1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1987, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005-2009 Robert N. M. Watson 7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray) 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 35 */ 36 37 /* 38 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 39 * based on memory types. Back end is implemented using the UMA(9) zone 40 * allocator. A set of fixed-size buckets are used for smaller allocations, 41 * and a special UMA allocation interface is used for larger allocations. 42 * Callers declare memory types, and statistics are maintained independently 43 * for each memory type. Statistics are maintained per-CPU for performance 44 * reasons. See malloc(9) and comments in malloc.h for a detailed 45 * description. 46 */ 47 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include "opt_ddb.h" 52 #include "opt_vm.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/kdb.h> 57 #include <sys/kernel.h> 58 #include <sys/lock.h> 59 #include <sys/malloc.h> 60 #include <sys/mutex.h> 61 #include <sys/vmmeter.h> 62 #include <sys/proc.h> 63 #include <sys/queue.h> 64 #include <sys/sbuf.h> 65 #include <sys/smp.h> 66 #include <sys/sysctl.h> 67 #include <sys/time.h> 68 #include <sys/vmem.h> 69 #ifdef EPOCH_TRACE 70 #include <sys/epoch.h> 71 #endif 72 73 #include <vm/vm.h> 74 #include <vm/pmap.h> 75 #include <vm/vm_domainset.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_param.h> 78 #include <vm/vm_kern.h> 79 #include <vm/vm_extern.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_page.h> 82 #include <vm/vm_phys.h> 83 #include <vm/vm_pagequeue.h> 84 #include <vm/uma.h> 85 #include <vm/uma_int.h> 86 #include <vm/uma_dbg.h> 87 88 #ifdef DEBUG_MEMGUARD 89 #include <vm/memguard.h> 90 #endif 91 #ifdef DEBUG_REDZONE 92 #include <vm/redzone.h> 93 #endif 94 95 #if defined(INVARIANTS) && defined(__i386__) 96 #include <machine/cpu.h> 97 #endif 98 99 #include <ddb/ddb.h> 100 101 #ifdef KDTRACE_HOOKS 102 #include <sys/dtrace_bsd.h> 103 104 bool __read_frequently dtrace_malloc_enabled; 105 dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; 106 #endif 107 108 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ 109 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) 110 #define MALLOC_DEBUG 1 111 #endif 112 113 #ifdef DEBUG_REDZONE 114 #define DEBUG_REDZONE_ARG_DEF , unsigned long osize 115 #define DEBUG_REDZONE_ARG , osize 116 #else 117 #define DEBUG_REDZONE_ARG_DEF 118 #define DEBUG_REDZONE_ARG 119 #endif 120 121 /* 122 * When realloc() is called, if the new size is sufficiently smaller than 123 * the old size, realloc() will allocate a new, smaller block to avoid 124 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 125 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 126 */ 127 #ifndef REALLOC_FRACTION 128 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 129 #endif 130 131 /* 132 * Centrally define some common malloc types. 133 */ 134 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 135 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 136 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 137 138 static struct malloc_type *kmemstatistics; 139 static int kmemcount; 140 141 #define KMEM_ZSHIFT 4 142 #define KMEM_ZBASE 16 143 #define KMEM_ZMASK (KMEM_ZBASE - 1) 144 145 #define KMEM_ZMAX 65536 146 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 147 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 148 149 #ifndef MALLOC_DEBUG_MAXZONES 150 #define MALLOC_DEBUG_MAXZONES 1 151 #endif 152 static int numzones = MALLOC_DEBUG_MAXZONES; 153 154 /* 155 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 156 * of various sizes. 157 * 158 * Warning: the layout of the struct is duplicated in libmemstat for KVM support. 159 * 160 * XXX: The comment here used to read "These won't be powers of two for 161 * long." It's possible that a significant amount of wasted memory could be 162 * recovered by tuning the sizes of these buckets. 163 */ 164 struct { 165 int kz_size; 166 const char *kz_name; 167 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 168 } kmemzones[] = { 169 {16, "malloc-16", }, 170 {32, "malloc-32", }, 171 {64, "malloc-64", }, 172 {128, "malloc-128", }, 173 {256, "malloc-256", }, 174 {384, "malloc-384", }, 175 {512, "malloc-512", }, 176 {1024, "malloc-1024", }, 177 {2048, "malloc-2048", }, 178 {4096, "malloc-4096", }, 179 {8192, "malloc-8192", }, 180 {16384, "malloc-16384", }, 181 {32768, "malloc-32768", }, 182 {65536, "malloc-65536", }, 183 {0, NULL}, 184 }; 185 186 u_long vm_kmem_size; 187 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 188 "Size of kernel memory"); 189 190 static u_long kmem_zmax = KMEM_ZMAX; 191 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, 192 "Maximum allocation size that malloc(9) would use UMA as backend"); 193 194 static u_long vm_kmem_size_min; 195 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 196 "Minimum size of kernel memory"); 197 198 static u_long vm_kmem_size_max; 199 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 200 "Maximum size of kernel memory"); 201 202 static u_int vm_kmem_size_scale; 203 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 204 "Scale factor for kernel memory size"); 205 206 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 207 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 208 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 209 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 210 211 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 212 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 213 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 214 sysctl_kmem_map_free, "LU", "Free space in kmem"); 215 216 static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 217 "Malloc information"); 218 219 static u_int vm_malloc_zone_count = nitems(kmemzones); 220 SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count, 221 CTLFLAG_RD, &vm_malloc_zone_count, 0, 222 "Number of malloc zones"); 223 224 static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS); 225 SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes, 226 CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0, 227 sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc"); 228 229 /* 230 * The malloc_mtx protects the kmemstatistics linked list. 231 */ 232 struct mtx malloc_mtx; 233 234 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 235 236 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 237 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 238 "Kernel malloc debugging options"); 239 #endif 240 241 /* 242 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 243 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 244 */ 245 #ifdef MALLOC_MAKE_FAILURES 246 static int malloc_failure_rate; 247 static int malloc_nowait_count; 248 static int malloc_failure_count; 249 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, 250 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 251 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 252 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 253 #endif 254 255 static int 256 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 257 { 258 u_long size; 259 260 size = uma_size(); 261 return (sysctl_handle_long(oidp, &size, 0, req)); 262 } 263 264 static int 265 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 266 { 267 u_long size, limit; 268 269 /* The sysctl is unsigned, implement as a saturation value. */ 270 size = uma_size(); 271 limit = uma_limit(); 272 if (size > limit) 273 size = 0; 274 else 275 size = limit - size; 276 return (sysctl_handle_long(oidp, &size, 0, req)); 277 } 278 279 static int 280 sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS) 281 { 282 int sizes[nitems(kmemzones)]; 283 int i; 284 285 for (i = 0; i < nitems(kmemzones); i++) { 286 sizes[i] = kmemzones[i].kz_size; 287 } 288 289 return (SYSCTL_OUT(req, &sizes, sizeof(sizes))); 290 } 291 292 /* 293 * malloc(9) uma zone separation -- sub-page buffer overruns in one 294 * malloc type will affect only a subset of other malloc types. 295 */ 296 #if MALLOC_DEBUG_MAXZONES > 1 297 static void 298 tunable_set_numzones(void) 299 { 300 301 TUNABLE_INT_FETCH("debug.malloc.numzones", 302 &numzones); 303 304 /* Sanity check the number of malloc uma zones. */ 305 if (numzones <= 0) 306 numzones = 1; 307 if (numzones > MALLOC_DEBUG_MAXZONES) 308 numzones = MALLOC_DEBUG_MAXZONES; 309 } 310 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 311 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 312 &numzones, 0, "Number of malloc uma subzones"); 313 314 /* 315 * Any number that changes regularly is an okay choice for the 316 * offset. Build numbers are pretty good of you have them. 317 */ 318 static u_int zone_offset = __FreeBSD_version; 319 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 320 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 321 &zone_offset, 0, "Separate malloc types by examining the " 322 "Nth character in the malloc type short description."); 323 324 static void 325 mtp_set_subzone(struct malloc_type *mtp) 326 { 327 struct malloc_type_internal *mtip; 328 const char *desc; 329 size_t len; 330 u_int val; 331 332 mtip = &mtp->ks_mti; 333 desc = mtp->ks_shortdesc; 334 if (desc == NULL || (len = strlen(desc)) == 0) 335 val = 0; 336 else 337 val = desc[zone_offset % len]; 338 mtip->mti_zone = (val % numzones); 339 } 340 341 static inline u_int 342 mtp_get_subzone(struct malloc_type *mtp) 343 { 344 struct malloc_type_internal *mtip; 345 346 mtip = &mtp->ks_mti; 347 348 KASSERT(mtip->mti_zone < numzones, 349 ("mti_zone %u out of range %d", 350 mtip->mti_zone, numzones)); 351 return (mtip->mti_zone); 352 } 353 #elif MALLOC_DEBUG_MAXZONES == 0 354 #error "MALLOC_DEBUG_MAXZONES must be positive." 355 #else 356 static void 357 mtp_set_subzone(struct malloc_type *mtp) 358 { 359 struct malloc_type_internal *mtip; 360 361 mtip = &mtp->ks_mti; 362 mtip->mti_zone = 0; 363 } 364 365 static inline u_int 366 mtp_get_subzone(struct malloc_type *mtp) 367 { 368 369 return (0); 370 } 371 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 372 373 /* 374 * An allocation has succeeded -- update malloc type statistics for the 375 * amount of bucket size. Occurs within a critical section so that the 376 * thread isn't preempted and doesn't migrate while updating per-PCU 377 * statistics. 378 */ 379 static void 380 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 381 int zindx) 382 { 383 struct malloc_type_internal *mtip; 384 struct malloc_type_stats *mtsp; 385 386 critical_enter(); 387 mtip = &mtp->ks_mti; 388 mtsp = zpcpu_get(mtip->mti_stats); 389 if (size > 0) { 390 mtsp->mts_memalloced += size; 391 mtsp->mts_numallocs++; 392 } 393 if (zindx != -1) 394 mtsp->mts_size |= 1 << zindx; 395 396 #ifdef KDTRACE_HOOKS 397 if (__predict_false(dtrace_malloc_enabled)) { 398 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 399 if (probe_id != 0) 400 (dtrace_malloc_probe)(probe_id, 401 (uintptr_t) mtp, (uintptr_t) mtip, 402 (uintptr_t) mtsp, size, zindx); 403 } 404 #endif 405 406 critical_exit(); 407 } 408 409 void 410 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 411 { 412 413 if (size > 0) 414 malloc_type_zone_allocated(mtp, size, -1); 415 } 416 417 /* 418 * A free operation has occurred -- update malloc type statistics for the 419 * amount of the bucket size. Occurs within a critical section so that the 420 * thread isn't preempted and doesn't migrate while updating per-CPU 421 * statistics. 422 */ 423 void 424 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 425 { 426 struct malloc_type_internal *mtip; 427 struct malloc_type_stats *mtsp; 428 429 critical_enter(); 430 mtip = &mtp->ks_mti; 431 mtsp = zpcpu_get(mtip->mti_stats); 432 mtsp->mts_memfreed += size; 433 mtsp->mts_numfrees++; 434 435 #ifdef KDTRACE_HOOKS 436 if (__predict_false(dtrace_malloc_enabled)) { 437 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 438 if (probe_id != 0) 439 (dtrace_malloc_probe)(probe_id, 440 (uintptr_t) mtp, (uintptr_t) mtip, 441 (uintptr_t) mtsp, size, 0); 442 } 443 #endif 444 445 critical_exit(); 446 } 447 448 /* 449 * contigmalloc: 450 * 451 * Allocate a block of physically contiguous memory. 452 * 453 * If M_NOWAIT is set, this routine will not block and return NULL if 454 * the allocation fails. 455 */ 456 void * 457 contigmalloc(unsigned long size, struct malloc_type *type, int flags, 458 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 459 vm_paddr_t boundary) 460 { 461 void *ret; 462 463 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, 464 boundary, VM_MEMATTR_DEFAULT); 465 if (ret != NULL) 466 malloc_type_allocated(type, round_page(size)); 467 return (ret); 468 } 469 470 void * 471 contigmalloc_domainset(unsigned long size, struct malloc_type *type, 472 struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, 473 unsigned long alignment, vm_paddr_t boundary) 474 { 475 void *ret; 476 477 ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high, 478 alignment, boundary, VM_MEMATTR_DEFAULT); 479 if (ret != NULL) 480 malloc_type_allocated(type, round_page(size)); 481 return (ret); 482 } 483 484 /* 485 * contigfree: 486 * 487 * Free a block of memory allocated by contigmalloc. 488 * 489 * This routine may not block. 490 */ 491 void 492 contigfree(void *addr, unsigned long size, struct malloc_type *type) 493 { 494 495 kmem_free((vm_offset_t)addr, size); 496 malloc_type_freed(type, round_page(size)); 497 } 498 499 #ifdef MALLOC_DEBUG 500 static int 501 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, 502 int flags) 503 { 504 #ifdef INVARIANTS 505 int indx; 506 507 KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version")); 508 /* 509 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 510 */ 511 indx = flags & (M_WAITOK | M_NOWAIT); 512 if (indx != M_NOWAIT && indx != M_WAITOK) { 513 static struct timeval lasterr; 514 static int curerr, once; 515 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 516 printf("Bad malloc flags: %x\n", indx); 517 kdb_backtrace(); 518 flags |= M_WAITOK; 519 once++; 520 } 521 } 522 #endif 523 #ifdef MALLOC_MAKE_FAILURES 524 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 525 atomic_add_int(&malloc_nowait_count, 1); 526 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 527 atomic_add_int(&malloc_failure_count, 1); 528 *vap = NULL; 529 return (EJUSTRETURN); 530 } 531 } 532 #endif 533 if (flags & M_WAITOK) { 534 KASSERT(curthread->td_intr_nesting_level == 0, 535 ("malloc(M_WAITOK) in interrupt context")); 536 if (__predict_false(!THREAD_CAN_SLEEP())) { 537 #ifdef EPOCH_TRACE 538 epoch_trace_list(curthread); 539 #endif 540 KASSERT(1, 541 ("malloc(M_WAITOK) with sleeping prohibited")); 542 } 543 } 544 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 545 ("malloc: called with spinlock or critical section held")); 546 547 #ifdef DEBUG_MEMGUARD 548 if (memguard_cmp_mtp(mtp, *sizep)) { 549 *vap = memguard_alloc(*sizep, flags); 550 if (*vap != NULL) 551 return (EJUSTRETURN); 552 /* This is unfortunate but should not be fatal. */ 553 } 554 #endif 555 556 #ifdef DEBUG_REDZONE 557 *sizep = redzone_size_ntor(*sizep); 558 #endif 559 560 return (0); 561 } 562 #endif 563 564 /* 565 * Handle large allocations and frees by using kmem_malloc directly. 566 */ 567 static inline bool 568 malloc_large_slab(uma_slab_t slab) 569 { 570 uintptr_t va; 571 572 va = (uintptr_t)slab; 573 return ((va & 1) != 0); 574 } 575 576 static inline size_t 577 malloc_large_size(uma_slab_t slab) 578 { 579 uintptr_t va; 580 581 va = (uintptr_t)slab; 582 return (va >> 1); 583 } 584 585 static caddr_t __noinline 586 malloc_large(size_t *size, struct malloc_type *mtp, struct domainset *policy, 587 int flags DEBUG_REDZONE_ARG_DEF) 588 { 589 vm_offset_t kva; 590 caddr_t va; 591 size_t sz; 592 593 sz = roundup(*size, PAGE_SIZE); 594 kva = kmem_malloc_domainset(policy, sz, flags); 595 if (kva != 0) { 596 /* The low bit is unused for slab pointers. */ 597 vsetzoneslab(kva, NULL, (void *)((sz << 1) | 1)); 598 uma_total_inc(sz); 599 *size = sz; 600 } 601 va = (caddr_t)kva; 602 malloc_type_allocated(mtp, va == NULL ? 0 : sz); 603 if (__predict_false(va == NULL)) { 604 KASSERT((flags & M_WAITOK) == 0, 605 ("malloc(M_WAITOK) returned NULL")); 606 } 607 #ifdef DEBUG_REDZONE 608 if (va != NULL) 609 va = redzone_setup(va, osize); 610 #endif 611 return (va); 612 } 613 614 static void 615 free_large(void *addr, size_t size) 616 { 617 618 kmem_free((vm_offset_t)addr, size); 619 uma_total_dec(size); 620 } 621 622 /* 623 * malloc: 624 * 625 * Allocate a block of memory. 626 * 627 * If M_NOWAIT is set, this routine will not block and return NULL if 628 * the allocation fails. 629 */ 630 void * 631 (malloc)(size_t size, struct malloc_type *mtp, int flags) 632 { 633 int indx; 634 caddr_t va; 635 uma_zone_t zone; 636 #ifdef DEBUG_REDZONE 637 unsigned long osize = size; 638 #endif 639 640 MPASS((flags & M_EXEC) == 0); 641 642 #ifdef MALLOC_DEBUG 643 va = NULL; 644 if (malloc_dbg(&va, &size, mtp, flags) != 0) 645 return (va); 646 #endif 647 648 if (__predict_false(size > kmem_zmax)) 649 return (malloc_large(&size, mtp, DOMAINSET_RR(), flags 650 DEBUG_REDZONE_ARG)); 651 652 if (size & KMEM_ZMASK) 653 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 654 indx = kmemsize[size >> KMEM_ZSHIFT]; 655 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 656 va = uma_zalloc(zone, flags); 657 if (va != NULL) 658 size = zone->uz_size; 659 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 660 if (__predict_false(va == NULL)) { 661 KASSERT((flags & M_WAITOK) == 0, 662 ("malloc(M_WAITOK) returned NULL")); 663 } 664 #ifdef DEBUG_REDZONE 665 if (va != NULL) 666 va = redzone_setup(va, osize); 667 #endif 668 return ((void *) va); 669 } 670 671 static void * 672 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain, 673 int flags) 674 { 675 uma_zone_t zone; 676 caddr_t va; 677 size_t size; 678 int indx; 679 680 size = *sizep; 681 KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0, 682 ("malloc_domain: Called with bad flag / size combination.")); 683 if (size & KMEM_ZMASK) 684 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 685 indx = kmemsize[size >> KMEM_ZSHIFT]; 686 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 687 va = uma_zalloc_domain(zone, NULL, domain, flags); 688 if (va != NULL) 689 *sizep = zone->uz_size; 690 *indxp = indx; 691 return ((void *)va); 692 } 693 694 void * 695 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, 696 int flags) 697 { 698 struct vm_domainset_iter di; 699 caddr_t va; 700 int domain; 701 int indx; 702 #ifdef DEBUG_REDZONE 703 unsigned long osize = size; 704 #endif 705 706 MPASS((flags & M_EXEC) == 0); 707 708 #ifdef MALLOC_DEBUG 709 va = NULL; 710 if (malloc_dbg(&va, &size, mtp, flags) != 0) 711 return (va); 712 #endif 713 714 if (__predict_false(size > kmem_zmax)) 715 return (malloc_large(&size, mtp, DOMAINSET_RR(), flags 716 DEBUG_REDZONE_ARG)); 717 718 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 719 do { 720 va = malloc_domain(&size, &indx, mtp, domain, flags); 721 } while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0); 722 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 723 if (__predict_false(va == NULL)) { 724 KASSERT((flags & M_WAITOK) == 0, 725 ("malloc(M_WAITOK) returned NULL")); 726 } 727 #ifdef DEBUG_REDZONE 728 if (va != NULL) 729 va = redzone_setup(va, osize); 730 #endif 731 return (va); 732 } 733 734 /* 735 * Allocate an executable area. 736 */ 737 void * 738 malloc_exec(size_t size, struct malloc_type *mtp, int flags) 739 { 740 741 return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags)); 742 } 743 744 void * 745 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds, 746 int flags) 747 { 748 #ifdef DEBUG_REDZONE 749 unsigned long osize = size; 750 #endif 751 #ifdef MALLOC_DEBUG 752 caddr_t va; 753 #endif 754 755 flags |= M_EXEC; 756 757 #ifdef MALLOC_DEBUG 758 va = NULL; 759 if (malloc_dbg(&va, &size, mtp, flags) != 0) 760 return (va); 761 #endif 762 763 return (malloc_large(&size, mtp, ds, flags DEBUG_REDZONE_ARG)); 764 } 765 766 void * 767 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) 768 { 769 770 if (WOULD_OVERFLOW(nmemb, size)) 771 panic("mallocarray: %zu * %zu overflowed", nmemb, size); 772 773 return (malloc(size * nmemb, type, flags)); 774 } 775 776 #ifdef INVARIANTS 777 static void 778 free_save_type(void *addr, struct malloc_type *mtp, u_long size) 779 { 780 struct malloc_type **mtpp = addr; 781 782 /* 783 * Cache a pointer to the malloc_type that most recently freed 784 * this memory here. This way we know who is most likely to 785 * have stepped on it later. 786 * 787 * This code assumes that size is a multiple of 8 bytes for 788 * 64 bit machines 789 */ 790 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 791 mtpp += (size - sizeof(struct malloc_type *)) / 792 sizeof(struct malloc_type *); 793 *mtpp = mtp; 794 } 795 #endif 796 797 #ifdef MALLOC_DEBUG 798 static int 799 free_dbg(void **addrp, struct malloc_type *mtp) 800 { 801 void *addr; 802 803 addr = *addrp; 804 KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version")); 805 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 806 ("free: called with spinlock or critical section held")); 807 808 /* free(NULL, ...) does nothing */ 809 if (addr == NULL) 810 return (EJUSTRETURN); 811 812 #ifdef DEBUG_MEMGUARD 813 if (is_memguard_addr(addr)) { 814 memguard_free(addr); 815 return (EJUSTRETURN); 816 } 817 #endif 818 819 #ifdef DEBUG_REDZONE 820 redzone_check(addr); 821 *addrp = redzone_addr_ntor(addr); 822 #endif 823 824 return (0); 825 } 826 #endif 827 828 /* 829 * free: 830 * 831 * Free a block of memory allocated by malloc. 832 * 833 * This routine may not block. 834 */ 835 void 836 free(void *addr, struct malloc_type *mtp) 837 { 838 uma_zone_t zone; 839 uma_slab_t slab; 840 u_long size; 841 842 #ifdef MALLOC_DEBUG 843 if (free_dbg(&addr, mtp) != 0) 844 return; 845 #endif 846 /* free(NULL, ...) does nothing */ 847 if (addr == NULL) 848 return; 849 850 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 851 if (slab == NULL) 852 panic("free: address %p(%p) has not been allocated.\n", 853 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 854 855 if (__predict_true(!malloc_large_slab(slab))) { 856 size = zone->uz_size; 857 #ifdef INVARIANTS 858 free_save_type(addr, mtp, size); 859 #endif 860 uma_zfree_arg(zone, addr, slab); 861 } else { 862 size = malloc_large_size(slab); 863 free_large(addr, size); 864 } 865 malloc_type_freed(mtp, size); 866 } 867 868 /* 869 * zfree: 870 * 871 * Zero then free a block of memory allocated by malloc. 872 * 873 * This routine may not block. 874 */ 875 void 876 zfree(void *addr, struct malloc_type *mtp) 877 { 878 uma_zone_t zone; 879 uma_slab_t slab; 880 u_long size; 881 882 #ifdef MALLOC_DEBUG 883 if (free_dbg(&addr, mtp) != 0) 884 return; 885 #endif 886 /* free(NULL, ...) does nothing */ 887 if (addr == NULL) 888 return; 889 890 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 891 if (slab == NULL) 892 panic("free: address %p(%p) has not been allocated.\n", 893 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 894 895 if (__predict_true(!malloc_large_slab(slab))) { 896 size = zone->uz_size; 897 #ifdef INVARIANTS 898 free_save_type(addr, mtp, size); 899 #endif 900 explicit_bzero(addr, size); 901 uma_zfree_arg(zone, addr, slab); 902 } else { 903 size = malloc_large_size(slab); 904 explicit_bzero(addr, size); 905 free_large(addr, size); 906 } 907 malloc_type_freed(mtp, size); 908 } 909 910 /* 911 * realloc: change the size of a memory block 912 */ 913 void * 914 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) 915 { 916 uma_zone_t zone; 917 uma_slab_t slab; 918 unsigned long alloc; 919 void *newaddr; 920 921 KASSERT(mtp->ks_version == M_VERSION, 922 ("realloc: bad malloc type version")); 923 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 924 ("realloc: called with spinlock or critical section held")); 925 926 /* realloc(NULL, ...) is equivalent to malloc(...) */ 927 if (addr == NULL) 928 return (malloc(size, mtp, flags)); 929 930 /* 931 * XXX: Should report free of old memory and alloc of new memory to 932 * per-CPU stats. 933 */ 934 935 #ifdef DEBUG_MEMGUARD 936 if (is_memguard_addr(addr)) 937 return (memguard_realloc(addr, size, mtp, flags)); 938 #endif 939 940 #ifdef DEBUG_REDZONE 941 slab = NULL; 942 zone = NULL; 943 alloc = redzone_get_size(addr); 944 #else 945 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 946 947 /* Sanity check */ 948 KASSERT(slab != NULL, 949 ("realloc: address %p out of range", (void *)addr)); 950 951 /* Get the size of the original block */ 952 if (!malloc_large_slab(slab)) 953 alloc = zone->uz_size; 954 else 955 alloc = malloc_large_size(slab); 956 957 /* Reuse the original block if appropriate */ 958 if (size <= alloc 959 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 960 return (addr); 961 #endif /* !DEBUG_REDZONE */ 962 963 /* Allocate a new, bigger (or smaller) block */ 964 if ((newaddr = malloc(size, mtp, flags)) == NULL) 965 return (NULL); 966 967 /* Copy over original contents */ 968 bcopy(addr, newaddr, min(size, alloc)); 969 free(addr, mtp); 970 return (newaddr); 971 } 972 973 /* 974 * reallocf: same as realloc() but free memory on failure. 975 */ 976 void * 977 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) 978 { 979 void *mem; 980 981 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 982 free(addr, mtp); 983 return (mem); 984 } 985 986 /* 987 * malloc_size: returns the number of bytes allocated for a request of the 988 * specified size 989 */ 990 size_t 991 malloc_size(size_t size) 992 { 993 int indx; 994 995 if (size > kmem_zmax) 996 return (0); 997 if (size & KMEM_ZMASK) 998 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 999 indx = kmemsize[size >> KMEM_ZSHIFT]; 1000 return (kmemzones[indx].kz_size); 1001 } 1002 1003 /* 1004 * malloc_usable_size: returns the usable size of the allocation. 1005 */ 1006 size_t 1007 malloc_usable_size(const void *addr) 1008 { 1009 #ifndef DEBUG_REDZONE 1010 uma_zone_t zone; 1011 uma_slab_t slab; 1012 #endif 1013 u_long size; 1014 1015 if (addr == NULL) 1016 return (0); 1017 1018 #ifdef DEBUG_MEMGUARD 1019 if (is_memguard_addr(__DECONST(void *, addr))) 1020 return (memguard_get_req_size(addr)); 1021 #endif 1022 1023 #ifdef DEBUG_REDZONE 1024 size = redzone_get_size(__DECONST(void *, addr)); 1025 #else 1026 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1027 if (slab == NULL) 1028 panic("malloc_usable_size: address %p(%p) is not allocated.\n", 1029 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 1030 1031 if (!malloc_large_slab(slab)) 1032 size = zone->uz_size; 1033 else 1034 size = malloc_large_size(slab); 1035 #endif 1036 return (size); 1037 } 1038 1039 CTASSERT(VM_KMEM_SIZE_SCALE >= 1); 1040 1041 /* 1042 * Initialize the kernel memory (kmem) arena. 1043 */ 1044 void 1045 kmeminit(void) 1046 { 1047 u_long mem_size; 1048 u_long tmp; 1049 1050 #ifdef VM_KMEM_SIZE 1051 if (vm_kmem_size == 0) 1052 vm_kmem_size = VM_KMEM_SIZE; 1053 #endif 1054 #ifdef VM_KMEM_SIZE_MIN 1055 if (vm_kmem_size_min == 0) 1056 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 1057 #endif 1058 #ifdef VM_KMEM_SIZE_MAX 1059 if (vm_kmem_size_max == 0) 1060 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 1061 #endif 1062 /* 1063 * Calculate the amount of kernel virtual address (KVA) space that is 1064 * preallocated to the kmem arena. In order to support a wide range 1065 * of machines, it is a function of the physical memory size, 1066 * specifically, 1067 * 1068 * min(max(physical memory size / VM_KMEM_SIZE_SCALE, 1069 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) 1070 * 1071 * Every architecture must define an integral value for 1072 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN 1073 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and 1074 * ceiling on this preallocation, are optional. Typically, 1075 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on 1076 * a given architecture. 1077 */ 1078 mem_size = vm_cnt.v_page_count; 1079 if (mem_size <= 32768) /* delphij XXX 128MB */ 1080 kmem_zmax = PAGE_SIZE; 1081 1082 if (vm_kmem_size_scale < 1) 1083 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 1084 1085 /* 1086 * Check if we should use defaults for the "vm_kmem_size" 1087 * variable: 1088 */ 1089 if (vm_kmem_size == 0) { 1090 vm_kmem_size = mem_size / vm_kmem_size_scale; 1091 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ? 1092 vm_kmem_size_max : vm_kmem_size * PAGE_SIZE; 1093 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) 1094 vm_kmem_size = vm_kmem_size_min; 1095 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 1096 vm_kmem_size = vm_kmem_size_max; 1097 } 1098 if (vm_kmem_size == 0) 1099 panic("Tune VM_KMEM_SIZE_* for the platform"); 1100 1101 /* 1102 * The amount of KVA space that is preallocated to the 1103 * kmem arena can be set statically at compile-time or manually 1104 * through the kernel environment. However, it is still limited to 1105 * twice the physical memory size, which has been sufficient to handle 1106 * the most severe cases of external fragmentation in the kmem arena. 1107 */ 1108 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 1109 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 1110 1111 vm_kmem_size = round_page(vm_kmem_size); 1112 #ifdef DEBUG_MEMGUARD 1113 tmp = memguard_fudge(vm_kmem_size, kernel_map); 1114 #else 1115 tmp = vm_kmem_size; 1116 #endif 1117 uma_set_limit(tmp); 1118 1119 #ifdef DEBUG_MEMGUARD 1120 /* 1121 * Initialize MemGuard if support compiled in. MemGuard is a 1122 * replacement allocator used for detecting tamper-after-free 1123 * scenarios as they occur. It is only used for debugging. 1124 */ 1125 memguard_init(kernel_arena); 1126 #endif 1127 } 1128 1129 /* 1130 * Initialize the kernel memory allocator 1131 */ 1132 /* ARGSUSED*/ 1133 static void 1134 mallocinit(void *dummy) 1135 { 1136 int i; 1137 uint8_t indx; 1138 1139 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 1140 1141 kmeminit(); 1142 1143 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) 1144 kmem_zmax = KMEM_ZMAX; 1145 1146 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 1147 int size = kmemzones[indx].kz_size; 1148 const char *name = kmemzones[indx].kz_name; 1149 int subzone; 1150 1151 for (subzone = 0; subzone < numzones; subzone++) { 1152 kmemzones[indx].kz_zone[subzone] = 1153 uma_zcreate(name, size, 1154 #ifdef INVARIANTS 1155 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 1156 #else 1157 NULL, NULL, NULL, NULL, 1158 #endif 1159 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 1160 } 1161 for (;i <= size; i+= KMEM_ZBASE) 1162 kmemsize[i >> KMEM_ZSHIFT] = indx; 1163 } 1164 } 1165 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); 1166 1167 void 1168 malloc_init(void *data) 1169 { 1170 struct malloc_type_internal *mtip; 1171 struct malloc_type *mtp; 1172 1173 KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init")); 1174 1175 mtp = data; 1176 if (mtp->ks_version != M_VERSION) 1177 panic("malloc_init: type %s with unsupported version %lu", 1178 mtp->ks_shortdesc, mtp->ks_version); 1179 1180 mtip = &mtp->ks_mti; 1181 mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO); 1182 mtp_set_subzone(mtp); 1183 1184 mtx_lock(&malloc_mtx); 1185 mtp->ks_next = kmemstatistics; 1186 kmemstatistics = mtp; 1187 kmemcount++; 1188 mtx_unlock(&malloc_mtx); 1189 } 1190 1191 void 1192 malloc_uninit(void *data) 1193 { 1194 struct malloc_type_internal *mtip; 1195 struct malloc_type_stats *mtsp; 1196 struct malloc_type *mtp, *temp; 1197 long temp_allocs, temp_bytes; 1198 int i; 1199 1200 mtp = data; 1201 KASSERT(mtp->ks_version == M_VERSION, 1202 ("malloc_uninit: bad malloc type version")); 1203 1204 mtx_lock(&malloc_mtx); 1205 mtip = &mtp->ks_mti; 1206 if (mtp != kmemstatistics) { 1207 for (temp = kmemstatistics; temp != NULL; 1208 temp = temp->ks_next) { 1209 if (temp->ks_next == mtp) { 1210 temp->ks_next = mtp->ks_next; 1211 break; 1212 } 1213 } 1214 KASSERT(temp, 1215 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 1216 } else 1217 kmemstatistics = mtp->ks_next; 1218 kmemcount--; 1219 mtx_unlock(&malloc_mtx); 1220 1221 /* 1222 * Look for memory leaks. 1223 */ 1224 temp_allocs = temp_bytes = 0; 1225 for (i = 0; i <= mp_maxid; i++) { 1226 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1227 temp_allocs += mtsp->mts_numallocs; 1228 temp_allocs -= mtsp->mts_numfrees; 1229 temp_bytes += mtsp->mts_memalloced; 1230 temp_bytes -= mtsp->mts_memfreed; 1231 } 1232 if (temp_allocs > 0 || temp_bytes > 0) { 1233 printf("Warning: memory type %s leaked memory on destroy " 1234 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 1235 temp_allocs, temp_bytes); 1236 } 1237 1238 uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats); 1239 } 1240 1241 struct malloc_type * 1242 malloc_desc2type(const char *desc) 1243 { 1244 struct malloc_type *mtp; 1245 1246 mtx_assert(&malloc_mtx, MA_OWNED); 1247 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1248 if (strcmp(mtp->ks_shortdesc, desc) == 0) 1249 return (mtp); 1250 } 1251 return (NULL); 1252 } 1253 1254 static int 1255 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 1256 { 1257 struct malloc_type_stream_header mtsh; 1258 struct malloc_type_internal *mtip; 1259 struct malloc_type_stats *mtsp, zeromts; 1260 struct malloc_type_header mth; 1261 struct malloc_type *mtp; 1262 int error, i; 1263 struct sbuf sbuf; 1264 1265 error = sysctl_wire_old_buffer(req, 0); 1266 if (error != 0) 1267 return (error); 1268 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1269 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 1270 mtx_lock(&malloc_mtx); 1271 1272 bzero(&zeromts, sizeof(zeromts)); 1273 1274 /* 1275 * Insert stream header. 1276 */ 1277 bzero(&mtsh, sizeof(mtsh)); 1278 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 1279 mtsh.mtsh_maxcpus = MAXCPU; 1280 mtsh.mtsh_count = kmemcount; 1281 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 1282 1283 /* 1284 * Insert alternating sequence of type headers and type statistics. 1285 */ 1286 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1287 mtip = &mtp->ks_mti; 1288 1289 /* 1290 * Insert type header. 1291 */ 1292 bzero(&mth, sizeof(mth)); 1293 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 1294 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 1295 1296 /* 1297 * Insert type statistics for each CPU. 1298 */ 1299 for (i = 0; i <= mp_maxid; i++) { 1300 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1301 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); 1302 } 1303 /* 1304 * Fill in the missing CPUs. 1305 */ 1306 for (; i < MAXCPU; i++) { 1307 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); 1308 } 1309 } 1310 mtx_unlock(&malloc_mtx); 1311 error = sbuf_finish(&sbuf); 1312 sbuf_delete(&sbuf); 1313 return (error); 1314 } 1315 1316 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, 1317 CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0, 1318 sysctl_kern_malloc_stats, "s,malloc_type_ustats", 1319 "Return malloc types"); 1320 1321 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 1322 "Count of kernel malloc types"); 1323 1324 void 1325 malloc_type_list(malloc_type_list_func_t *func, void *arg) 1326 { 1327 struct malloc_type *mtp, **bufmtp; 1328 int count, i; 1329 size_t buflen; 1330 1331 mtx_lock(&malloc_mtx); 1332 restart: 1333 mtx_assert(&malloc_mtx, MA_OWNED); 1334 count = kmemcount; 1335 mtx_unlock(&malloc_mtx); 1336 1337 buflen = sizeof(struct malloc_type *) * count; 1338 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 1339 1340 mtx_lock(&malloc_mtx); 1341 1342 if (count < kmemcount) { 1343 free(bufmtp, M_TEMP); 1344 goto restart; 1345 } 1346 1347 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 1348 bufmtp[i] = mtp; 1349 1350 mtx_unlock(&malloc_mtx); 1351 1352 for (i = 0; i < count; i++) 1353 (func)(bufmtp[i], arg); 1354 1355 free(bufmtp, M_TEMP); 1356 } 1357 1358 #ifdef DDB 1359 static int64_t 1360 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs, 1361 uint64_t *inuse) 1362 { 1363 const struct malloc_type_stats *mtsp; 1364 uint64_t frees, alloced, freed; 1365 int i; 1366 1367 *allocs = 0; 1368 frees = 0; 1369 alloced = 0; 1370 freed = 0; 1371 for (i = 0; i <= mp_maxid; i++) { 1372 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1373 1374 *allocs += mtsp->mts_numallocs; 1375 frees += mtsp->mts_numfrees; 1376 alloced += mtsp->mts_memalloced; 1377 freed += mtsp->mts_memfreed; 1378 } 1379 *inuse = *allocs - frees; 1380 return (alloced - freed); 1381 } 1382 1383 DB_SHOW_COMMAND(malloc, db_show_malloc) 1384 { 1385 const char *fmt_hdr, *fmt_entry; 1386 struct malloc_type *mtp; 1387 uint64_t allocs, inuse; 1388 int64_t size; 1389 /* variables for sorting */ 1390 struct malloc_type *last_mtype, *cur_mtype; 1391 int64_t cur_size, last_size; 1392 int ties; 1393 1394 if (modif[0] == 'i') { 1395 fmt_hdr = "%s,%s,%s,%s\n"; 1396 fmt_entry = "\"%s\",%ju,%jdK,%ju\n"; 1397 } else { 1398 fmt_hdr = "%18s %12s %12s %12s\n"; 1399 fmt_entry = "%18s %12ju %12jdK %12ju\n"; 1400 } 1401 1402 db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests"); 1403 1404 /* Select sort, largest size first. */ 1405 last_mtype = NULL; 1406 last_size = INT64_MAX; 1407 for (;;) { 1408 cur_mtype = NULL; 1409 cur_size = -1; 1410 ties = 0; 1411 1412 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1413 /* 1414 * In the case of size ties, print out mtypes 1415 * in the order they are encountered. That is, 1416 * when we encounter the most recently output 1417 * mtype, we have already printed all preceding 1418 * ties, and we must print all following ties. 1419 */ 1420 if (mtp == last_mtype) { 1421 ties = 1; 1422 continue; 1423 } 1424 size = get_malloc_stats(&mtp->ks_mti, &allocs, 1425 &inuse); 1426 if (size > cur_size && size < last_size + ties) { 1427 cur_size = size; 1428 cur_mtype = mtp; 1429 } 1430 } 1431 if (cur_mtype == NULL) 1432 break; 1433 1434 size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse); 1435 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse, 1436 howmany(size, 1024), allocs); 1437 1438 if (db_pager_quit) 1439 break; 1440 1441 last_mtype = cur_mtype; 1442 last_size = cur_size; 1443 } 1444 } 1445 1446 #if MALLOC_DEBUG_MAXZONES > 1 1447 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1448 { 1449 struct malloc_type_internal *mtip; 1450 struct malloc_type *mtp; 1451 u_int subzone; 1452 1453 if (!have_addr) { 1454 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1455 return; 1456 } 1457 mtp = (void *)addr; 1458 if (mtp->ks_version != M_VERSION) { 1459 db_printf("Version %lx does not match expected %x\n", 1460 mtp->ks_version, M_VERSION); 1461 return; 1462 } 1463 1464 mtip = &mtp->ks_mti; 1465 subzone = mtip->mti_zone; 1466 1467 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1468 mtip = &mtp->ks_mti; 1469 if (mtip->mti_zone != subzone) 1470 continue; 1471 db_printf("%s\n", mtp->ks_shortdesc); 1472 if (db_pager_quit) 1473 break; 1474 } 1475 } 1476 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1477 #endif /* DDB */ 1478