i++) { 1079 size = i << KMEM_ZSHIFT; 1080 rsize = kmemzones[kmemsize[i]].kz_size; 1081 count = (long long unsigned)krequests[i]; 1082 1083 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size, 1084 (unsigned long long)count, rsize); 1085 1086 if ((rsize * count) > (size * count)) 1087 waste += (rsize * count) - (size * count); 1088 mem += (rsize * count); 1089 } 1090 sbuf_printf(&sbuf, 1091 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 1092 (unsigned long long)mem, (unsigned long long)waste); 1093 error = sbuf_finish(&sbuf); 1094 sbuf_delete(&sbuf); 1095 return (error); 1096 } 1097 1098 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 1099 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 1100 #endif /* MALLOC_PROFILE */ 1101