xref: /freebsd/sys/kern/kern_malloc.c (revision afe61c15161c324a7af299a9b8457aba5afc92db)
1 /*
2  * Copyright (c) 1987, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/map.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 
43 #include <vm/vm.h>
44 #include <vm/vm_kern.h>
45 
46 struct kmembuckets bucket[MINBUCKET + 16];
47 struct kmemstats kmemstats[M_LAST];
48 struct kmemusage *kmemusage;
49 char *kmembase, *kmemlimit;
50 char *memname[] = INITKMEMNAMES;
51 
52 #ifdef DIAGNOSTIC
53 /*
54  * This structure provides a set of masks to catch unaligned frees.
55  */
56 long addrmask[] = { 0,
57 	0x00000001, 0x00000003, 0x00000007, 0x0000000f,
58 	0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
59 	0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
60 	0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
61 };
62 
63 /*
64  * The WEIRD_ADDR is used as known text to copy into free objects so
65  * that modifications after frees can be detected.
66  */
67 #define WEIRD_ADDR	0xdeadbeef
68 #define MAX_COPY	32
69 
70 /*
71  * Normally the first word of the structure is used to hold the list
72  * pointer for free objects. However, when running with diagnostics,
73  * we use the third and fourth fields, so as to catch modifications
74  * in the most commonly trashed first two words.
75  */
76 struct freelist {
77 	long	spare0;
78 	short	type;
79 	long	spare1;
80 	caddr_t	next;
81 };
82 #else /* !DIAGNOSTIC */
83 struct freelist {
84 	caddr_t	next;
85 };
86 #endif /* DIAGNOSTIC */
87 
88 /*
89  * Allocate a block of memory
90  */
91 void *
92 malloc(size, type, flags)
93 	unsigned long size;
94 	int type, flags;
95 {
96 	register struct kmembuckets *kbp;
97 	register struct kmemusage *kup;
98 	register struct freelist *freep;
99 	long indx, npg, allocsize;
100 	int s;
101 	caddr_t va, cp, savedlist;
102 #ifdef DIAGNOSTIC
103 	long *end, *lp;
104 	int copysize;
105 	char *savedtype;
106 #endif
107 #ifdef KMEMSTATS
108 	register struct kmemstats *ksp = &kmemstats[type];
109 
110 	if (((unsigned long)type) > M_LAST)
111 		panic("malloc - bogus type");
112 #endif
113 	indx = BUCKETINDX(size);
114 	kbp = &bucket[indx];
115 	s = splimp();
116 #ifdef KMEMSTATS
117 	while (ksp->ks_memuse >= ksp->ks_limit) {
118 		if (flags & M_NOWAIT) {
119 			splx(s);
120 			return ((void *) NULL);
121 		}
122 		if (ksp->ks_limblocks < 65535)
123 			ksp->ks_limblocks++;
124 		tsleep((caddr_t)ksp, PSWP+2, memname[type], 0);
125 	}
126 	ksp->ks_size |= 1 << indx;
127 #endif
128 #ifdef DIAGNOSTIC
129 	copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
130 #endif
131 	if (kbp->kb_next == NULL) {
132 		kbp->kb_last = NULL;
133 		if (size > MAXALLOCSAVE)
134 			allocsize = roundup(size, CLBYTES);
135 		else
136 			allocsize = 1 << indx;
137 		npg = clrnd(btoc(allocsize));
138 		va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg),
139 					   !(flags & M_NOWAIT));
140 		if (va == NULL) {
141 			splx(s);
142 			return ((void *) NULL);
143 		}
144 #ifdef KMEMSTATS
145 		kbp->kb_total += kbp->kb_elmpercl;
146 #endif
147 		kup = btokup(va);
148 		kup->ku_indx = indx;
149 		if (allocsize > MAXALLOCSAVE) {
150 			if (npg > 65535)
151 				panic("malloc: allocation too large");
152 			kup->ku_pagecnt = npg;
153 #ifdef KMEMSTATS
154 			ksp->ks_memuse += allocsize;
155 #endif
156 			goto out;
157 		}
158 #ifdef KMEMSTATS
159 		kup->ku_freecnt = kbp->kb_elmpercl;
160 		kbp->kb_totalfree += kbp->kb_elmpercl;
161 #endif
162 		/*
163 		 * Just in case we blocked while allocating memory,
164 		 * and someone else also allocated memory for this
165 		 * bucket, don't assume the list is still empty.
166 		 */
167 		savedlist = kbp->kb_next;
168 		kbp->kb_next = cp = va + (npg * NBPG) - allocsize;
169 		for (;;) {
170 			freep = (struct freelist *)cp;
171 #ifdef DIAGNOSTIC
172 			/*
173 			 * Copy in known text to detect modification
174 			 * after freeing.
175 			 */
176 			end = (long *)&cp[copysize];
177 			for (lp = (long *)cp; lp < end; lp++)
178 				*lp = WEIRD_ADDR;
179 			freep->type = M_FREE;
180 #endif /* DIAGNOSTIC */
181 			if (cp <= va)
182 				break;
183 			cp -= allocsize;
184 			freep->next = cp;
185 		}
186 		freep->next = savedlist;
187 		if (kbp->kb_last == NULL)
188 			kbp->kb_last = (caddr_t)freep;
189 	}
190 	va = kbp->kb_next;
191 	kbp->kb_next = ((struct freelist *)va)->next;
192 #ifdef DIAGNOSTIC
193 	freep = (struct freelist *)va;
194 	savedtype = (unsigned)freep->type < M_LAST ?
195 		memname[freep->type] : "???";
196 	if (kbp->kb_next &&
197 	    !kernacc(kbp->kb_next, sizeof(struct freelist), 0)) {
198 		printf("%s of object 0x%x size %d %s %s (invalid addr 0x%x)\n",
199 			"Data modified on freelist: word 2.5", va, size,
200 			"previous type", savedtype, kbp->kb_next);
201 		kbp->kb_next = NULL;
202 	}
203 #if BYTE_ORDER == BIG_ENDIAN
204 	freep->type = WEIRD_ADDR >> 16;
205 #endif
206 #if BYTE_ORDER == LITTLE_ENDIAN
207 	freep->type = (short)WEIRD_ADDR;
208 #endif
209 	if (((long)(&freep->next)) & 0x2)
210 		freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
211 	else
212 		freep->next = (caddr_t)WEIRD_ADDR;
213 	end = (long *)&va[copysize];
214 	for (lp = (long *)va; lp < end; lp++) {
215 		if (*lp == WEIRD_ADDR)
216 			continue;
217 		printf("%s %d of object 0x%x size %d %s %s (0x%x != 0x%x)\n",
218 			"Data modified on freelist: word", lp - (long *)va,
219 			va, size, "previous type", savedtype, *lp, WEIRD_ADDR);
220 		break;
221 	}
222 	freep->spare0 = 0;
223 #endif /* DIAGNOSTIC */
224 #ifdef KMEMSTATS
225 	kup = btokup(va);
226 	if (kup->ku_indx != indx)
227 		panic("malloc: wrong bucket");
228 	if (kup->ku_freecnt == 0)
229 		panic("malloc: lost data");
230 	kup->ku_freecnt--;
231 	kbp->kb_totalfree--;
232 	ksp->ks_memuse += 1 << indx;
233 out:
234 	kbp->kb_calls++;
235 	ksp->ks_inuse++;
236 	ksp->ks_calls++;
237 	if (ksp->ks_memuse > ksp->ks_maxused)
238 		ksp->ks_maxused = ksp->ks_memuse;
239 #else
240 out:
241 #endif
242 	splx(s);
243 	return ((void *) va);
244 }
245 
246 /*
247  * Free a block of memory allocated by malloc.
248  */
249 void
250 free(addr, type)
251 	void *addr;
252 	int type;
253 {
254 	register struct kmembuckets *kbp;
255 	register struct kmemusage *kup;
256 	register struct freelist *freep;
257 	long size;
258 	int s;
259 #ifdef DIAGNOSTIC
260 	caddr_t cp;
261 	long *end, *lp, alloc, copysize;
262 #endif
263 #ifdef KMEMSTATS
264 	register struct kmemstats *ksp = &kmemstats[type];
265 #endif
266 
267 	kup = btokup(addr);
268 	size = 1 << kup->ku_indx;
269 	kbp = &bucket[kup->ku_indx];
270 	s = splimp();
271 #ifdef DIAGNOSTIC
272 	/*
273 	 * Check for returns of data that do not point to the
274 	 * beginning of the allocation.
275 	 */
276 	if (size > NBPG * CLSIZE)
277 		alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)];
278 	else
279 		alloc = addrmask[kup->ku_indx];
280 	if (((u_long)addr & alloc) != 0)
281 		panic("free: unaligned addr 0x%x, size %d, type %s, mask %d\n",
282 			addr, size, memname[type], alloc);
283 #endif /* DIAGNOSTIC */
284 	if (size > MAXALLOCSAVE) {
285 		kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
286 #ifdef KMEMSTATS
287 		size = kup->ku_pagecnt << PGSHIFT;
288 		ksp->ks_memuse -= size;
289 		kup->ku_indx = 0;
290 		kup->ku_pagecnt = 0;
291 		if (ksp->ks_memuse + size >= ksp->ks_limit &&
292 		    ksp->ks_memuse < ksp->ks_limit)
293 			wakeup((caddr_t)ksp);
294 		ksp->ks_inuse--;
295 		kbp->kb_total -= 1;
296 #endif
297 		splx(s);
298 		return;
299 	}
300 	freep = (struct freelist *)addr;
301 #ifdef DIAGNOSTIC
302 	/*
303 	 * Check for multiple frees. Use a quick check to see if
304 	 * it looks free before laboriously searching the freelist.
305 	 */
306 	if (freep->spare0 == WEIRD_ADDR) {
307 		for (cp = kbp->kb_next; cp; cp = *(caddr_t *)cp) {
308 			if (addr != cp)
309 				continue;
310 			printf("multiply freed item 0x%x\n", addr);
311 			panic("free: duplicated free");
312 		}
313 	}
314 	/*
315 	 * Copy in known text to detect modification after freeing
316 	 * and to make it look free. Also, save the type being freed
317 	 * so we can list likely culprit if modification is detected
318 	 * when the object is reallocated.
319 	 */
320 	copysize = size < MAX_COPY ? size : MAX_COPY;
321 	end = (long *)&((caddr_t)addr)[copysize];
322 	for (lp = (long *)addr; lp < end; lp++)
323 		*lp = WEIRD_ADDR;
324 	freep->type = type;
325 #endif /* DIAGNOSTIC */
326 #ifdef KMEMSTATS
327 	kup->ku_freecnt++;
328 	if (kup->ku_freecnt >= kbp->kb_elmpercl)
329 		if (kup->ku_freecnt > kbp->kb_elmpercl)
330 			panic("free: multiple frees");
331 		else if (kbp->kb_totalfree > kbp->kb_highwat)
332 			kbp->kb_couldfree++;
333 	kbp->kb_totalfree++;
334 	ksp->ks_memuse -= size;
335 	if (ksp->ks_memuse + size >= ksp->ks_limit &&
336 	    ksp->ks_memuse < ksp->ks_limit)
337 		wakeup((caddr_t)ksp);
338 	ksp->ks_inuse--;
339 #endif
340 	if (kbp->kb_next == NULL)
341 		kbp->kb_next = addr;
342 	else
343 		((struct freelist *)kbp->kb_last)->next = addr;
344 	freep->next = NULL;
345 	kbp->kb_last = addr;
346 	splx(s);
347 }
348 
349 /*
350  * Initialize the kernel memory allocator
351  */
352 void
353 kmeminit()
354 {
355 	register long indx;
356 	int npg;
357 
358 #if	((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
359 		ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
360 #endif
361 #if	(MAXALLOCSAVE > MINALLOCSIZE * 32768)
362 		ERROR!_kmeminit:_MAXALLOCSAVE_too_big
363 #endif
364 #if	(MAXALLOCSAVE < CLBYTES)
365 		ERROR!_kmeminit:_MAXALLOCSAVE_too_small
366 #endif
367 	npg = VM_KMEM_SIZE/ NBPG;
368 	kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
369 		(vm_size_t)(npg * sizeof(struct kmemusage)));
370 	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
371 		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * NBPG), FALSE);
372 #ifdef KMEMSTATS
373 	for (indx = 0; indx < MINBUCKET + 16; indx++) {
374 		if (1 << indx >= CLBYTES)
375 			bucket[indx].kb_elmpercl = 1;
376 		else
377 			bucket[indx].kb_elmpercl = CLBYTES / (1 << indx);
378 		bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
379 	}
380 	for (indx = 0; indx < M_LAST; indx++)
381 		kmemstats[indx].ks_limit = npg * NBPG * 6 / 10;
382 #endif
383 }
384