1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1987, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005-2009 Robert N. M. Watson 7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray) 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 37 * based on memory types. Back end is implemented using the UMA(9) zone 38 * allocator. A set of fixed-size buckets are used for smaller allocations, 39 * and a special UMA allocation interface is used for larger allocations. 40 * Callers declare memory types, and statistics are maintained independently 41 * for each memory type. Statistics are maintained per-CPU for performance 42 * reasons. See malloc(9) and comments in malloc.h for a detailed 43 * description. 44 */ 45 46 #include <sys/cdefs.h> 47 #include "opt_ddb.h" 48 #include "opt_vm.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/asan.h> 53 #include <sys/kdb.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/msan.h> 58 #include <sys/mutex.h> 59 #include <sys/vmmeter.h> 60 #include <sys/proc.h> 61 #include <sys/queue.h> 62 #include <sys/sbuf.h> 63 #include <sys/smp.h> 64 #include <sys/sysctl.h> 65 #include <sys/time.h> 66 #include <sys/vmem.h> 67 #ifdef EPOCH_TRACE 68 #include <sys/epoch.h> 69 #endif 70 71 #include <vm/vm.h> 72 #include <vm/pmap.h> 73 #include <vm/vm_domainset.h> 74 #include <vm/vm_pageout.h> 75 #include <vm/vm_param.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_extern.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_page.h> 80 #include <vm/vm_phys.h> 81 #include <vm/vm_pagequeue.h> 82 #include <vm/uma.h> 83 #include <vm/uma_int.h> 84 #include <vm/uma_dbg.h> 85 86 #ifdef DEBUG_MEMGUARD 87 #include <vm/memguard.h> 88 #endif 89 #ifdef DEBUG_REDZONE 90 #include <vm/redzone.h> 91 #endif 92 93 #if defined(INVARIANTS) && defined(__i386__) 94 #include <machine/cpu.h> 95 #endif 96 97 #include <ddb/ddb.h> 98 99 #ifdef KDTRACE_HOOKS 100 #include <sys/dtrace_bsd.h> 101 102 bool __read_frequently dtrace_malloc_enabled; 103 dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; 104 #endif 105 106 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ 107 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) 108 #define MALLOC_DEBUG 1 109 #endif 110 111 #if defined(KASAN) || defined(DEBUG_REDZONE) 112 #define DEBUG_REDZONE_ARG_DEF , unsigned long osize 113 #define DEBUG_REDZONE_ARG , osize 114 #else 115 #define DEBUG_REDZONE_ARG_DEF 116 #define DEBUG_REDZONE_ARG 117 #endif 118 119 typedef enum { 120 SLAB_COOKIE_SLAB_PTR = 0x0, 121 SLAB_COOKIE_MALLOC_LARGE = 0x1, 122 SLAB_COOKIE_CONTIG_MALLOC = 0x2, 123 } slab_cookie_t; 124 #define SLAB_COOKIE_MASK 0x3 125 #define SLAB_COOKIE_SHIFT 2 126 #define GET_SLAB_COOKIE(_slab) \ 127 ((slab_cookie_t)(uintptr_t)(_slab) & SLAB_COOKIE_MASK) 128 129 /* 130 * When realloc() is called, if the new size is sufficiently smaller than 131 * the old size, realloc() will allocate a new, smaller block to avoid 132 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 133 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 134 */ 135 #ifndef REALLOC_FRACTION 136 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 137 #endif 138 139 /* 140 * Centrally define some common malloc types. 141 */ 142 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 143 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 144 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 145 146 static struct malloc_type *kmemstatistics; 147 static int kmemcount; 148 149 #define KMEM_ZSHIFT 4 150 #define KMEM_ZBASE 16 151 #define KMEM_ZMASK (KMEM_ZBASE - 1) 152 153 #define KMEM_ZMAX 65536 154 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 155 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 156 157 #ifndef MALLOC_DEBUG_MAXZONES 158 #define MALLOC_DEBUG_MAXZONES 1 159 #endif 160 static int numzones = MALLOC_DEBUG_MAXZONES; 161 162 /* 163 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 164 * of various sizes. 165 * 166 * Warning: the layout of the struct is duplicated in libmemstat for KVM support. 167 * 168 * XXX: The comment here used to read "These won't be powers of two for 169 * long." It's possible that a significant amount of wasted memory could be 170 * recovered by tuning the sizes of these buckets. 171 */ 172 struct { 173 int kz_size; 174 const char *kz_name; 175 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 176 } kmemzones[] = { 177 {16, "malloc-16", }, 178 {32, "malloc-32", }, 179 {64, "malloc-64", }, 180 {128, "malloc-128", }, 181 {256, "malloc-256", }, 182 {384, "malloc-384", }, 183 {512, "malloc-512", }, 184 {1024, "malloc-1024", }, 185 {2048, "malloc-2048", }, 186 {4096, "malloc-4096", }, 187 {8192, "malloc-8192", }, 188 {16384, "malloc-16384", }, 189 {32768, "malloc-32768", }, 190 {65536, "malloc-65536", }, 191 {0, NULL}, 192 }; 193 194 u_long vm_kmem_size; 195 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 196 "Size of kernel memory"); 197 198 static u_long kmem_zmax = KMEM_ZMAX; 199 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, 200 "Maximum allocation size that malloc(9) would use UMA as backend"); 201 202 static u_long vm_kmem_size_min; 203 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 204 "Minimum size of kernel memory"); 205 206 static u_long vm_kmem_size_max; 207 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 208 "Maximum size of kernel memory"); 209 210 static u_int vm_kmem_size_scale; 211 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 212 "Scale factor for kernel memory size"); 213 214 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 215 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 216 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 217 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 218 219 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 220 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 221 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 222 sysctl_kmem_map_free, "LU", "Free space in kmem"); 223 224 static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 225 "Malloc information"); 226 227 static u_int vm_malloc_zone_count = nitems(kmemzones); 228 SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count, 229 CTLFLAG_RD, &vm_malloc_zone_count, 0, 230 "Number of malloc zones"); 231 232 static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS); 233 SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes, 234 CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0, 235 sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc"); 236 237 /* 238 * The malloc_mtx protects the kmemstatistics linked list. 239 */ 240 struct mtx malloc_mtx; 241 242 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 243 244 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 245 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 246 "Kernel malloc debugging options"); 247 #endif 248 249 /* 250 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 251 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 252 */ 253 #ifdef MALLOC_MAKE_FAILURES 254 static int malloc_failure_rate; 255 static int malloc_nowait_count; 256 static int malloc_failure_count; 257 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, 258 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 259 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 260 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 261 #endif 262 263 static int 264 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 265 { 266 u_long size; 267 268 size = uma_size(); 269 return (sysctl_handle_long(oidp, &size, 0, req)); 270 } 271 272 static int 273 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 274 { 275 u_long size, limit; 276 277 /* The sysctl is unsigned, implement as a saturation value. */ 278 size = uma_size(); 279 limit = uma_limit(); 280 if (size > limit) 281 size = 0; 282 else 283 size = limit - size; 284 return (sysctl_handle_long(oidp, &size, 0, req)); 285 } 286 287 static int 288 sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS) 289 { 290 int sizes[nitems(kmemzones)]; 291 int i; 292 293 for (i = 0; i < nitems(kmemzones); i++) { 294 sizes[i] = kmemzones[i].kz_size; 295 } 296 297 return (SYSCTL_OUT(req, &sizes, sizeof(sizes))); 298 } 299 300 /* 301 * malloc(9) uma zone separation -- sub-page buffer overruns in one 302 * malloc type will affect only a subset of other malloc types. 303 */ 304 #if MALLOC_DEBUG_MAXZONES > 1 305 static void 306 tunable_set_numzones(void) 307 { 308 309 TUNABLE_INT_FETCH("debug.malloc.numzones", 310 &numzones); 311 312 /* Sanity check the number of malloc uma zones. */ 313 if (numzones <= 0) 314 numzones = 1; 315 if (numzones > MALLOC_DEBUG_MAXZONES) 316 numzones = MALLOC_DEBUG_MAXZONES; 317 } 318 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 319 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 320 &numzones, 0, "Number of malloc uma subzones"); 321 322 /* 323 * Any number that changes regularly is an okay choice for the 324 * offset. Build numbers are pretty good of you have them. 325 */ 326 static u_int zone_offset = __FreeBSD_version; 327 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 328 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 329 &zone_offset, 0, "Separate malloc types by examining the " 330 "Nth character in the malloc type short description."); 331 332 static void 333 mtp_set_subzone(struct malloc_type *mtp) 334 { 335 struct malloc_type_internal *mtip; 336 const char *desc; 337 size_t len; 338 u_int val; 339 340 mtip = &mtp->ks_mti; 341 desc = mtp->ks_shortdesc; 342 if (desc == NULL || (len = strlen(desc)) == 0) 343 val = 0; 344 else 345 val = desc[zone_offset % len]; 346 mtip->mti_zone = (val % numzones); 347 } 348 349 static inline u_int 350 mtp_get_subzone(struct malloc_type *mtp) 351 { 352 struct malloc_type_internal *mtip; 353 354 mtip = &mtp->ks_mti; 355 356 KASSERT(mtip->mti_zone < numzones, 357 ("mti_zone %u out of range %d", 358 mtip->mti_zone, numzones)); 359 return (mtip->mti_zone); 360 } 361 #elif MALLOC_DEBUG_MAXZONES == 0 362 #error "MALLOC_DEBUG_MAXZONES must be positive." 363 #else 364 static void 365 mtp_set_subzone(struct malloc_type *mtp) 366 { 367 struct malloc_type_internal *mtip; 368 369 mtip = &mtp->ks_mti; 370 mtip->mti_zone = 0; 371 } 372 373 static inline u_int 374 mtp_get_subzone(struct malloc_type *mtp) 375 { 376 377 return (0); 378 } 379 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 380 381 /* 382 * An allocation has succeeded -- update malloc type statistics for the 383 * amount of bucket size. Occurs within a critical section so that the 384 * thread isn't preempted and doesn't migrate while updating per-PCU 385 * statistics. 386 */ 387 static void 388 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 389 int zindx) 390 { 391 struct malloc_type_internal *mtip; 392 struct malloc_type_stats *mtsp; 393 394 critical_enter(); 395 mtip = &mtp->ks_mti; 396 mtsp = zpcpu_get(mtip->mti_stats); 397 if (size > 0) { 398 mtsp->mts_memalloced += size; 399 mtsp->mts_numallocs++; 400 } 401 if (zindx != -1) 402 mtsp->mts_size |= 1 << zindx; 403 404 #ifdef KDTRACE_HOOKS 405 if (__predict_false(dtrace_malloc_enabled)) { 406 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 407 if (probe_id != 0) 408 (dtrace_malloc_probe)(probe_id, 409 (uintptr_t) mtp, (uintptr_t) mtip, 410 (uintptr_t) mtsp, size, zindx); 411 } 412 #endif 413 414 critical_exit(); 415 } 416 417 void 418 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 419 { 420 421 if (size > 0) 422 malloc_type_zone_allocated(mtp, size, -1); 423 } 424 425 /* 426 * A free operation has occurred -- update malloc type statistics for the 427 * amount of the bucket size. Occurs within a critical section so that the 428 * thread isn't preempted and doesn't migrate while updating per-CPU 429 * statistics. 430 */ 431 void 432 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 433 { 434 struct malloc_type_internal *mtip; 435 struct malloc_type_stats *mtsp; 436 437 critical_enter(); 438 mtip = &mtp->ks_mti; 439 mtsp = zpcpu_get(mtip->mti_stats); 440 mtsp->mts_memfreed += size; 441 mtsp->mts_numfrees++; 442 443 #ifdef KDTRACE_HOOKS 444 if (__predict_false(dtrace_malloc_enabled)) { 445 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 446 if (probe_id != 0) 447 (dtrace_malloc_probe)(probe_id, 448 (uintptr_t) mtp, (uintptr_t) mtip, 449 (uintptr_t) mtsp, size, 0); 450 } 451 #endif 452 453 critical_exit(); 454 } 455 456 /* 457 * contigmalloc: 458 * 459 * Allocate a block of physically contiguous memory. 460 * 461 * If M_NOWAIT is set, this routine will not block and return NULL if 462 * the allocation fails. 463 */ 464 #define IS_CONTIG_MALLOC(_slab) \ 465 (GET_SLAB_COOKIE(_slab) == SLAB_COOKIE_CONTIG_MALLOC) 466 #define CONTIG_MALLOC_SLAB(_size) \ 467 ((void *)(((_size) << SLAB_COOKIE_SHIFT) | SLAB_COOKIE_CONTIG_MALLOC)) 468 static inline size_t 469 contigmalloc_size(uma_slab_t slab) 470 { 471 uintptr_t va; 472 473 KASSERT(IS_CONTIG_MALLOC(slab), 474 ("%s: called on non-contigmalloc allocation: %p", __func__, slab)); 475 va = (uintptr_t)slab; 476 return (va >> SLAB_COOKIE_SHIFT); 477 } 478 479 void * 480 contigmalloc(unsigned long size, struct malloc_type *type, int flags, 481 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 482 vm_paddr_t boundary) 483 { 484 void *ret; 485 486 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, 487 boundary, VM_MEMATTR_DEFAULT); 488 if (ret != NULL) { 489 /* Use low bits unused for slab pointers. */ 490 vsetzoneslab((uintptr_t)ret, NULL, CONTIG_MALLOC_SLAB(size)); 491 malloc_type_allocated(type, round_page(size)); 492 } 493 return (ret); 494 } 495 496 void * 497 contigmalloc_domainset(unsigned long size, struct malloc_type *type, 498 struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, 499 unsigned long alignment, vm_paddr_t boundary) 500 { 501 void *ret; 502 503 ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high, 504 alignment, boundary, VM_MEMATTR_DEFAULT); 505 if (ret != NULL) { 506 /* Use low bits unused for slab pointers. */ 507 vsetzoneslab((uintptr_t)ret, NULL, CONTIG_MALLOC_SLAB(size)); 508 malloc_type_allocated(type, round_page(size)); 509 } 510 return (ret); 511 } 512 #undef IS_CONTIG_MALLOC 513 #undef CONTIG_MALLOC_SLAB 514 515 /* contigfree(9) is deprecated. */ 516 void 517 contigfree(void *addr, unsigned long size __unused, struct malloc_type *type) 518 { 519 free(addr, type); 520 } 521 522 #ifdef MALLOC_DEBUG 523 static int 524 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, 525 int flags) 526 { 527 KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version")); 528 KASSERT((flags & (M_WAITOK | M_NOWAIT)) != 0, 529 ("malloc: flags must include either M_WAITOK or M_NOWAIT")); 530 KASSERT((flags & (M_WAITOK | M_NOWAIT)) != (M_WAITOK | M_NOWAIT), 531 ("malloc: flags may not include both M_WAITOK and M_NOWAIT")); 532 KASSERT((flags & M_NEVERFREED) == 0, 533 ("malloc: M_NEVERFREED is for internal use only")); 534 #ifdef MALLOC_MAKE_FAILURES 535 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 536 atomic_add_int(&malloc_nowait_count, 1); 537 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 538 atomic_add_int(&malloc_failure_count, 1); 539 *vap = NULL; 540 return (EJUSTRETURN); 541 } 542 } 543 #endif 544 if (flags & M_WAITOK) { 545 KASSERT(curthread->td_intr_nesting_level == 0, 546 ("malloc(M_WAITOK) in interrupt context")); 547 if (__predict_false(!THREAD_CAN_SLEEP())) { 548 #ifdef EPOCH_TRACE 549 epoch_trace_list(curthread); 550 #endif 551 KASSERT(0, 552 ("malloc(M_WAITOK) with sleeping prohibited")); 553 } 554 } 555 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 556 ("malloc: called with spinlock or critical section held")); 557 558 #ifdef DEBUG_MEMGUARD 559 if (memguard_cmp_mtp(mtp, *sizep)) { 560 *vap = memguard_alloc(*sizep, flags); 561 if (*vap != NULL) 562 return (EJUSTRETURN); 563 /* This is unfortunate but should not be fatal. */ 564 } 565 #endif 566 567 #ifdef DEBUG_REDZONE 568 *sizep = redzone_size_ntor(*sizep); 569 #endif 570 571 return (0); 572 } 573 #endif 574 575 /* 576 * Handle large allocations and frees by using kmem_malloc directly. 577 */ 578 #define IS_MALLOC_LARGE(_slab) \ 579 (GET_SLAB_COOKIE(_slab) == SLAB_COOKIE_MALLOC_LARGE) 580 #define MALLOC_LARGE_SLAB(_size) \ 581 ((void *)(((_size) << SLAB_COOKIE_SHIFT) | SLAB_COOKIE_MALLOC_LARGE)) 582 static inline size_t 583 malloc_large_size(uma_slab_t slab) 584 { 585 uintptr_t va; 586 587 va = (uintptr_t)slab; 588 KASSERT(IS_MALLOC_LARGE(slab), 589 ("%s: called on non-malloc_large allocation: %p", __func__, slab)); 590 return (va >> SLAB_COOKIE_SHIFT); 591 } 592 593 static caddr_t __noinline 594 malloc_large(size_t size, struct malloc_type *mtp, struct domainset *policy, 595 int flags DEBUG_REDZONE_ARG_DEF) 596 { 597 void *va; 598 599 size = roundup(size, PAGE_SIZE); 600 va = kmem_malloc_domainset(policy, size, flags); 601 if (va != NULL) { 602 /* Use low bits unused for slab pointers. */ 603 vsetzoneslab((uintptr_t)va, NULL, MALLOC_LARGE_SLAB(size)); 604 uma_total_inc(size); 605 } 606 malloc_type_allocated(mtp, va == NULL ? 0 : size); 607 if (__predict_false(va == NULL)) { 608 KASSERT((flags & M_WAITOK) == 0, 609 ("malloc(M_WAITOK) returned NULL")); 610 } else { 611 #ifdef DEBUG_REDZONE 612 va = redzone_setup(va, osize); 613 #endif 614 kasan_mark(va, osize, size, KASAN_MALLOC_REDZONE); 615 } 616 return (va); 617 } 618 619 static void 620 free_large(void *addr, size_t size) 621 { 622 623 kmem_free(addr, size); 624 uma_total_dec(size); 625 } 626 #undef IS_MALLOC_LARGE 627 #undef MALLOC_LARGE_SLAB 628 629 /* 630 * malloc: 631 * 632 * Allocate a block of memory. 633 * 634 * If M_NOWAIT is set, this routine will not block and return NULL if 635 * the allocation fails. 636 */ 637 void * 638 (malloc)(size_t size, struct malloc_type *mtp, int flags) 639 { 640 int indx; 641 caddr_t va; 642 uma_zone_t zone; 643 #if defined(DEBUG_REDZONE) || defined(KASAN) 644 unsigned long osize = size; 645 #endif 646 647 MPASS((flags & M_EXEC) == 0); 648 649 #ifdef MALLOC_DEBUG 650 va = NULL; 651 if (malloc_dbg(&va, &size, mtp, flags) != 0) 652 return (va); 653 #endif 654 655 if (__predict_false(size > kmem_zmax)) 656 return (malloc_large(size, mtp, DOMAINSET_RR(), flags 657 DEBUG_REDZONE_ARG)); 658 659 if (size & KMEM_ZMASK) 660 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 661 indx = kmemsize[size >> KMEM_ZSHIFT]; 662 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 663 va = uma_zalloc_arg(zone, zone, flags); 664 if (va != NULL) { 665 size = zone->uz_size; 666 if ((flags & M_ZERO) == 0) { 667 kmsan_mark(va, size, KMSAN_STATE_UNINIT); 668 kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR); 669 } 670 } 671 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 672 if (__predict_false(va == NULL)) { 673 KASSERT((flags & M_WAITOK) == 0, 674 ("malloc(M_WAITOK) returned NULL")); 675 } 676 #ifdef DEBUG_REDZONE 677 if (va != NULL) 678 va = redzone_setup(va, osize); 679 #endif 680 #ifdef KASAN 681 if (va != NULL) 682 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 683 #endif 684 return ((void *) va); 685 } 686 687 static void * 688 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain, 689 int flags) 690 { 691 uma_zone_t zone; 692 caddr_t va; 693 size_t size; 694 int indx; 695 696 size = *sizep; 697 KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0, 698 ("malloc_domain: Called with bad flag / size combination")); 699 if (size & KMEM_ZMASK) 700 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 701 indx = kmemsize[size >> KMEM_ZSHIFT]; 702 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 703 va = uma_zalloc_domain(zone, zone, domain, flags); 704 if (va != NULL) 705 *sizep = zone->uz_size; 706 *indxp = indx; 707 return ((void *)va); 708 } 709 710 void * 711 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, 712 int flags) 713 { 714 struct vm_domainset_iter di; 715 caddr_t va; 716 int domain; 717 int indx; 718 #if defined(KASAN) || defined(DEBUG_REDZONE) 719 unsigned long osize = size; 720 #endif 721 722 MPASS((flags & M_EXEC) == 0); 723 724 #ifdef MALLOC_DEBUG 725 va = NULL; 726 if (malloc_dbg(&va, &size, mtp, flags) != 0) 727 return (va); 728 #endif 729 730 if (__predict_false(size > kmem_zmax)) 731 return (malloc_large(size, mtp, DOMAINSET_RR(), flags 732 DEBUG_REDZONE_ARG)); 733 734 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 735 do { 736 va = malloc_domain(&size, &indx, mtp, domain, flags); 737 } while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0); 738 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 739 if (__predict_false(va == NULL)) { 740 KASSERT((flags & M_WAITOK) == 0, 741 ("malloc(M_WAITOK) returned NULL")); 742 } 743 #ifdef DEBUG_REDZONE 744 if (va != NULL) 745 va = redzone_setup(va, osize); 746 #endif 747 #ifdef KASAN 748 if (va != NULL) 749 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 750 #endif 751 #ifdef KMSAN 752 if ((flags & M_ZERO) == 0) { 753 kmsan_mark(va, size, KMSAN_STATE_UNINIT); 754 kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR); 755 } 756 #endif 757 return (va); 758 } 759 760 /* 761 * Allocate an executable area. 762 */ 763 void * 764 malloc_exec(size_t size, struct malloc_type *mtp, int flags) 765 { 766 767 return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags)); 768 } 769 770 void * 771 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds, 772 int flags) 773 { 774 #if defined(DEBUG_REDZONE) || defined(KASAN) 775 unsigned long osize = size; 776 #endif 777 #ifdef MALLOC_DEBUG 778 caddr_t va; 779 #endif 780 781 flags |= M_EXEC; 782 783 #ifdef MALLOC_DEBUG 784 va = NULL; 785 if (malloc_dbg(&va, &size, mtp, flags) != 0) 786 return (va); 787 #endif 788 789 return (malloc_large(size, mtp, ds, flags DEBUG_REDZONE_ARG)); 790 } 791 792 void * 793 malloc_aligned(size_t size, size_t align, struct malloc_type *type, int flags) 794 { 795 return (malloc_domainset_aligned(size, align, type, DOMAINSET_RR(), 796 flags)); 797 } 798 799 void * 800 malloc_domainset_aligned(size_t size, size_t align, 801 struct malloc_type *mtp, struct domainset *ds, int flags) 802 { 803 void *res; 804 size_t asize; 805 806 KASSERT(powerof2(align), 807 ("malloc_domainset_aligned: wrong align %#zx size %#zx", 808 align, size)); 809 KASSERT(align <= PAGE_SIZE, 810 ("malloc_domainset_aligned: align %#zx (size %#zx) too large", 811 align, size)); 812 813 /* 814 * Round the allocation size up to the next power of 2, 815 * because we can only guarantee alignment for 816 * power-of-2-sized allocations. Further increase the 817 * allocation size to align if the rounded size is less than 818 * align, since malloc zones provide alignment equal to their 819 * size. 820 */ 821 if (size == 0) 822 size = 1; 823 asize = size <= align ? align : 1UL << flsl(size - 1); 824 825 res = malloc_domainset(asize, mtp, ds, flags); 826 KASSERT(res == NULL || ((uintptr_t)res & (align - 1)) == 0, 827 ("malloc_domainset_aligned: result not aligned %p size %#zx " 828 "allocsize %#zx align %#zx", res, size, asize, align)); 829 return (res); 830 } 831 832 void * 833 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) 834 { 835 836 if (WOULD_OVERFLOW(nmemb, size)) 837 panic("mallocarray: %zu * %zu overflowed", nmemb, size); 838 839 return (malloc(size * nmemb, type, flags)); 840 } 841 842 void * 843 mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type, 844 struct domainset *ds, int flags) 845 { 846 847 if (WOULD_OVERFLOW(nmemb, size)) 848 panic("mallocarray_domainset: %zu * %zu overflowed", nmemb, size); 849 850 return (malloc_domainset(size * nmemb, type, ds, flags)); 851 } 852 853 #if defined(INVARIANTS) && !defined(KASAN) 854 static void 855 free_save_type(void *addr, struct malloc_type *mtp, u_long size) 856 { 857 struct malloc_type **mtpp = addr; 858 859 /* 860 * Cache a pointer to the malloc_type that most recently freed 861 * this memory here. This way we know who is most likely to 862 * have stepped on it later. 863 * 864 * This code assumes that size is a multiple of 8 bytes for 865 * 64 bit machines 866 */ 867 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 868 mtpp += (size - sizeof(struct malloc_type *)) / 869 sizeof(struct malloc_type *); 870 *mtpp = mtp; 871 } 872 #endif 873 874 #ifdef MALLOC_DEBUG 875 static int 876 free_dbg(void **addrp, struct malloc_type *mtp) 877 { 878 void *addr; 879 880 addr = *addrp; 881 KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version")); 882 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 883 ("free: called with spinlock or critical section held")); 884 885 /* free(NULL, ...) does nothing */ 886 if (addr == NULL) 887 return (EJUSTRETURN); 888 889 #ifdef DEBUG_MEMGUARD 890 if (is_memguard_addr(addr)) { 891 memguard_free(addr); 892 return (EJUSTRETURN); 893 } 894 #endif 895 896 #ifdef DEBUG_REDZONE 897 redzone_check(addr); 898 *addrp = redzone_addr_ntor(addr); 899 #endif 900 901 return (0); 902 } 903 #endif 904 905 static __always_inline void 906 _free(void *addr, struct malloc_type *mtp, bool dozero) 907 { 908 uma_zone_t zone; 909 uma_slab_t slab; 910 u_long size; 911 912 #ifdef MALLOC_DEBUG 913 if (free_dbg(&addr, mtp) != 0) 914 return; 915 #endif 916 /* free(NULL, ...) does nothing */ 917 if (addr == NULL) 918 return; 919 920 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 921 if (slab == NULL) 922 panic("%s(%d): address %p(%p) has not been allocated", __func__, 923 dozero, addr, (void *)((uintptr_t)addr & (~UMA_SLAB_MASK))); 924 925 switch (GET_SLAB_COOKIE(slab)) { 926 case __predict_true(SLAB_COOKIE_SLAB_PTR): 927 size = zone->uz_size; 928 #if defined(INVARIANTS) && !defined(KASAN) 929 free_save_type(addr, mtp, size); 930 #endif 931 if (dozero) { 932 kasan_mark(addr, size, size, 0); 933 explicit_bzero(addr, size); 934 } 935 uma_zfree_arg(zone, addr, slab); 936 break; 937 case SLAB_COOKIE_MALLOC_LARGE: 938 size = malloc_large_size(slab); 939 if (dozero) { 940 kasan_mark(addr, size, size, 0); 941 explicit_bzero(addr, size); 942 } 943 free_large(addr, size); 944 break; 945 case SLAB_COOKIE_CONTIG_MALLOC: 946 size = round_page(contigmalloc_size(slab)); 947 if (dozero) 948 explicit_bzero(addr, size); 949 kmem_free(addr, size); 950 break; 951 default: 952 panic("%s(%d): addr %p slab %p with unknown cookie %d", 953 __func__, dozero, addr, slab, GET_SLAB_COOKIE(slab)); 954 /* NOTREACHED */ 955 } 956 malloc_type_freed(mtp, size); 957 } 958 959 /* 960 * free: 961 * Free a block of memory allocated by malloc/contigmalloc. 962 * This routine may not block. 963 */ 964 void 965 free(void *addr, struct malloc_type *mtp) 966 { 967 _free(addr, mtp, false); 968 } 969 970 /* 971 * zfree: 972 * Zero then free a block of memory allocated by malloc/contigmalloc. 973 * This routine may not block. 974 */ 975 void 976 zfree(void *addr, struct malloc_type *mtp) 977 { 978 _free(addr, mtp, true); 979 } 980 981 /* 982 * realloc: change the size of a memory block 983 */ 984 void * 985 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) 986 { 987 #ifndef DEBUG_REDZONE 988 uma_zone_t zone; 989 uma_slab_t slab; 990 #endif 991 unsigned long alloc; 992 void *newaddr; 993 994 KASSERT(mtp->ks_version == M_VERSION, 995 ("realloc: bad malloc type version")); 996 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 997 ("realloc: called with spinlock or critical section held")); 998 999 /* realloc(NULL, ...) is equivalent to malloc(...) */ 1000 if (addr == NULL) 1001 return (malloc(size, mtp, flags)); 1002 1003 /* 1004 * XXX: Should report free of old memory and alloc of new memory to 1005 * per-CPU stats. 1006 */ 1007 1008 #ifdef DEBUG_MEMGUARD 1009 if (is_memguard_addr(addr)) 1010 return (memguard_realloc(addr, size, mtp, flags)); 1011 #endif 1012 1013 #ifdef DEBUG_REDZONE 1014 alloc = redzone_get_size(addr); 1015 #else 1016 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1017 1018 /* Sanity check */ 1019 KASSERT(slab != NULL, 1020 ("realloc: address %p out of range", (void *)addr)); 1021 1022 /* Get the size of the original block */ 1023 switch (GET_SLAB_COOKIE(slab)) { 1024 case __predict_true(SLAB_COOKIE_SLAB_PTR): 1025 alloc = zone->uz_size; 1026 break; 1027 case SLAB_COOKIE_MALLOC_LARGE: 1028 alloc = malloc_large_size(slab); 1029 break; 1030 default: 1031 #ifdef INVARIANTS 1032 panic("%s: called for addr %p of unsupported allocation type; " 1033 "slab %p cookie %d", __func__, addr, slab, GET_SLAB_COOKIE(slab)); 1034 #endif 1035 return (NULL); 1036 } 1037 1038 /* Reuse the original block if appropriate */ 1039 if (size <= alloc && 1040 (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) { 1041 kasan_mark((void *)addr, size, alloc, KASAN_MALLOC_REDZONE); 1042 return (addr); 1043 } 1044 #endif /* !DEBUG_REDZONE */ 1045 1046 /* Allocate a new, bigger (or smaller) block */ 1047 if ((newaddr = malloc(size, mtp, flags)) == NULL) 1048 return (NULL); 1049 1050 /* 1051 * Copy over original contents. For KASAN, the redzone must be marked 1052 * valid before performing the copy. 1053 */ 1054 kasan_mark(addr, alloc, alloc, 0); 1055 bcopy(addr, newaddr, min(size, alloc)); 1056 free(addr, mtp); 1057 return (newaddr); 1058 } 1059 1060 /* 1061 * reallocf: same as realloc() but free memory on failure. 1062 */ 1063 void * 1064 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) 1065 { 1066 void *mem; 1067 1068 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 1069 free(addr, mtp); 1070 return (mem); 1071 } 1072 1073 /* 1074 * malloc_size: returns the number of bytes allocated for a request of the 1075 * specified size 1076 */ 1077 size_t 1078 malloc_size(size_t size) 1079 { 1080 int indx; 1081 1082 if (size > kmem_zmax) 1083 return (round_page(size)); 1084 if (size & KMEM_ZMASK) 1085 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 1086 indx = kmemsize[size >> KMEM_ZSHIFT]; 1087 return (kmemzones[indx].kz_size); 1088 } 1089 1090 /* 1091 * malloc_usable_size: returns the usable size of the allocation. 1092 */ 1093 size_t 1094 malloc_usable_size(const void *addr) 1095 { 1096 #ifndef DEBUG_REDZONE 1097 uma_zone_t zone; 1098 uma_slab_t slab; 1099 #endif 1100 u_long size; 1101 1102 if (addr == NULL) 1103 return (0); 1104 1105 #ifdef DEBUG_MEMGUARD 1106 if (is_memguard_addr(__DECONST(void *, addr))) 1107 return (memguard_get_req_size(addr)); 1108 #endif 1109 1110 #ifdef DEBUG_REDZONE 1111 size = redzone_get_size(__DECONST(void *, addr)); 1112 #else 1113 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1114 if (slab == NULL) 1115 panic("malloc_usable_size: address %p(%p) is not allocated", 1116 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 1117 1118 switch (GET_SLAB_COOKIE(slab)) { 1119 case __predict_true(SLAB_COOKIE_SLAB_PTR): 1120 size = zone->uz_size; 1121 break; 1122 case SLAB_COOKIE_MALLOC_LARGE: 1123 size = malloc_large_size(slab); 1124 break; 1125 default: 1126 __assert_unreachable(); 1127 size = 0; 1128 break; 1129 } 1130 #endif 1131 1132 /* 1133 * Unmark the redzone to avoid reports from consumers who are 1134 * (presumably) about to use the full allocation size. 1135 */ 1136 kasan_mark(addr, size, size, 0); 1137 1138 return (size); 1139 } 1140 1141 CTASSERT(VM_KMEM_SIZE_SCALE >= 1); 1142 1143 /* 1144 * Initialize the kernel memory (kmem) arena. 1145 */ 1146 void 1147 kmeminit(void) 1148 { 1149 u_long mem_size; 1150 u_long tmp; 1151 1152 #ifdef VM_KMEM_SIZE 1153 if (vm_kmem_size == 0) 1154 vm_kmem_size = VM_KMEM_SIZE; 1155 #endif 1156 #ifdef VM_KMEM_SIZE_MIN 1157 if (vm_kmem_size_min == 0) 1158 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 1159 #endif 1160 #ifdef VM_KMEM_SIZE_MAX 1161 if (vm_kmem_size_max == 0) 1162 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 1163 #endif 1164 /* 1165 * Calculate the amount of kernel virtual address (KVA) space that is 1166 * preallocated to the kmem arena. In order to support a wide range 1167 * of machines, it is a function of the physical memory size, 1168 * specifically, 1169 * 1170 * min(max(physical memory size / VM_KMEM_SIZE_SCALE, 1171 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) 1172 * 1173 * Every architecture must define an integral value for 1174 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN 1175 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and 1176 * ceiling on this preallocation, are optional. Typically, 1177 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on 1178 * a given architecture. 1179 */ 1180 mem_size = vm_cnt.v_page_count; 1181 if (mem_size <= 32768) /* delphij XXX 128MB */ 1182 kmem_zmax = PAGE_SIZE; 1183 1184 if (vm_kmem_size_scale < 1) 1185 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 1186 1187 /* 1188 * Check if we should use defaults for the "vm_kmem_size" 1189 * variable: 1190 */ 1191 if (vm_kmem_size == 0) { 1192 vm_kmem_size = mem_size / vm_kmem_size_scale; 1193 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ? 1194 vm_kmem_size_max : vm_kmem_size * PAGE_SIZE; 1195 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) 1196 vm_kmem_size = vm_kmem_size_min; 1197 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 1198 vm_kmem_size = vm_kmem_size_max; 1199 } 1200 if (vm_kmem_size == 0) 1201 panic("Tune VM_KMEM_SIZE_* for the platform"); 1202 1203 /* 1204 * The amount of KVA space that is preallocated to the 1205 * kmem arena can be set statically at compile-time or manually 1206 * through the kernel environment. However, it is still limited to 1207 * twice the physical memory size, which has been sufficient to handle 1208 * the most severe cases of external fragmentation in the kmem arena. 1209 */ 1210 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 1211 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 1212 1213 vm_kmem_size = round_page(vm_kmem_size); 1214 1215 /* 1216 * With KASAN or KMSAN enabled, dynamically allocated kernel memory is 1217 * shadowed. Account for this when setting the UMA limit. 1218 */ 1219 #if defined(KASAN) 1220 vm_kmem_size = (vm_kmem_size * KASAN_SHADOW_SCALE) / 1221 (KASAN_SHADOW_SCALE + 1); 1222 #elif defined(KMSAN) 1223 vm_kmem_size /= 3; 1224 #endif 1225 1226 #ifdef DEBUG_MEMGUARD 1227 tmp = memguard_fudge(vm_kmem_size, kernel_map); 1228 #else 1229 tmp = vm_kmem_size; 1230 #endif 1231 uma_set_limit(tmp); 1232 1233 #ifdef DEBUG_MEMGUARD 1234 /* 1235 * Initialize MemGuard if support compiled in. MemGuard is a 1236 * replacement allocator used for detecting tamper-after-free 1237 * scenarios as they occur. It is only used for debugging. 1238 */ 1239 memguard_init(kernel_arena); 1240 #endif 1241 } 1242 1243 /* 1244 * Initialize the kernel memory allocator 1245 */ 1246 /* ARGSUSED*/ 1247 static void 1248 mallocinit(void *dummy) 1249 { 1250 int i; 1251 uint8_t indx; 1252 1253 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 1254 1255 kmeminit(); 1256 1257 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) 1258 kmem_zmax = KMEM_ZMAX; 1259 1260 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 1261 int size = kmemzones[indx].kz_size; 1262 const char *name = kmemzones[indx].kz_name; 1263 size_t align; 1264 int subzone; 1265 1266 align = UMA_ALIGN_PTR; 1267 if (powerof2(size) && size > sizeof(void *)) 1268 align = MIN(size, PAGE_SIZE) - 1; 1269 for (subzone = 0; subzone < numzones; subzone++) { 1270 kmemzones[indx].kz_zone[subzone] = 1271 uma_zcreate(name, size, 1272 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 1273 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 1274 #else 1275 NULL, NULL, NULL, NULL, 1276 #endif 1277 align, UMA_ZONE_MALLOC); 1278 } 1279 for (;i <= size; i+= KMEM_ZBASE) 1280 kmemsize[i >> KMEM_ZSHIFT] = indx; 1281 } 1282 } 1283 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); 1284 1285 void 1286 malloc_init(void *data) 1287 { 1288 struct malloc_type_internal *mtip; 1289 struct malloc_type *mtp; 1290 1291 KASSERT(vm_cnt.v_page_count != 0, 1292 ("malloc_init() called before vm_mem_init()")); 1293 1294 mtp = data; 1295 if (mtp->ks_version != M_VERSION) 1296 panic("malloc_init: type %s with unsupported version %lu", 1297 mtp->ks_shortdesc, mtp->ks_version); 1298 1299 mtip = &mtp->ks_mti; 1300 mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO); 1301 mtp_set_subzone(mtp); 1302 1303 mtx_lock(&malloc_mtx); 1304 mtp->ks_next = kmemstatistics; 1305 kmemstatistics = mtp; 1306 kmemcount++; 1307 mtx_unlock(&malloc_mtx); 1308 } 1309 1310 void 1311 malloc_uninit(void *data) 1312 { 1313 struct malloc_type_internal *mtip; 1314 struct malloc_type_stats *mtsp; 1315 struct malloc_type *mtp, *temp; 1316 long temp_allocs, temp_bytes; 1317 int i; 1318 1319 mtp = data; 1320 KASSERT(mtp->ks_version == M_VERSION, 1321 ("malloc_uninit: bad malloc type version")); 1322 1323 mtx_lock(&malloc_mtx); 1324 mtip = &mtp->ks_mti; 1325 if (mtp != kmemstatistics) { 1326 for (temp = kmemstatistics; temp != NULL; 1327 temp = temp->ks_next) { 1328 if (temp->ks_next == mtp) { 1329 temp->ks_next = mtp->ks_next; 1330 break; 1331 } 1332 } 1333 KASSERT(temp, 1334 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 1335 } else 1336 kmemstatistics = mtp->ks_next; 1337 kmemcount--; 1338 mtx_unlock(&malloc_mtx); 1339 1340 /* 1341 * Look for memory leaks. 1342 */ 1343 temp_allocs = temp_bytes = 0; 1344 for (i = 0; i <= mp_maxid; i++) { 1345 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1346 temp_allocs += mtsp->mts_numallocs; 1347 temp_allocs -= mtsp->mts_numfrees; 1348 temp_bytes += mtsp->mts_memalloced; 1349 temp_bytes -= mtsp->mts_memfreed; 1350 } 1351 if (temp_allocs > 0 || temp_bytes > 0) { 1352 printf("Warning: memory type %s leaked memory on destroy " 1353 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 1354 temp_allocs, temp_bytes); 1355 } 1356 1357 uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats); 1358 } 1359 1360 struct malloc_type * 1361 malloc_desc2type(const char *desc) 1362 { 1363 struct malloc_type *mtp; 1364 1365 mtx_assert(&malloc_mtx, MA_OWNED); 1366 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1367 if (strcmp(mtp->ks_shortdesc, desc) == 0) 1368 return (mtp); 1369 } 1370 return (NULL); 1371 } 1372 1373 static int 1374 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 1375 { 1376 struct malloc_type_stream_header mtsh; 1377 struct malloc_type_internal *mtip; 1378 struct malloc_type_stats *mtsp, zeromts; 1379 struct malloc_type_header mth; 1380 struct malloc_type *mtp; 1381 int error, i; 1382 struct sbuf sbuf; 1383 1384 error = sysctl_wire_old_buffer(req, 0); 1385 if (error != 0) 1386 return (error); 1387 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1388 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 1389 mtx_lock(&malloc_mtx); 1390 1391 bzero(&zeromts, sizeof(zeromts)); 1392 1393 /* 1394 * Insert stream header. 1395 */ 1396 bzero(&mtsh, sizeof(mtsh)); 1397 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 1398 mtsh.mtsh_maxcpus = MAXCPU; 1399 mtsh.mtsh_count = kmemcount; 1400 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 1401 1402 /* 1403 * Insert alternating sequence of type headers and type statistics. 1404 */ 1405 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1406 mtip = &mtp->ks_mti; 1407 1408 /* 1409 * Insert type header. 1410 */ 1411 bzero(&mth, sizeof(mth)); 1412 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 1413 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 1414 1415 /* 1416 * Insert type statistics for each CPU. 1417 */ 1418 for (i = 0; i <= mp_maxid; i++) { 1419 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1420 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); 1421 } 1422 /* 1423 * Fill in the missing CPUs. 1424 */ 1425 for (; i < MAXCPU; i++) { 1426 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); 1427 } 1428 } 1429 mtx_unlock(&malloc_mtx); 1430 error = sbuf_finish(&sbuf); 1431 sbuf_delete(&sbuf); 1432 return (error); 1433 } 1434 1435 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, 1436 CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0, 1437 sysctl_kern_malloc_stats, "s,malloc_type_ustats", 1438 "Return malloc types"); 1439 1440 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 1441 "Count of kernel malloc types"); 1442 1443 void 1444 malloc_type_list(malloc_type_list_func_t *func, void *arg) 1445 { 1446 struct malloc_type *mtp, **bufmtp; 1447 int count, i; 1448 size_t buflen; 1449 1450 mtx_lock(&malloc_mtx); 1451 restart: 1452 mtx_assert(&malloc_mtx, MA_OWNED); 1453 count = kmemcount; 1454 mtx_unlock(&malloc_mtx); 1455 1456 buflen = sizeof(struct malloc_type *) * count; 1457 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 1458 1459 mtx_lock(&malloc_mtx); 1460 1461 if (count < kmemcount) { 1462 free(bufmtp, M_TEMP); 1463 goto restart; 1464 } 1465 1466 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 1467 bufmtp[i] = mtp; 1468 1469 mtx_unlock(&malloc_mtx); 1470 1471 for (i = 0; i < count; i++) 1472 (func)(bufmtp[i], arg); 1473 1474 free(bufmtp, M_TEMP); 1475 } 1476 1477 #ifdef DDB 1478 static int64_t 1479 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs, 1480 uint64_t *inuse) 1481 { 1482 const struct malloc_type_stats *mtsp; 1483 uint64_t frees, alloced, freed; 1484 int i; 1485 1486 *allocs = 0; 1487 frees = 0; 1488 alloced = 0; 1489 freed = 0; 1490 for (i = 0; i <= mp_maxid; i++) { 1491 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1492 1493 *allocs += mtsp->mts_numallocs; 1494 frees += mtsp->mts_numfrees; 1495 alloced += mtsp->mts_memalloced; 1496 freed += mtsp->mts_memfreed; 1497 } 1498 *inuse = *allocs - frees; 1499 return (alloced - freed); 1500 } 1501 1502 DB_SHOW_COMMAND_FLAGS(malloc, db_show_malloc, DB_CMD_MEMSAFE) 1503 { 1504 const char *fmt_hdr, *fmt_entry; 1505 struct malloc_type *mtp; 1506 uint64_t allocs, inuse; 1507 int64_t size; 1508 /* variables for sorting */ 1509 struct malloc_type *last_mtype, *cur_mtype; 1510 int64_t cur_size, last_size; 1511 int ties; 1512 1513 if (modif[0] == 'i') { 1514 fmt_hdr = "%s,%s,%s,%s\n"; 1515 fmt_entry = "\"%s\",%ju,%jdK,%ju\n"; 1516 } else { 1517 fmt_hdr = "%18s %12s %12s %12s\n"; 1518 fmt_entry = "%18s %12ju %12jdK %12ju\n"; 1519 } 1520 1521 db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests"); 1522 1523 /* Select sort, largest size first. */ 1524 last_mtype = NULL; 1525 last_size = INT64_MAX; 1526 for (;;) { 1527 cur_mtype = NULL; 1528 cur_size = -1; 1529 ties = 0; 1530 1531 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1532 /* 1533 * In the case of size ties, print out mtypes 1534 * in the order they are encountered. That is, 1535 * when we encounter the most recently output 1536 * mtype, we have already printed all preceding 1537 * ties, and we must print all following ties. 1538 */ 1539 if (mtp == last_mtype) { 1540 ties = 1; 1541 continue; 1542 } 1543 size = get_malloc_stats(&mtp->ks_mti, &allocs, 1544 &inuse); 1545 if (size > cur_size && size < last_size + ties) { 1546 cur_size = size; 1547 cur_mtype = mtp; 1548 } 1549 } 1550 if (cur_mtype == NULL) 1551 break; 1552 1553 size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse); 1554 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse, 1555 howmany(size, 1024), allocs); 1556 1557 if (db_pager_quit) 1558 break; 1559 1560 last_mtype = cur_mtype; 1561 last_size = cur_size; 1562 } 1563 } 1564 1565 #if MALLOC_DEBUG_MAXZONES > 1 1566 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1567 { 1568 struct malloc_type_internal *mtip; 1569 struct malloc_type *mtp; 1570 u_int subzone; 1571 1572 if (!have_addr) { 1573 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1574 return; 1575 } 1576 mtp = (void *)addr; 1577 if (mtp->ks_version != M_VERSION) { 1578 db_printf("Version %lx does not match expected %x\n", 1579 mtp->ks_version, M_VERSION); 1580 return; 1581 } 1582 1583 mtip = &mtp->ks_mti; 1584 subzone = mtip->mti_zone; 1585 1586 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1587 mtip = &mtp->ks_mti; 1588 if (mtip->mti_zone != subzone) 1589 continue; 1590 db_printf("%s\n", mtp->ks_shortdesc); 1591 if (db_pager_quit) 1592 break; 1593 } 1594 } 1595 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1596 #endif /* DDB */ 1597