1 /*- 2 * Copyright (c) 1987, 1991, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2005 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_vm.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kdb.h> 43 #include <sys/kernel.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/vmmeter.h> 49 #include <sys/proc.h> 50 #include <sys/sbuf.h> 51 #include <sys/sysctl.h> 52 #include <sys/time.h> 53 54 #include <vm/vm.h> 55 #include <vm/pmap.h> 56 #include <vm/vm_param.h> 57 #include <vm/vm_kern.h> 58 #include <vm/vm_extern.h> 59 #include <vm/vm_map.h> 60 #include <vm/vm_page.h> 61 #include <vm/uma.h> 62 #include <vm/uma_int.h> 63 #include <vm/uma_dbg.h> 64 65 #ifdef DEBUG_MEMGUARD 66 #include <vm/memguard.h> 67 #endif 68 69 #if defined(INVARIANTS) && defined(__i386__) 70 #include <machine/cpu.h> 71 #endif 72 73 #include <ddb/ddb.h> 74 75 /* 76 * When realloc() is called, if the new size is sufficiently smaller than 77 * the old size, realloc() will allocate a new, smaller block to avoid 78 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 79 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 80 */ 81 #ifndef REALLOC_FRACTION 82 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 83 #endif 84 85 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 86 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 87 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 88 89 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 90 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 91 92 static void kmeminit(void *); 93 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 94 95 static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); 96 97 static struct malloc_type *kmemstatistics; 98 static char *kmembase; 99 static char *kmemlimit; 100 static int kmemcount; 101 102 #define KMEM_ZSHIFT 4 103 #define KMEM_ZBASE 16 104 #define KMEM_ZMASK (KMEM_ZBASE - 1) 105 106 #define KMEM_ZMAX PAGE_SIZE 107 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 108 static u_int8_t kmemsize[KMEM_ZSIZE + 1]; 109 110 /* These won't be powers of two for long */ 111 struct { 112 int kz_size; 113 char *kz_name; 114 uma_zone_t kz_zone; 115 } kmemzones[] = { 116 {16, "16", NULL}, 117 {32, "32", NULL}, 118 {64, "64", NULL}, 119 {128, "128", NULL}, 120 {256, "256", NULL}, 121 {512, "512", NULL}, 122 {1024, "1024", NULL}, 123 {2048, "2048", NULL}, 124 {4096, "4096", NULL}, 125 #if PAGE_SIZE > 4096 126 {8192, "8192", NULL}, 127 #if PAGE_SIZE > 8192 128 {16384, "16384", NULL}, 129 #if PAGE_SIZE > 16384 130 {32768, "32768", NULL}, 131 #if PAGE_SIZE > 32768 132 {65536, "65536", NULL}, 133 #if PAGE_SIZE > 65536 134 #error "Unsupported PAGE_SIZE" 135 #endif /* 65536 */ 136 #endif /* 32768 */ 137 #endif /* 16384 */ 138 #endif /* 8192 */ 139 #endif /* 4096 */ 140 {0, NULL}, 141 }; 142 143 static uma_zone_t mt_zone; 144 145 #ifdef DEBUG_MEMGUARD 146 u_int vm_memguard_divisor; 147 SYSCTL_UINT(_vm, OID_AUTO, memguard_divisor, CTLFLAG_RD, &vm_memguard_divisor, 148 0, "(kmem_size/memguard_divisor) == memguard submap size"); 149 #endif 150 151 u_int vm_kmem_size; 152 SYSCTL_UINT(_vm, OID_AUTO, kmem_size, CTLFLAG_RD, &vm_kmem_size, 0, 153 "Size of kernel memory"); 154 155 u_int vm_kmem_size_max; 156 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RD, &vm_kmem_size_max, 0, 157 "Maximum size of kernel memory"); 158 159 u_int vm_kmem_size_scale; 160 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RD, &vm_kmem_size_scale, 0, 161 "Scale factor for kernel memory size"); 162 163 /* 164 * The malloc_mtx protects the kmemstatistics linked list. 165 */ 166 167 struct mtx malloc_mtx; 168 169 #ifdef MALLOC_PROFILE 170 uint64_t krequests[KMEM_ZSIZE + 1]; 171 172 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 173 #endif 174 175 static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS); 176 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 177 178 /* time_uptime of last malloc(9) failure */ 179 static time_t t_malloc_fail; 180 181 #ifdef MALLOC_MAKE_FAILURES 182 /* 183 * Causes malloc failures every (n) mallocs with M_NOWAIT. If set to 0, 184 * doesn't cause failures. 185 */ 186 SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0, 187 "Kernel malloc debugging options"); 188 189 static int malloc_failure_rate; 190 static int malloc_nowait_count; 191 static int malloc_failure_count; 192 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW, 193 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 194 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate); 195 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 196 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 197 #endif 198 199 int 200 malloc_last_fail(void) 201 { 202 203 return (time_uptime - t_malloc_fail); 204 } 205 206 /* 207 * Add this to the informational malloc_type bucket. 208 */ 209 static void 210 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 211 int zindx) 212 { 213 struct malloc_type_internal *mtip; 214 struct malloc_type_stats *mtsp; 215 216 critical_enter(); 217 mtip = mtp->ks_handle; 218 mtsp = &mtip->mti_stats[curcpu]; 219 if (size > 0) { 220 mtsp->mts_memalloced += size; 221 mtsp->mts_numallocs++; 222 } 223 if (zindx != -1) 224 mtsp->mts_size |= 1 << zindx; 225 critical_exit(); 226 } 227 228 void 229 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 230 { 231 232 if (size > 0) 233 malloc_type_zone_allocated(mtp, size, -1); 234 } 235 236 /* 237 * Remove this allocation from the informational malloc_type bucket. 238 */ 239 void 240 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 241 { 242 struct malloc_type_internal *mtip; 243 struct malloc_type_stats *mtsp; 244 245 critical_enter(); 246 mtip = mtp->ks_handle; 247 mtsp = &mtip->mti_stats[curcpu]; 248 mtsp->mts_memfreed += size; 249 mtsp->mts_numfrees++; 250 critical_exit(); 251 } 252 253 /* 254 * malloc: 255 * 256 * Allocate a block of memory. 257 * 258 * If M_NOWAIT is set, this routine will not block and return NULL if 259 * the allocation fails. 260 */ 261 void * 262 malloc(unsigned long size, struct malloc_type *mtp, int flags) 263 { 264 int indx; 265 caddr_t va; 266 uma_zone_t zone; 267 uma_keg_t keg; 268 #ifdef DIAGNOSTIC 269 unsigned long osize = size; 270 #endif 271 272 #ifdef INVARIANTS 273 /* 274 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 275 */ 276 indx = flags & (M_WAITOK | M_NOWAIT); 277 if (indx != M_NOWAIT && indx != M_WAITOK) { 278 static struct timeval lasterr; 279 static int curerr, once; 280 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 281 printf("Bad malloc flags: %x\n", indx); 282 kdb_backtrace(); 283 flags |= M_WAITOK; 284 once++; 285 } 286 } 287 #endif 288 #if 0 289 if (size == 0) 290 kdb_enter("zero size malloc"); 291 #endif 292 #ifdef MALLOC_MAKE_FAILURES 293 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 294 atomic_add_int(&malloc_nowait_count, 1); 295 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 296 atomic_add_int(&malloc_failure_count, 1); 297 t_malloc_fail = time_uptime; 298 return (NULL); 299 } 300 } 301 #endif 302 if (flags & M_WAITOK) 303 KASSERT(curthread->td_intr_nesting_level == 0, 304 ("malloc(M_WAITOK) in interrupt context")); 305 306 #ifdef DEBUG_MEMGUARD 307 /* XXX CHANGEME! */ 308 if (mtp == M_SUBPROC) 309 return memguard_alloc(size, flags); 310 #endif 311 312 if (size <= KMEM_ZMAX) { 313 if (size & KMEM_ZMASK) 314 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 315 indx = kmemsize[size >> KMEM_ZSHIFT]; 316 zone = kmemzones[indx].kz_zone; 317 keg = zone->uz_keg; 318 #ifdef MALLOC_PROFILE 319 krequests[size >> KMEM_ZSHIFT]++; 320 #endif 321 va = uma_zalloc(zone, flags); 322 if (va != NULL) 323 size = keg->uk_size; 324 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 325 } else { 326 size = roundup(size, PAGE_SIZE); 327 zone = NULL; 328 keg = NULL; 329 va = uma_large_malloc(size, flags); 330 malloc_type_allocated(mtp, va == NULL ? 0 : size); 331 } 332 if (flags & M_WAITOK) 333 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 334 else if (va == NULL) 335 t_malloc_fail = time_uptime; 336 #ifdef DIAGNOSTIC 337 if (va != NULL && !(flags & M_ZERO)) { 338 memset(va, 0x70, osize); 339 } 340 #endif 341 return ((void *) va); 342 } 343 344 /* 345 * free: 346 * 347 * Free a block of memory allocated by malloc. 348 * 349 * This routine may not block. 350 */ 351 void 352 free(void *addr, struct malloc_type *mtp) 353 { 354 uma_slab_t slab; 355 u_long size; 356 357 /* free(NULL, ...) does nothing */ 358 if (addr == NULL) 359 return; 360 361 #ifdef DEBUG_MEMGUARD 362 /* XXX CHANGEME! */ 363 if (mtp == M_SUBPROC) { 364 memguard_free(addr); 365 return; 366 } 367 #endif 368 369 size = 0; 370 371 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 372 373 if (slab == NULL) 374 panic("free: address %p(%p) has not been allocated.\n", 375 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 376 377 378 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 379 #ifdef INVARIANTS 380 struct malloc_type **mtpp = addr; 381 #endif 382 size = slab->us_keg->uk_size; 383 #ifdef INVARIANTS 384 /* 385 * Cache a pointer to the malloc_type that most recently freed 386 * this memory here. This way we know who is most likely to 387 * have stepped on it later. 388 * 389 * This code assumes that size is a multiple of 8 bytes for 390 * 64 bit machines 391 */ 392 mtpp = (struct malloc_type **) 393 ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 394 mtpp += (size - sizeof(struct malloc_type *)) / 395 sizeof(struct malloc_type *); 396 *mtpp = mtp; 397 #endif 398 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab); 399 } else { 400 size = slab->us_size; 401 uma_large_free(slab); 402 } 403 malloc_type_freed(mtp, size); 404 } 405 406 /* 407 * realloc: change the size of a memory block 408 */ 409 void * 410 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags) 411 { 412 uma_slab_t slab; 413 unsigned long alloc; 414 void *newaddr; 415 416 /* realloc(NULL, ...) is equivalent to malloc(...) */ 417 if (addr == NULL) 418 return (malloc(size, mtp, flags)); 419 420 /* 421 * XXX: Should report free of old memory and alloc of new memory to 422 * per-CPU stats. 423 */ 424 425 #ifdef DEBUG_MEMGUARD 426 /* XXX: CHANGEME! */ 427 if (mtp == M_SUBPROC) { 428 slab = NULL; 429 alloc = size; 430 } else { 431 #endif 432 433 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); 434 435 /* Sanity check */ 436 KASSERT(slab != NULL, 437 ("realloc: address %p out of range", (void *)addr)); 438 439 /* Get the size of the original block */ 440 if (!(slab->us_flags & UMA_SLAB_MALLOC)) 441 alloc = slab->us_keg->uk_size; 442 else 443 alloc = slab->us_size; 444 445 /* Reuse the original block if appropriate */ 446 if (size <= alloc 447 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 448 return (addr); 449 450 #ifdef DEBUG_MEMGUARD 451 } 452 #endif 453 454 /* Allocate a new, bigger (or smaller) block */ 455 if ((newaddr = malloc(size, mtp, flags)) == NULL) 456 return (NULL); 457 458 /* Copy over original contents */ 459 bcopy(addr, newaddr, min(size, alloc)); 460 free(addr, mtp); 461 return (newaddr); 462 } 463 464 /* 465 * reallocf: same as realloc() but free memory on failure. 466 */ 467 void * 468 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags) 469 { 470 void *mem; 471 472 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 473 free(addr, mtp); 474 return (mem); 475 } 476 477 /* 478 * Initialize the kernel memory allocator 479 */ 480 /* ARGSUSED*/ 481 static void 482 kmeminit(void *dummy) 483 { 484 u_int8_t indx; 485 u_long mem_size; 486 int i; 487 488 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 489 490 /* 491 * Try to auto-tune the kernel memory size, so that it is 492 * more applicable for a wider range of machine sizes. 493 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while 494 * a VM_KMEM_SIZE of 12MB is a fair compromise. The 495 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space 496 * available, and on an X86 with a total KVA space of 256MB, 497 * try to keep VM_KMEM_SIZE_MAX at 80MB or below. 498 * 499 * Note that the kmem_map is also used by the zone allocator, 500 * so make sure that there is enough space. 501 */ 502 vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE; 503 mem_size = cnt.v_page_count; 504 505 #if defined(VM_KMEM_SIZE_SCALE) 506 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 507 #endif 508 TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale); 509 if (vm_kmem_size_scale > 0 && 510 (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE)) 511 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE; 512 513 #if defined(VM_KMEM_SIZE_MAX) 514 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 515 #endif 516 TUNABLE_INT_FETCH("vm.kmem_size_max", &vm_kmem_size_max); 517 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 518 vm_kmem_size = vm_kmem_size_max; 519 520 /* Allow final override from the kernel environment */ 521 #ifndef BURN_BRIDGES 522 if (TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size) != 0) 523 printf("kern.vm.kmem.size is now called vm.kmem_size!\n"); 524 #endif 525 TUNABLE_INT_FETCH("vm.kmem_size", &vm_kmem_size); 526 527 /* 528 * Limit kmem virtual size to twice the physical memory. 529 * This allows for kmem map sparseness, but limits the size 530 * to something sane. Be careful to not overflow the 32bit 531 * ints while doing the check. 532 */ 533 if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count) 534 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE; 535 536 /* 537 * Tune settings based on the kernel map's size at this time. 538 */ 539 init_param3(vm_kmem_size / PAGE_SIZE); 540 541 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase, 542 (vm_offset_t *)&kmemlimit, vm_kmem_size); 543 kmem_map->system_map = 1; 544 545 #ifdef DEBUG_MEMGUARD 546 /* 547 * Initialize MemGuard if support compiled in. MemGuard is a 548 * replacement allocator used for detecting tamper-after-free 549 * scenarios as they occur. It is only used for debugging. 550 */ 551 vm_memguard_divisor = 10; 552 TUNABLE_INT_FETCH("vm.memguard_divisor", &vm_memguard_divisor); 553 554 /* Pick a conservative value if provided value sucks. */ 555 if ((vm_memguard_divisor <= 0) || 556 ((vm_kmem_size / vm_memguard_divisor) == 0)) 557 vm_memguard_divisor = 10; 558 memguard_init(kmem_map, vm_kmem_size / vm_memguard_divisor); 559 #endif 560 561 uma_startup2(); 562 563 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal), 564 #ifdef INVARIANTS 565 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 566 #else 567 NULL, NULL, NULL, NULL, 568 #endif 569 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 570 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 571 int size = kmemzones[indx].kz_size; 572 char *name = kmemzones[indx].kz_name; 573 574 kmemzones[indx].kz_zone = uma_zcreate(name, size, 575 #ifdef INVARIANTS 576 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 577 #else 578 NULL, NULL, NULL, NULL, 579 #endif 580 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 581 582 for (;i <= size; i+= KMEM_ZBASE) 583 kmemsize[i >> KMEM_ZSHIFT] = indx; 584 585 } 586 } 587 588 void 589 malloc_init(void *data) 590 { 591 struct malloc_type_internal *mtip; 592 struct malloc_type *mtp; 593 594 KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init")); 595 596 mtp = data; 597 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO); 598 mtp->ks_handle = mtip; 599 600 mtx_lock(&malloc_mtx); 601 mtp->ks_next = kmemstatistics; 602 kmemstatistics = mtp; 603 kmemcount++; 604 mtx_unlock(&malloc_mtx); 605 } 606 607 void 608 malloc_uninit(void *data) 609 { 610 struct malloc_type_internal *mtip; 611 struct malloc_type_stats *mtsp; 612 struct malloc_type *mtp, *temp; 613 long temp_allocs, temp_bytes; 614 int i; 615 616 mtp = data; 617 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL")); 618 mtx_lock(&malloc_mtx); 619 mtip = mtp->ks_handle; 620 mtp->ks_handle = NULL; 621 if (mtp != kmemstatistics) { 622 for (temp = kmemstatistics; temp != NULL; 623 temp = temp->ks_next) { 624 if (temp->ks_next == mtp) 625 temp->ks_next = mtp->ks_next; 626 } 627 } else 628 kmemstatistics = mtp->ks_next; 629 kmemcount--; 630 mtx_unlock(&malloc_mtx); 631 632 /* 633 * Look for memory leaks. 634 */ 635 temp_allocs = temp_bytes = 0; 636 for (i = 0; i < MAXCPU; i++) { 637 mtsp = &mtip->mti_stats[i]; 638 temp_allocs += mtsp->mts_numallocs; 639 temp_allocs -= mtsp->mts_numfrees; 640 temp_bytes += mtsp->mts_memalloced; 641 temp_bytes -= mtsp->mts_memfreed; 642 } 643 if (temp_allocs > 0 || temp_bytes > 0) { 644 printf("Warning: memory type %s leaked memory on destroy " 645 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 646 temp_allocs, temp_bytes); 647 } 648 649 uma_zfree(mt_zone, mtip); 650 } 651 652 static int 653 sysctl_kern_malloc(SYSCTL_HANDLER_ARGS) 654 { 655 struct malloc_type_stats mts_local, *mtsp; 656 struct malloc_type_internal *mtip; 657 struct malloc_type *mtp; 658 struct sbuf sbuf; 659 long temp_allocs, temp_bytes; 660 int linesize = 128; 661 int bufsize; 662 int first; 663 int error; 664 char *buf; 665 int cnt; 666 int i; 667 668 cnt = 0; 669 670 /* Guess at how much room is needed. */ 671 mtx_lock(&malloc_mtx); 672 cnt = kmemcount; 673 mtx_unlock(&malloc_mtx); 674 675 bufsize = linesize * (cnt + 1); 676 buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 677 sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN); 678 679 mtx_lock(&malloc_mtx); 680 sbuf_printf(&sbuf, 681 "\n Type InUse MemUse HighUse Requests Size(s)\n"); 682 for (mtp = kmemstatistics; cnt != 0 && mtp != NULL; 683 mtp = mtp->ks_next, cnt--) { 684 mtip = mtp->ks_handle; 685 bzero(&mts_local, sizeof(mts_local)); 686 for (i = 0; i < MAXCPU; i++) { 687 mtsp = &mtip->mti_stats[i]; 688 mts_local.mts_memalloced += mtsp->mts_memalloced; 689 mts_local.mts_memfreed += mtsp->mts_memfreed; 690 mts_local.mts_numallocs += mtsp->mts_numallocs; 691 mts_local.mts_numfrees += mtsp->mts_numfrees; 692 mts_local.mts_size |= mtsp->mts_size; 693 } 694 if (mts_local.mts_numallocs == 0) 695 continue; 696 697 /* 698 * Due to races in per-CPU statistics gather, it's possible to 699 * get a slightly negative number here. If we do, approximate 700 * with 0. 701 */ 702 if (mts_local.mts_numallocs > mts_local.mts_numfrees) 703 temp_allocs = mts_local.mts_numallocs - 704 mts_local.mts_numfrees; 705 else 706 temp_allocs = 0; 707 708 /* 709 * Ditto for bytes allocated. 710 */ 711 if (mts_local.mts_memalloced > mts_local.mts_memfreed) 712 temp_bytes = mts_local.mts_memalloced - 713 mts_local.mts_memfreed; 714 else 715 temp_bytes = 0; 716 717 /* 718 * High-waterwark is no longer easily available, so we just 719 * print '-' for that column. 720 */ 721 sbuf_printf(&sbuf, "%13s%6lu%6luK -%9llu", 722 mtp->ks_shortdesc, 723 temp_allocs, 724 (temp_bytes + 1023) / 1024, 725 (unsigned long long)mts_local.mts_numallocs); 726 727 first = 1; 728 for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1; 729 i++) { 730 if (mts_local.mts_size & (1 << i)) { 731 if (first) 732 sbuf_printf(&sbuf, " "); 733 else 734 sbuf_printf(&sbuf, ","); 735 sbuf_printf(&sbuf, "%s", 736 kmemzones[i].kz_name); 737 first = 0; 738 } 739 } 740 sbuf_printf(&sbuf, "\n"); 741 } 742 sbuf_finish(&sbuf); 743 mtx_unlock(&malloc_mtx); 744 745 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 746 747 sbuf_delete(&sbuf); 748 free(buf, M_TEMP); 749 return (error); 750 } 751 752 SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD, 753 NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats"); 754 755 static int 756 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 757 { 758 struct malloc_type_stream_header mtsh; 759 struct malloc_type_internal *mtip; 760 struct malloc_type_header mth; 761 struct malloc_type *mtp; 762 int buflen, count, error, i; 763 struct sbuf sbuf; 764 char *buffer; 765 766 mtx_lock(&malloc_mtx); 767 restart: 768 mtx_assert(&malloc_mtx, MA_OWNED); 769 count = kmemcount; 770 mtx_unlock(&malloc_mtx); 771 buflen = sizeof(mtsh) + count * (sizeof(mth) + 772 sizeof(struct malloc_type_stats) * MAXCPU) + 1; 773 buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); 774 mtx_lock(&malloc_mtx); 775 if (count < kmemcount) { 776 free(buffer, M_TEMP); 777 goto restart; 778 } 779 780 sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN); 781 782 /* 783 * Insert stream header. 784 */ 785 bzero(&mtsh, sizeof(mtsh)); 786 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 787 mtsh.mtsh_maxcpus = MAXCPU; 788 mtsh.mtsh_count = kmemcount; 789 if (sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)) < 0) { 790 mtx_unlock(&malloc_mtx); 791 error = ENOMEM; 792 goto out; 793 } 794 795 /* 796 * Insert alternating sequence of type headers and type statistics. 797 */ 798 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 799 mtip = (struct malloc_type_internal *)mtp->ks_handle; 800 801 /* 802 * Insert type header. 803 */ 804 bzero(&mth, sizeof(mth)); 805 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 806 if (sbuf_bcat(&sbuf, &mth, sizeof(mth)) < 0) { 807 mtx_unlock(&malloc_mtx); 808 error = ENOMEM; 809 goto out; 810 } 811 812 /* 813 * Insert type statistics for each CPU. 814 */ 815 for (i = 0; i < MAXCPU; i++) { 816 if (sbuf_bcat(&sbuf, &mtip->mti_stats[i], 817 sizeof(mtip->mti_stats[i])) < 0) { 818 mtx_unlock(&malloc_mtx); 819 error = ENOMEM; 820 goto out; 821 } 822 } 823 } 824 mtx_unlock(&malloc_mtx); 825 sbuf_finish(&sbuf); 826 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 827 out: 828 sbuf_delete(&sbuf); 829 free(buffer, M_TEMP); 830 return (error); 831 } 832 833 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 834 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats", 835 "Return malloc types"); 836 837 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 838 "Count of kernel malloc types"); 839 840 #ifdef DDB 841 DB_SHOW_COMMAND(malloc, db_show_malloc) 842 { 843 struct malloc_type_internal *mtip; 844 struct malloc_type *mtp; 845 u_int64_t allocs, frees; 846 int i; 847 848 db_printf("%18s %12s %12s %12s\n", "Type", "Allocs", "Frees", 849 "Used"); 850 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 851 mtip = (struct malloc_type_internal *)mtp->ks_handle; 852 allocs = 0; 853 frees = 0; 854 for (i = 0; i < MAXCPU; i++) { 855 allocs += mtip->mti_stats[i].mts_numallocs; 856 frees += mtip->mti_stats[i].mts_numfrees; 857 } 858 db_printf("%18s %12ju %12ju %12ju\n", mtp->ks_shortdesc, 859 allocs, frees, allocs - frees); 860 } 861 } 862 #endif 863 864 #ifdef MALLOC_PROFILE 865 866 static int 867 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 868 { 869 int linesize = 64; 870 struct sbuf sbuf; 871 uint64_t count; 872 uint64_t waste; 873 uint64_t mem; 874 int bufsize; 875 int error; 876 char *buf; 877 int rsize; 878 int size; 879 int i; 880 881 bufsize = linesize * (KMEM_ZSIZE + 1); 882 bufsize += 128; /* For the stats line */ 883 bufsize += 128; /* For the banner line */ 884 waste = 0; 885 mem = 0; 886 887 buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 888 sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN); 889 sbuf_printf(&sbuf, 890 "\n Size Requests Real Size\n"); 891 for (i = 0; i < KMEM_ZSIZE; i++) { 892 size = i << KMEM_ZSHIFT; 893 rsize = kmemzones[kmemsize[i]].kz_size; 894 count = (long long unsigned)krequests[i]; 895 896 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size, 897 (unsigned long long)count, rsize); 898 899 if ((rsize * count) > (size * count)) 900 waste += (rsize * count) - (size * count); 901 mem += (rsize * count); 902 } 903 sbuf_printf(&sbuf, 904 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 905 (unsigned long long)mem, (unsigned long long)waste); 906 sbuf_finish(&sbuf); 907 908 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 909 910 sbuf_delete(&sbuf); 911 free(buf, M_TEMP); 912 return (error); 913 } 914 915 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 916 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 917 #endif /* MALLOC_PROFILE */ 918