1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1987, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005-2009 Robert N. M. Watson 7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray) 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 35 */ 36 37 /* 38 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 39 * based on memory types. Back end is implemented using the UMA(9) zone 40 * allocator. A set of fixed-size buckets are used for smaller allocations, 41 * and a special UMA allocation interface is used for larger allocations. 42 * Callers declare memory types, and statistics are maintained independently 43 * for each memory type. Statistics are maintained per-CPU for performance 44 * reasons. See malloc(9) and comments in malloc.h for a detailed 45 * description. 46 */ 47 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include "opt_ddb.h" 52 #include "opt_vm.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/kdb.h> 57 #include <sys/kernel.h> 58 #include <sys/lock.h> 59 #include <sys/malloc.h> 60 #include <sys/mutex.h> 61 #include <sys/vmmeter.h> 62 #include <sys/proc.h> 63 #include <sys/sbuf.h> 64 #include <sys/smp.h> 65 #include <sys/sysctl.h> 66 #include <sys/time.h> 67 #include <sys/vmem.h> 68 69 #include <vm/vm.h> 70 #include <vm/pmap.h> 71 #include <vm/vm_pageout.h> 72 #include <vm/vm_param.h> 73 #include <vm/vm_kern.h> 74 #include <vm/vm_extern.h> 75 #include <vm/vm_map.h> 76 #include <vm/vm_page.h> 77 #include <vm/uma.h> 78 #include <vm/uma_int.h> 79 #include <vm/uma_dbg.h> 80 81 #ifdef DEBUG_MEMGUARD 82 #include <vm/memguard.h> 83 #endif 84 #ifdef DEBUG_REDZONE 85 #include <vm/redzone.h> 86 #endif 87 88 #if defined(INVARIANTS) && defined(__i386__) 89 #include <machine/cpu.h> 90 #endif 91 92 #include <ddb/ddb.h> 93 94 #ifdef KDTRACE_HOOKS 95 #include <sys/dtrace_bsd.h> 96 97 bool __read_frequently dtrace_malloc_enabled; 98 dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; 99 #endif 100 101 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ 102 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) 103 #define MALLOC_DEBUG 1 104 #endif 105 106 /* 107 * When realloc() is called, if the new size is sufficiently smaller than 108 * the old size, realloc() will allocate a new, smaller block to avoid 109 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 110 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 111 */ 112 #ifndef REALLOC_FRACTION 113 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 114 #endif 115 116 /* 117 * Centrally define some common malloc types. 118 */ 119 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 120 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 121 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 122 123 static struct malloc_type *kmemstatistics; 124 static int kmemcount; 125 126 #define KMEM_ZSHIFT 4 127 #define KMEM_ZBASE 16 128 #define KMEM_ZMASK (KMEM_ZBASE - 1) 129 130 #define KMEM_ZMAX 65536 131 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 132 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 133 134 #ifndef MALLOC_DEBUG_MAXZONES 135 #define MALLOC_DEBUG_MAXZONES 1 136 #endif 137 static int numzones = MALLOC_DEBUG_MAXZONES; 138 139 /* 140 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 141 * of various sizes. 142 * 143 * XXX: The comment here used to read "These won't be powers of two for 144 * long." It's possible that a significant amount of wasted memory could be 145 * recovered by tuning the sizes of these buckets. 146 */ 147 struct { 148 int kz_size; 149 char *kz_name; 150 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 151 } kmemzones[] = { 152 {16, "16", }, 153 {32, "32", }, 154 {64, "64", }, 155 {128, "128", }, 156 {256, "256", }, 157 {512, "512", }, 158 {1024, "1024", }, 159 {2048, "2048", }, 160 {4096, "4096", }, 161 {8192, "8192", }, 162 {16384, "16384", }, 163 {32768, "32768", }, 164 {65536, "65536", }, 165 {0, NULL}, 166 }; 167 168 /* 169 * Zone to allocate malloc type descriptions from. For ABI reasons, memory 170 * types are described by a data structure passed by the declaring code, but 171 * the malloc(9) implementation has its own data structure describing the 172 * type and statistics. This permits the malloc(9)-internal data structures 173 * to be modified without breaking binary-compiled kernel modules that 174 * declare malloc types. 175 */ 176 static uma_zone_t mt_zone; 177 static uma_zone_t mt_stats_zone; 178 179 u_long vm_kmem_size; 180 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 181 "Size of kernel memory"); 182 183 static u_long kmem_zmax = KMEM_ZMAX; 184 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, 185 "Maximum allocation size that malloc(9) would use UMA as backend"); 186 187 static u_long vm_kmem_size_min; 188 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 189 "Minimum size of kernel memory"); 190 191 static u_long vm_kmem_size_max; 192 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 193 "Maximum size of kernel memory"); 194 195 static u_int vm_kmem_size_scale; 196 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 197 "Scale factor for kernel memory size"); 198 199 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 200 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 201 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 202 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 203 204 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 205 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 206 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 207 sysctl_kmem_map_free, "LU", "Free space in kmem"); 208 209 /* 210 * The malloc_mtx protects the kmemstatistics linked list. 211 */ 212 struct mtx malloc_mtx; 213 214 #ifdef MALLOC_PROFILE 215 uint64_t krequests[KMEM_ZSIZE + 1]; 216 217 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 218 #endif 219 220 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 221 222 /* 223 * time_uptime of the last malloc(9) failure (induced or real). 224 */ 225 static time_t t_malloc_fail; 226 227 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 228 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0, 229 "Kernel malloc debugging options"); 230 #endif 231 232 /* 233 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 234 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 235 */ 236 #ifdef MALLOC_MAKE_FAILURES 237 static int malloc_failure_rate; 238 static int malloc_nowait_count; 239 static int malloc_failure_count; 240 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, 241 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 242 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 243 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 244 #endif 245 246 static int 247 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 248 { 249 u_long size; 250 251 size = uma_size(); 252 return (sysctl_handle_long(oidp, &size, 0, req)); 253 } 254 255 static int 256 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 257 { 258 u_long size, limit; 259 260 /* The sysctl is unsigned, implement as a saturation value. */ 261 size = uma_size(); 262 limit = uma_limit(); 263 if (size > limit) 264 size = 0; 265 else 266 size = limit - size; 267 return (sysctl_handle_long(oidp, &size, 0, req)); 268 } 269 270 /* 271 * malloc(9) uma zone separation -- sub-page buffer overruns in one 272 * malloc type will affect only a subset of other malloc types. 273 */ 274 #if MALLOC_DEBUG_MAXZONES > 1 275 static void 276 tunable_set_numzones(void) 277 { 278 279 TUNABLE_INT_FETCH("debug.malloc.numzones", 280 &numzones); 281 282 /* Sanity check the number of malloc uma zones. */ 283 if (numzones <= 0) 284 numzones = 1; 285 if (numzones > MALLOC_DEBUG_MAXZONES) 286 numzones = MALLOC_DEBUG_MAXZONES; 287 } 288 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 289 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 290 &numzones, 0, "Number of malloc uma subzones"); 291 292 /* 293 * Any number that changes regularly is an okay choice for the 294 * offset. Build numbers are pretty good of you have them. 295 */ 296 static u_int zone_offset = __FreeBSD_version; 297 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 298 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 299 &zone_offset, 0, "Separate malloc types by examining the " 300 "Nth character in the malloc type short description."); 301 302 static void 303 mtp_set_subzone(struct malloc_type *mtp) 304 { 305 struct malloc_type_internal *mtip; 306 const char *desc; 307 size_t len; 308 u_int val; 309 310 mtip = mtp->ks_handle; 311 desc = mtp->ks_shortdesc; 312 if (desc == NULL || (len = strlen(desc)) == 0) 313 val = 0; 314 else 315 val = desc[zone_offset % len]; 316 mtip->mti_zone = (val % numzones); 317 } 318 319 static inline u_int 320 mtp_get_subzone(struct malloc_type *mtp) 321 { 322 struct malloc_type_internal *mtip; 323 324 mtip = mtp->ks_handle; 325 326 KASSERT(mtip->mti_zone < numzones, 327 ("mti_zone %u out of range %d", 328 mtip->mti_zone, numzones)); 329 return (mtip->mti_zone); 330 } 331 #elif MALLOC_DEBUG_MAXZONES == 0 332 #error "MALLOC_DEBUG_MAXZONES must be positive." 333 #else 334 static void 335 mtp_set_subzone(struct malloc_type *mtp) 336 { 337 struct malloc_type_internal *mtip; 338 339 mtip = mtp->ks_handle; 340 mtip->mti_zone = 0; 341 } 342 343 static inline u_int 344 mtp_get_subzone(struct malloc_type *mtp) 345 { 346 347 return (0); 348 } 349 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 350 351 int 352 malloc_last_fail(void) 353 { 354 355 return (time_uptime - t_malloc_fail); 356 } 357 358 /* 359 * An allocation has succeeded -- update malloc type statistics for the 360 * amount of bucket size. Occurs within a critical section so that the 361 * thread isn't preempted and doesn't migrate while updating per-PCU 362 * statistics. 363 */ 364 static void 365 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 366 int zindx) 367 { 368 struct malloc_type_internal *mtip; 369 struct malloc_type_stats *mtsp; 370 371 critical_enter(); 372 mtip = mtp->ks_handle; 373 mtsp = zpcpu_get(mtip->mti_stats); 374 if (size > 0) { 375 mtsp->mts_memalloced += size; 376 mtsp->mts_numallocs++; 377 } 378 if (zindx != -1) 379 mtsp->mts_size |= 1 << zindx; 380 381 #ifdef KDTRACE_HOOKS 382 if (__predict_false(dtrace_malloc_enabled)) { 383 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 384 if (probe_id != 0) 385 (dtrace_malloc_probe)(probe_id, 386 (uintptr_t) mtp, (uintptr_t) mtip, 387 (uintptr_t) mtsp, size, zindx); 388 } 389 #endif 390 391 critical_exit(); 392 } 393 394 void 395 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 396 { 397 398 if (size > 0) 399 malloc_type_zone_allocated(mtp, size, -1); 400 } 401 402 /* 403 * A free operation has occurred -- update malloc type statistics for the 404 * amount of the bucket size. Occurs within a critical section so that the 405 * thread isn't preempted and doesn't migrate while updating per-CPU 406 * statistics. 407 */ 408 void 409 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 410 { 411 struct malloc_type_internal *mtip; 412 struct malloc_type_stats *mtsp; 413 414 critical_enter(); 415 mtip = mtp->ks_handle; 416 mtsp = zpcpu_get(mtip->mti_stats); 417 mtsp->mts_memfreed += size; 418 mtsp->mts_numfrees++; 419 420 #ifdef KDTRACE_HOOKS 421 if (__predict_false(dtrace_malloc_enabled)) { 422 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 423 if (probe_id != 0) 424 (dtrace_malloc_probe)(probe_id, 425 (uintptr_t) mtp, (uintptr_t) mtip, 426 (uintptr_t) mtsp, size, 0); 427 } 428 #endif 429 430 critical_exit(); 431 } 432 433 /* 434 * contigmalloc: 435 * 436 * Allocate a block of physically contiguous memory. 437 * 438 * If M_NOWAIT is set, this routine will not block and return NULL if 439 * the allocation fails. 440 */ 441 void * 442 contigmalloc(unsigned long size, struct malloc_type *type, int flags, 443 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 444 vm_paddr_t boundary) 445 { 446 void *ret; 447 448 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, 449 boundary, VM_MEMATTR_DEFAULT); 450 if (ret != NULL) 451 malloc_type_allocated(type, round_page(size)); 452 return (ret); 453 } 454 455 void * 456 contigmalloc_domain(unsigned long size, struct malloc_type *type, 457 int domain, int flags, vm_paddr_t low, vm_paddr_t high, 458 unsigned long alignment, vm_paddr_t boundary) 459 { 460 void *ret; 461 462 ret = (void *)kmem_alloc_contig_domain(domain, size, flags, low, high, 463 alignment, boundary, VM_MEMATTR_DEFAULT); 464 if (ret != NULL) 465 malloc_type_allocated(type, round_page(size)); 466 return (ret); 467 } 468 469 /* 470 * contigfree: 471 * 472 * Free a block of memory allocated by contigmalloc. 473 * 474 * This routine may not block. 475 */ 476 void 477 contigfree(void *addr, unsigned long size, struct malloc_type *type) 478 { 479 480 kmem_free((vm_offset_t)addr, size); 481 malloc_type_freed(type, round_page(size)); 482 } 483 484 #ifdef MALLOC_DEBUG 485 static int 486 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, 487 int flags) 488 { 489 #ifdef INVARIANTS 490 int indx; 491 492 KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic")); 493 /* 494 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 495 */ 496 indx = flags & (M_WAITOK | M_NOWAIT); 497 if (indx != M_NOWAIT && indx != M_WAITOK) { 498 static struct timeval lasterr; 499 static int curerr, once; 500 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 501 printf("Bad malloc flags: %x\n", indx); 502 kdb_backtrace(); 503 flags |= M_WAITOK; 504 once++; 505 } 506 } 507 #endif 508 #ifdef MALLOC_MAKE_FAILURES 509 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 510 atomic_add_int(&malloc_nowait_count, 1); 511 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 512 atomic_add_int(&malloc_failure_count, 1); 513 t_malloc_fail = time_uptime; 514 *vap = NULL; 515 return (EJUSTRETURN); 516 } 517 } 518 #endif 519 if (flags & M_WAITOK) { 520 KASSERT(curthread->td_intr_nesting_level == 0, 521 ("malloc(M_WAITOK) in interrupt context")); 522 KASSERT(curthread->td_epochnest == 0, 523 ("malloc(M_WAITOK) in epoch context")); 524 } 525 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 526 ("malloc: called with spinlock or critical section held")); 527 528 #ifdef DEBUG_MEMGUARD 529 if (memguard_cmp_mtp(mtp, *sizep)) { 530 *vap = memguard_alloc(*sizep, flags); 531 if (*vap != NULL) 532 return (EJUSTRETURN); 533 /* This is unfortunate but should not be fatal. */ 534 } 535 #endif 536 537 #ifdef DEBUG_REDZONE 538 *sizep = redzone_size_ntor(*sizep); 539 #endif 540 541 return (0); 542 } 543 #endif 544 545 /* 546 * malloc: 547 * 548 * Allocate a block of memory. 549 * 550 * If M_NOWAIT is set, this routine will not block and return NULL if 551 * the allocation fails. 552 */ 553 void * 554 (malloc)(size_t size, struct malloc_type *mtp, int flags) 555 { 556 int indx; 557 caddr_t va; 558 uma_zone_t zone; 559 #if defined(DEBUG_REDZONE) 560 unsigned long osize = size; 561 #endif 562 563 #ifdef MALLOC_DEBUG 564 va = NULL; 565 if (malloc_dbg(&va, &size, mtp, flags) != 0) 566 return (va); 567 #endif 568 569 if (size <= kmem_zmax && (flags & M_EXEC) == 0) { 570 if (size & KMEM_ZMASK) 571 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 572 indx = kmemsize[size >> KMEM_ZSHIFT]; 573 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 574 #ifdef MALLOC_PROFILE 575 krequests[size >> KMEM_ZSHIFT]++; 576 #endif 577 va = uma_zalloc(zone, flags); 578 if (va != NULL) 579 size = zone->uz_size; 580 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 581 } else { 582 size = roundup(size, PAGE_SIZE); 583 zone = NULL; 584 va = uma_large_malloc(size, flags); 585 malloc_type_allocated(mtp, va == NULL ? 0 : size); 586 } 587 if (flags & M_WAITOK) 588 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 589 else if (va == NULL) 590 t_malloc_fail = time_uptime; 591 #ifdef DEBUG_REDZONE 592 if (va != NULL) 593 va = redzone_setup(va, osize); 594 #endif 595 return ((void *) va); 596 } 597 598 void * 599 malloc_domain(size_t size, struct malloc_type *mtp, int domain, 600 int flags) 601 { 602 int indx; 603 caddr_t va; 604 uma_zone_t zone; 605 #if defined(DEBUG_REDZONE) 606 unsigned long osize = size; 607 #endif 608 609 #ifdef MALLOC_DEBUG 610 va = NULL; 611 if (malloc_dbg(&va, &size, mtp, flags) != 0) 612 return (va); 613 #endif 614 if (size <= kmem_zmax && (flags & M_EXEC) == 0) { 615 if (size & KMEM_ZMASK) 616 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 617 indx = kmemsize[size >> KMEM_ZSHIFT]; 618 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 619 #ifdef MALLOC_PROFILE 620 krequests[size >> KMEM_ZSHIFT]++; 621 #endif 622 va = uma_zalloc_domain(zone, NULL, domain, flags); 623 if (va != NULL) 624 size = zone->uz_size; 625 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 626 } else { 627 size = roundup(size, PAGE_SIZE); 628 zone = NULL; 629 va = uma_large_malloc_domain(size, domain, flags); 630 malloc_type_allocated(mtp, va == NULL ? 0 : size); 631 } 632 if (flags & M_WAITOK) 633 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 634 else if (va == NULL) 635 t_malloc_fail = time_uptime; 636 #ifdef DEBUG_REDZONE 637 if (va != NULL) 638 va = redzone_setup(va, osize); 639 #endif 640 return ((void *) va); 641 } 642 643 void * 644 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) 645 { 646 647 if (WOULD_OVERFLOW(nmemb, size)) 648 panic("mallocarray: %zu * %zu overflowed", nmemb, size); 649 650 return (malloc(size * nmemb, type, flags)); 651 } 652 653 #ifdef INVARIANTS 654 static void 655 free_save_type(void *addr, struct malloc_type *mtp, u_long size) 656 { 657 struct malloc_type **mtpp = addr; 658 659 /* 660 * Cache a pointer to the malloc_type that most recently freed 661 * this memory here. This way we know who is most likely to 662 * have stepped on it later. 663 * 664 * This code assumes that size is a multiple of 8 bytes for 665 * 64 bit machines 666 */ 667 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 668 mtpp += (size - sizeof(struct malloc_type *)) / 669 sizeof(struct malloc_type *); 670 *mtpp = mtp; 671 } 672 #endif 673 674 #ifdef MALLOC_DEBUG 675 static int 676 free_dbg(void **addrp, struct malloc_type *mtp) 677 { 678 void *addr; 679 680 addr = *addrp; 681 KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic")); 682 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 683 ("free: called with spinlock or critical section held")); 684 685 /* free(NULL, ...) does nothing */ 686 if (addr == NULL) 687 return (EJUSTRETURN); 688 689 #ifdef DEBUG_MEMGUARD 690 if (is_memguard_addr(addr)) { 691 memguard_free(addr); 692 return (EJUSTRETURN); 693 } 694 #endif 695 696 #ifdef DEBUG_REDZONE 697 redzone_check(addr); 698 *addrp = redzone_addr_ntor(addr); 699 #endif 700 701 return (0); 702 } 703 #endif 704 705 /* 706 * free: 707 * 708 * Free a block of memory allocated by malloc. 709 * 710 * This routine may not block. 711 */ 712 void 713 free(void *addr, struct malloc_type *mtp) 714 { 715 uma_slab_t slab; 716 u_long size; 717 718 #ifdef MALLOC_DEBUG 719 if (free_dbg(&addr, mtp) != 0) 720 return; 721 #endif 722 /* free(NULL, ...) does nothing */ 723 if (addr == NULL) 724 return; 725 726 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 727 if (slab == NULL) 728 panic("free: address %p(%p) has not been allocated.\n", 729 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 730 731 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 732 size = slab->us_keg->uk_size; 733 #ifdef INVARIANTS 734 free_save_type(addr, mtp, size); 735 #endif 736 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab); 737 } else { 738 size = slab->us_size; 739 uma_large_free(slab); 740 } 741 malloc_type_freed(mtp, size); 742 } 743 744 void 745 free_domain(void *addr, struct malloc_type *mtp) 746 { 747 uma_slab_t slab; 748 u_long size; 749 750 #ifdef MALLOC_DEBUG 751 if (free_dbg(&addr, mtp) != 0) 752 return; 753 #endif 754 755 /* free(NULL, ...) does nothing */ 756 if (addr == NULL) 757 return; 758 759 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 760 if (slab == NULL) 761 panic("free_domain: address %p(%p) has not been allocated.\n", 762 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 763 764 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 765 size = slab->us_keg->uk_size; 766 #ifdef INVARIANTS 767 free_save_type(addr, mtp, size); 768 #endif 769 uma_zfree_domain(LIST_FIRST(&slab->us_keg->uk_zones), 770 addr, slab); 771 } else { 772 size = slab->us_size; 773 uma_large_free(slab); 774 } 775 malloc_type_freed(mtp, size); 776 } 777 778 /* 779 * realloc: change the size of a memory block 780 */ 781 void * 782 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) 783 { 784 uma_slab_t slab; 785 unsigned long alloc; 786 void *newaddr; 787 788 KASSERT(mtp->ks_magic == M_MAGIC, 789 ("realloc: bad malloc type magic")); 790 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 791 ("realloc: called with spinlock or critical section held")); 792 793 /* realloc(NULL, ...) is equivalent to malloc(...) */ 794 if (addr == NULL) 795 return (malloc(size, mtp, flags)); 796 797 /* 798 * XXX: Should report free of old memory and alloc of new memory to 799 * per-CPU stats. 800 */ 801 802 #ifdef DEBUG_MEMGUARD 803 if (is_memguard_addr(addr)) 804 return (memguard_realloc(addr, size, mtp, flags)); 805 #endif 806 807 #ifdef DEBUG_REDZONE 808 slab = NULL; 809 alloc = redzone_get_size(addr); 810 #else 811 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); 812 813 /* Sanity check */ 814 KASSERT(slab != NULL, 815 ("realloc: address %p out of range", (void *)addr)); 816 817 /* Get the size of the original block */ 818 if (!(slab->us_flags & UMA_SLAB_MALLOC)) 819 alloc = slab->us_keg->uk_size; 820 else 821 alloc = slab->us_size; 822 823 /* Reuse the original block if appropriate */ 824 if (size <= alloc 825 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 826 return (addr); 827 #endif /* !DEBUG_REDZONE */ 828 829 /* Allocate a new, bigger (or smaller) block */ 830 if ((newaddr = malloc(size, mtp, flags)) == NULL) 831 return (NULL); 832 833 /* Copy over original contents */ 834 bcopy(addr, newaddr, min(size, alloc)); 835 free(addr, mtp); 836 return (newaddr); 837 } 838 839 /* 840 * reallocf: same as realloc() but free memory on failure. 841 */ 842 void * 843 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) 844 { 845 void *mem; 846 847 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 848 free(addr, mtp); 849 return (mem); 850 } 851 852 #ifndef __sparc64__ 853 CTASSERT(VM_KMEM_SIZE_SCALE >= 1); 854 #endif 855 856 /* 857 * Initialize the kernel memory (kmem) arena. 858 */ 859 void 860 kmeminit(void) 861 { 862 u_long mem_size; 863 u_long tmp; 864 865 #ifdef VM_KMEM_SIZE 866 if (vm_kmem_size == 0) 867 vm_kmem_size = VM_KMEM_SIZE; 868 #endif 869 #ifdef VM_KMEM_SIZE_MIN 870 if (vm_kmem_size_min == 0) 871 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 872 #endif 873 #ifdef VM_KMEM_SIZE_MAX 874 if (vm_kmem_size_max == 0) 875 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 876 #endif 877 /* 878 * Calculate the amount of kernel virtual address (KVA) space that is 879 * preallocated to the kmem arena. In order to support a wide range 880 * of machines, it is a function of the physical memory size, 881 * specifically, 882 * 883 * min(max(physical memory size / VM_KMEM_SIZE_SCALE, 884 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) 885 * 886 * Every architecture must define an integral value for 887 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN 888 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and 889 * ceiling on this preallocation, are optional. Typically, 890 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on 891 * a given architecture. 892 */ 893 mem_size = vm_cnt.v_page_count; 894 if (mem_size <= 32768) /* delphij XXX 128MB */ 895 kmem_zmax = PAGE_SIZE; 896 897 if (vm_kmem_size_scale < 1) 898 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 899 900 /* 901 * Check if we should use defaults for the "vm_kmem_size" 902 * variable: 903 */ 904 if (vm_kmem_size == 0) { 905 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE; 906 907 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) 908 vm_kmem_size = vm_kmem_size_min; 909 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 910 vm_kmem_size = vm_kmem_size_max; 911 } 912 913 /* 914 * The amount of KVA space that is preallocated to the 915 * kmem arena can be set statically at compile-time or manually 916 * through the kernel environment. However, it is still limited to 917 * twice the physical memory size, which has been sufficient to handle 918 * the most severe cases of external fragmentation in the kmem arena. 919 */ 920 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 921 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 922 923 vm_kmem_size = round_page(vm_kmem_size); 924 #ifdef DEBUG_MEMGUARD 925 tmp = memguard_fudge(vm_kmem_size, kernel_map); 926 #else 927 tmp = vm_kmem_size; 928 #endif 929 uma_set_limit(tmp); 930 931 #ifdef DEBUG_MEMGUARD 932 /* 933 * Initialize MemGuard if support compiled in. MemGuard is a 934 * replacement allocator used for detecting tamper-after-free 935 * scenarios as they occur. It is only used for debugging. 936 */ 937 memguard_init(kernel_arena); 938 #endif 939 } 940 941 /* 942 * Initialize the kernel memory allocator 943 */ 944 /* ARGSUSED*/ 945 static void 946 mallocinit(void *dummy) 947 { 948 int i; 949 uint8_t indx; 950 951 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 952 953 kmeminit(); 954 955 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) 956 kmem_zmax = KMEM_ZMAX; 957 958 mt_stats_zone = uma_zcreate("mt_stats_zone", 959 sizeof(struct malloc_type_stats), NULL, NULL, NULL, NULL, 960 UMA_ALIGN_PTR, UMA_ZONE_PCPU); 961 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal), 962 #ifdef INVARIANTS 963 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 964 #else 965 NULL, NULL, NULL, NULL, 966 #endif 967 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 968 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 969 int size = kmemzones[indx].kz_size; 970 char *name = kmemzones[indx].kz_name; 971 int subzone; 972 973 for (subzone = 0; subzone < numzones; subzone++) { 974 kmemzones[indx].kz_zone[subzone] = 975 uma_zcreate(name, size, 976 #ifdef INVARIANTS 977 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 978 #else 979 NULL, NULL, NULL, NULL, 980 #endif 981 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 982 } 983 for (;i <= size; i+= KMEM_ZBASE) 984 kmemsize[i >> KMEM_ZSHIFT] = indx; 985 986 } 987 } 988 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); 989 990 void 991 malloc_init(void *data) 992 { 993 struct malloc_type_internal *mtip; 994 struct malloc_type *mtp; 995 996 KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init")); 997 998 mtp = data; 999 if (mtp->ks_magic != M_MAGIC) 1000 panic("malloc_init: bad malloc type magic"); 1001 1002 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO); 1003 mtip->mti_stats = uma_zalloc_pcpu(mt_stats_zone, M_WAITOK | M_ZERO); 1004 mtp->ks_handle = mtip; 1005 mtp_set_subzone(mtp); 1006 1007 mtx_lock(&malloc_mtx); 1008 mtp->ks_next = kmemstatistics; 1009 kmemstatistics = mtp; 1010 kmemcount++; 1011 mtx_unlock(&malloc_mtx); 1012 } 1013 1014 void 1015 malloc_uninit(void *data) 1016 { 1017 struct malloc_type_internal *mtip; 1018 struct malloc_type_stats *mtsp; 1019 struct malloc_type *mtp, *temp; 1020 uma_slab_t slab; 1021 long temp_allocs, temp_bytes; 1022 int i; 1023 1024 mtp = data; 1025 KASSERT(mtp->ks_magic == M_MAGIC, 1026 ("malloc_uninit: bad malloc type magic")); 1027 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL")); 1028 1029 mtx_lock(&malloc_mtx); 1030 mtip = mtp->ks_handle; 1031 mtp->ks_handle = NULL; 1032 if (mtp != kmemstatistics) { 1033 for (temp = kmemstatistics; temp != NULL; 1034 temp = temp->ks_next) { 1035 if (temp->ks_next == mtp) { 1036 temp->ks_next = mtp->ks_next; 1037 break; 1038 } 1039 } 1040 KASSERT(temp, 1041 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 1042 } else 1043 kmemstatistics = mtp->ks_next; 1044 kmemcount--; 1045 mtx_unlock(&malloc_mtx); 1046 1047 /* 1048 * Look for memory leaks. 1049 */ 1050 temp_allocs = temp_bytes = 0; 1051 for (i = 0; i <= mp_maxid; i++) { 1052 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1053 temp_allocs += mtsp->mts_numallocs; 1054 temp_allocs -= mtsp->mts_numfrees; 1055 temp_bytes += mtsp->mts_memalloced; 1056 temp_bytes -= mtsp->mts_memfreed; 1057 } 1058 if (temp_allocs > 0 || temp_bytes > 0) { 1059 printf("Warning: memory type %s leaked memory on destroy " 1060 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 1061 temp_allocs, temp_bytes); 1062 } 1063 1064 slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK)); 1065 uma_zfree_pcpu(mt_stats_zone, mtip->mti_stats); 1066 uma_zfree_arg(mt_zone, mtip, slab); 1067 } 1068 1069 struct malloc_type * 1070 malloc_desc2type(const char *desc) 1071 { 1072 struct malloc_type *mtp; 1073 1074 mtx_assert(&malloc_mtx, MA_OWNED); 1075 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1076 if (strcmp(mtp->ks_shortdesc, desc) == 0) 1077 return (mtp); 1078 } 1079 return (NULL); 1080 } 1081 1082 static int 1083 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 1084 { 1085 struct malloc_type_stream_header mtsh; 1086 struct malloc_type_internal *mtip; 1087 struct malloc_type_stats *mtsp, zeromts; 1088 struct malloc_type_header mth; 1089 struct malloc_type *mtp; 1090 int error, i; 1091 struct sbuf sbuf; 1092 1093 error = sysctl_wire_old_buffer(req, 0); 1094 if (error != 0) 1095 return (error); 1096 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1097 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 1098 mtx_lock(&malloc_mtx); 1099 1100 bzero(&zeromts, sizeof(zeromts)); 1101 1102 /* 1103 * Insert stream header. 1104 */ 1105 bzero(&mtsh, sizeof(mtsh)); 1106 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 1107 mtsh.mtsh_maxcpus = MAXCPU; 1108 mtsh.mtsh_count = kmemcount; 1109 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 1110 1111 /* 1112 * Insert alternating sequence of type headers and type statistics. 1113 */ 1114 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1115 mtip = (struct malloc_type_internal *)mtp->ks_handle; 1116 1117 /* 1118 * Insert type header. 1119 */ 1120 bzero(&mth, sizeof(mth)); 1121 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 1122 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 1123 1124 /* 1125 * Insert type statistics for each CPU. 1126 */ 1127 for (i = 0; i <= mp_maxid; i++) { 1128 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1129 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); 1130 } 1131 /* 1132 * Fill in the missing CPUs. 1133 */ 1134 for (; i < MAXCPU; i++) { 1135 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); 1136 } 1137 1138 } 1139 mtx_unlock(&malloc_mtx); 1140 error = sbuf_finish(&sbuf); 1141 sbuf_delete(&sbuf); 1142 return (error); 1143 } 1144 1145 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 1146 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats", 1147 "Return malloc types"); 1148 1149 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 1150 "Count of kernel malloc types"); 1151 1152 void 1153 malloc_type_list(malloc_type_list_func_t *func, void *arg) 1154 { 1155 struct malloc_type *mtp, **bufmtp; 1156 int count, i; 1157 size_t buflen; 1158 1159 mtx_lock(&malloc_mtx); 1160 restart: 1161 mtx_assert(&malloc_mtx, MA_OWNED); 1162 count = kmemcount; 1163 mtx_unlock(&malloc_mtx); 1164 1165 buflen = sizeof(struct malloc_type *) * count; 1166 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 1167 1168 mtx_lock(&malloc_mtx); 1169 1170 if (count < kmemcount) { 1171 free(bufmtp, M_TEMP); 1172 goto restart; 1173 } 1174 1175 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 1176 bufmtp[i] = mtp; 1177 1178 mtx_unlock(&malloc_mtx); 1179 1180 for (i = 0; i < count; i++) 1181 (func)(bufmtp[i], arg); 1182 1183 free(bufmtp, M_TEMP); 1184 } 1185 1186 #ifdef DDB 1187 DB_SHOW_COMMAND(malloc, db_show_malloc) 1188 { 1189 struct malloc_type_internal *mtip; 1190 struct malloc_type_internal *mtsp; 1191 struct malloc_type *mtp; 1192 uint64_t allocs, frees; 1193 uint64_t alloced, freed; 1194 int i; 1195 1196 db_printf("%18s %12s %12s %12s\n", "Type", "InUse", "MemUse", 1197 "Requests"); 1198 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1199 mtip = (struct malloc_type_internal *)mtp->ks_handle; 1200 allocs = 0; 1201 frees = 0; 1202 alloced = 0; 1203 freed = 0; 1204 for (i = 0; i <= mp_maxid; i++) { 1205 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1206 allocs += mtip->mti_stats[i].mts_numallocs; 1207 frees += mtip->mti_stats[i].mts_numfrees; 1208 alloced += mtip->mti_stats[i].mts_memalloced; 1209 freed += mtip->mti_stats[i].mts_memfreed; 1210 } 1211 db_printf("%18s %12ju %12juK %12ju\n", 1212 mtp->ks_shortdesc, allocs - frees, 1213 (alloced - freed + 1023) / 1024, allocs); 1214 if (db_pager_quit) 1215 break; 1216 } 1217 } 1218 1219 #if MALLOC_DEBUG_MAXZONES > 1 1220 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1221 { 1222 struct malloc_type_internal *mtip; 1223 struct malloc_type *mtp; 1224 u_int subzone; 1225 1226 if (!have_addr) { 1227 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1228 return; 1229 } 1230 mtp = (void *)addr; 1231 if (mtp->ks_magic != M_MAGIC) { 1232 db_printf("Magic %lx does not match expected %x\n", 1233 mtp->ks_magic, M_MAGIC); 1234 return; 1235 } 1236 1237 mtip = mtp->ks_handle; 1238 subzone = mtip->mti_zone; 1239 1240 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1241 mtip = mtp->ks_handle; 1242 if (mtip->mti_zone != subzone) 1243 continue; 1244 db_printf("%s\n", mtp->ks_shortdesc); 1245 if (db_pager_quit) 1246 break; 1247 } 1248 } 1249 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1250 #endif /* DDB */ 1251 1252 #ifdef MALLOC_PROFILE 1253 1254 static int 1255 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 1256 { 1257 struct sbuf sbuf; 1258 uint64_t count; 1259 uint64_t waste; 1260 uint64_t mem; 1261 int error; 1262 int rsize; 1263 int size; 1264 int i; 1265 1266 waste = 0; 1267 mem = 0; 1268 1269 error = sysctl_wire_old_buffer(req, 0); 1270 if (error != 0) 1271 return (error); 1272 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1273 sbuf_printf(&sbuf, 1274 "\n Size Requests Real Size\n"); 1275 for (i = 0; i < KMEM_ZSIZE; i++) { 1276 size = i << KMEM_ZSHIFT; 1277 rsize = kmemzones[kmemsize[i]].kz_size; 1278 count = (long long unsigned)krequests[i]; 1279 1280 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size, 1281 (unsigned long long)count, rsize); 1282 1283 if ((rsize * count) > (size * count)) 1284 waste += (rsize * count) - (size * count); 1285 mem += (rsize * count); 1286 } 1287 sbuf_printf(&sbuf, 1288 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 1289 (unsigned long long)mem, (unsigned long long)waste); 1290 error = sbuf_finish(&sbuf); 1291 sbuf_delete(&sbuf); 1292 return (error); 1293 } 1294 1295 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 1296 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 1297 #endif /* MALLOC_PROFILE */ 1298