xref: /freebsd/sys/kern/kern_malloc.c (revision ac2875fa16f0a3747b0e3f249814c4297605be61)
1 /*-
2  * Copyright (c) 1987, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2005-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
36  * based on memory types.  Back end is implemented using the UMA(9) zone
37  * allocator.  A set of fixed-size buckets are used for smaller allocations,
38  * and a special UMA allocation interface is used for larger allocations.
39  * Callers declare memory types, and statistics are maintained independently
40  * for each memory type.  Statistics are maintained per-CPU for performance
41  * reasons.  See malloc(9) and comments in malloc.h for a detailed
42  * description.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_ddb.h"
49 #include "opt_vm.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/kdb.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/vmmeter.h>
59 #include <sys/proc.h>
60 #include <sys/sbuf.h>
61 #include <sys/sysctl.h>
62 #include <sys/taskqueue.h>
63 #include <sys/time.h>
64 #include <sys/vmem.h>
65 
66 #include <vm/vm.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_pageout.h>
69 #include <vm/vm_param.h>
70 #include <vm/vm_kern.h>
71 #include <vm/vm_extern.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_page.h>
74 #include <vm/uma.h>
75 #include <vm/uma_int.h>
76 #include <vm/uma_dbg.h>
77 
78 #ifdef DEBUG_MEMGUARD
79 #include <vm/memguard.h>
80 #endif
81 #ifdef DEBUG_REDZONE
82 #include <vm/redzone.h>
83 #endif
84 
85 #if defined(INVARIANTS) && defined(__i386__)
86 #include <machine/cpu.h>
87 #endif
88 
89 #include <ddb/ddb.h>
90 
91 #ifdef KDTRACE_HOOKS
92 #include <sys/dtrace_bsd.h>
93 
94 dtrace_malloc_probe_func_t	dtrace_malloc_probe;
95 #endif
96 
97 /*
98  * When realloc() is called, if the new size is sufficiently smaller than
99  * the old size, realloc() will allocate a new, smaller block to avoid
100  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
101  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
102  */
103 #ifndef REALLOC_FRACTION
104 #define	REALLOC_FRACTION	1	/* new block if <= half the size */
105 #endif
106 
107 /*
108  * Centrally define some common malloc types.
109  */
110 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
111 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
112 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
113 
114 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
115 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
116 
117 static struct malloc_type *kmemstatistics;
118 static int kmemcount;
119 
120 #define KMEM_ZSHIFT	4
121 #define KMEM_ZBASE	16
122 #define KMEM_ZMASK	(KMEM_ZBASE - 1)
123 
124 #define KMEM_ZMAX	65536
125 #define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
126 static uint8_t kmemsize[KMEM_ZSIZE + 1];
127 
128 #ifndef MALLOC_DEBUG_MAXZONES
129 #define	MALLOC_DEBUG_MAXZONES	1
130 #endif
131 static int numzones = MALLOC_DEBUG_MAXZONES;
132 
133 /*
134  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
135  * of various sizes.
136  *
137  * XXX: The comment here used to read "These won't be powers of two for
138  * long."  It's possible that a significant amount of wasted memory could be
139  * recovered by tuning the sizes of these buckets.
140  */
141 struct {
142 	int kz_size;
143 	char *kz_name;
144 	uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
145 } kmemzones[] = {
146 	{16, "16", },
147 	{32, "32", },
148 	{64, "64", },
149 	{128, "128", },
150 	{256, "256", },
151 	{512, "512", },
152 	{1024, "1024", },
153 	{2048, "2048", },
154 	{4096, "4096", },
155 	{8192, "8192", },
156 	{16384, "16384", },
157 	{32768, "32768", },
158 	{65536, "65536", },
159 	{0, NULL},
160 };
161 
162 /*
163  * Zone to allocate malloc type descriptions from.  For ABI reasons, memory
164  * types are described by a data structure passed by the declaring code, but
165  * the malloc(9) implementation has its own data structure describing the
166  * type and statistics.  This permits the malloc(9)-internal data structures
167  * to be modified without breaking binary-compiled kernel modules that
168  * declare malloc types.
169  */
170 static uma_zone_t mt_zone;
171 
172 u_long vm_kmem_size;
173 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
174     "Size of kernel memory");
175 
176 static u_long kmem_zmax = KMEM_ZMAX;
177 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
178     "Maximum allocation size that malloc(9) would use UMA as backend");
179 
180 static u_long vm_kmem_size_min;
181 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
182     "Minimum size of kernel memory");
183 
184 static u_long vm_kmem_size_max;
185 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
186     "Maximum size of kernel memory");
187 
188 static u_int vm_kmem_size_scale;
189 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
190     "Scale factor for kernel memory size");
191 
192 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
193 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
194     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
195     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
196 
197 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
198 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
199     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
200     sysctl_kmem_map_free, "LU", "Free space in kmem");
201 
202 /*
203  * The malloc_mtx protects the kmemstatistics linked list.
204  */
205 struct mtx malloc_mtx;
206 
207 #ifdef MALLOC_PROFILE
208 uint64_t krequests[KMEM_ZSIZE + 1];
209 
210 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
211 #endif
212 
213 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
214 
215 /*
216  * time_uptime of the last malloc(9) failure (induced or real).
217  */
218 static time_t t_malloc_fail;
219 
220 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
221 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
222     "Kernel malloc debugging options");
223 #endif
224 
225 /*
226  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
227  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
228  */
229 #ifdef MALLOC_MAKE_FAILURES
230 static int malloc_failure_rate;
231 static int malloc_nowait_count;
232 static int malloc_failure_count;
233 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
234     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
235 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
236     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
237 #endif
238 
239 static int
240 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
241 {
242 	u_long size;
243 
244 	size = vmem_size(kmem_arena, VMEM_ALLOC);
245 	return (sysctl_handle_long(oidp, &size, 0, req));
246 }
247 
248 static int
249 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
250 {
251 	u_long size;
252 
253 	size = vmem_size(kmem_arena, VMEM_FREE);
254 	return (sysctl_handle_long(oidp, &size, 0, req));
255 }
256 
257 /*
258  * malloc(9) uma zone separation -- sub-page buffer overruns in one
259  * malloc type will affect only a subset of other malloc types.
260  */
261 #if MALLOC_DEBUG_MAXZONES > 1
262 static void
263 tunable_set_numzones(void)
264 {
265 
266 	TUNABLE_INT_FETCH("debug.malloc.numzones",
267 	    &numzones);
268 
269 	/* Sanity check the number of malloc uma zones. */
270 	if (numzones <= 0)
271 		numzones = 1;
272 	if (numzones > MALLOC_DEBUG_MAXZONES)
273 		numzones = MALLOC_DEBUG_MAXZONES;
274 }
275 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
276 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
277     &numzones, 0, "Number of malloc uma subzones");
278 
279 /*
280  * Any number that changes regularly is an okay choice for the
281  * offset.  Build numbers are pretty good of you have them.
282  */
283 static u_int zone_offset = __FreeBSD_version;
284 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
285 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
286     &zone_offset, 0, "Separate malloc types by examining the "
287     "Nth character in the malloc type short description.");
288 
289 static u_int
290 mtp_get_subzone(const char *desc)
291 {
292 	size_t len;
293 	u_int val;
294 
295 	if (desc == NULL || (len = strlen(desc)) == 0)
296 		return (0);
297 	val = desc[zone_offset % len];
298 	return (val % numzones);
299 }
300 #elif MALLOC_DEBUG_MAXZONES == 0
301 #error "MALLOC_DEBUG_MAXZONES must be positive."
302 #else
303 static inline u_int
304 mtp_get_subzone(const char *desc)
305 {
306 
307 	return (0);
308 }
309 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
310 
311 int
312 malloc_last_fail(void)
313 {
314 
315 	return (time_uptime - t_malloc_fail);
316 }
317 
318 /*
319  * An allocation has succeeded -- update malloc type statistics for the
320  * amount of bucket size.  Occurs within a critical section so that the
321  * thread isn't preempted and doesn't migrate while updating per-PCU
322  * statistics.
323  */
324 static void
325 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
326     int zindx)
327 {
328 	struct malloc_type_internal *mtip;
329 	struct malloc_type_stats *mtsp;
330 
331 	critical_enter();
332 	mtip = mtp->ks_handle;
333 	mtsp = &mtip->mti_stats[curcpu];
334 	if (size > 0) {
335 		mtsp->mts_memalloced += size;
336 		mtsp->mts_numallocs++;
337 	}
338 	if (zindx != -1)
339 		mtsp->mts_size |= 1 << zindx;
340 
341 #ifdef KDTRACE_HOOKS
342 	if (dtrace_malloc_probe != NULL) {
343 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
344 		if (probe_id != 0)
345 			(dtrace_malloc_probe)(probe_id,
346 			    (uintptr_t) mtp, (uintptr_t) mtip,
347 			    (uintptr_t) mtsp, size, zindx);
348 	}
349 #endif
350 
351 	critical_exit();
352 }
353 
354 void
355 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
356 {
357 
358 	if (size > 0)
359 		malloc_type_zone_allocated(mtp, size, -1);
360 }
361 
362 /*
363  * A free operation has occurred -- update malloc type statistics for the
364  * amount of the bucket size.  Occurs within a critical section so that the
365  * thread isn't preempted and doesn't migrate while updating per-CPU
366  * statistics.
367  */
368 void
369 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
370 {
371 	struct malloc_type_internal *mtip;
372 	struct malloc_type_stats *mtsp;
373 
374 	critical_enter();
375 	mtip = mtp->ks_handle;
376 	mtsp = &mtip->mti_stats[curcpu];
377 	mtsp->mts_memfreed += size;
378 	mtsp->mts_numfrees++;
379 
380 #ifdef KDTRACE_HOOKS
381 	if (dtrace_malloc_probe != NULL) {
382 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
383 		if (probe_id != 0)
384 			(dtrace_malloc_probe)(probe_id,
385 			    (uintptr_t) mtp, (uintptr_t) mtip,
386 			    (uintptr_t) mtsp, size, 0);
387 	}
388 #endif
389 
390 	critical_exit();
391 }
392 
393 /*
394  *	contigmalloc:
395  *
396  *	Allocate a block of physically contiguous memory.
397  *
398  *	If M_NOWAIT is set, this routine will not block and return NULL if
399  *	the allocation fails.
400  */
401 void *
402 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
403     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
404     vm_paddr_t boundary)
405 {
406 	void *ret;
407 
408 	ret = (void *)kmem_alloc_contig(kernel_arena, size, flags, low, high,
409 	    alignment, boundary, VM_MEMATTR_DEFAULT);
410 	if (ret != NULL)
411 		malloc_type_allocated(type, round_page(size));
412 	return (ret);
413 }
414 
415 /*
416  *	contigfree:
417  *
418  *	Free a block of memory allocated by contigmalloc.
419  *
420  *	This routine may not block.
421  */
422 void
423 contigfree(void *addr, unsigned long size, struct malloc_type *type)
424 {
425 
426 	kmem_free(kernel_arena, (vm_offset_t)addr, size);
427 	malloc_type_freed(type, round_page(size));
428 }
429 
430 /*
431  *	malloc:
432  *
433  *	Allocate a block of memory.
434  *
435  *	If M_NOWAIT is set, this routine will not block and return NULL if
436  *	the allocation fails.
437  */
438 void *
439 malloc(unsigned long size, struct malloc_type *mtp, int flags)
440 {
441 	int indx;
442 	struct malloc_type_internal *mtip;
443 	caddr_t va;
444 	uma_zone_t zone;
445 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
446 	unsigned long osize = size;
447 #endif
448 
449 #ifdef INVARIANTS
450 	KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
451 	/*
452 	 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
453 	 */
454 	indx = flags & (M_WAITOK | M_NOWAIT);
455 	if (indx != M_NOWAIT && indx != M_WAITOK) {
456 		static	struct timeval lasterr;
457 		static	int curerr, once;
458 		if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
459 			printf("Bad malloc flags: %x\n", indx);
460 			kdb_backtrace();
461 			flags |= M_WAITOK;
462 			once++;
463 		}
464 	}
465 #endif
466 #ifdef MALLOC_MAKE_FAILURES
467 	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
468 		atomic_add_int(&malloc_nowait_count, 1);
469 		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
470 			atomic_add_int(&malloc_failure_count, 1);
471 			t_malloc_fail = time_uptime;
472 			return (NULL);
473 		}
474 	}
475 #endif
476 	if (flags & M_WAITOK)
477 		KASSERT(curthread->td_intr_nesting_level == 0,
478 		   ("malloc(M_WAITOK) in interrupt context"));
479 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
480 	    ("malloc: called with spinlock or critical section held"));
481 
482 #ifdef DEBUG_MEMGUARD
483 	if (memguard_cmp_mtp(mtp, size)) {
484 		va = memguard_alloc(size, flags);
485 		if (va != NULL)
486 			return (va);
487 		/* This is unfortunate but should not be fatal. */
488 	}
489 #endif
490 
491 #ifdef DEBUG_REDZONE
492 	size = redzone_size_ntor(size);
493 #endif
494 
495 	if (size <= kmem_zmax) {
496 		mtip = mtp->ks_handle;
497 		if (size & KMEM_ZMASK)
498 			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
499 		indx = kmemsize[size >> KMEM_ZSHIFT];
500 		KASSERT(mtip->mti_zone < numzones,
501 		    ("mti_zone %u out of range %d",
502 		    mtip->mti_zone, numzones));
503 		zone = kmemzones[indx].kz_zone[mtip->mti_zone];
504 #ifdef MALLOC_PROFILE
505 		krequests[size >> KMEM_ZSHIFT]++;
506 #endif
507 		va = uma_zalloc(zone, flags);
508 		if (va != NULL)
509 			size = zone->uz_size;
510 		malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
511 	} else {
512 		size = roundup(size, PAGE_SIZE);
513 		zone = NULL;
514 		va = uma_large_malloc(size, flags);
515 		malloc_type_allocated(mtp, va == NULL ? 0 : size);
516 	}
517 	if (flags & M_WAITOK)
518 		KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
519 	else if (va == NULL)
520 		t_malloc_fail = time_uptime;
521 #ifdef DIAGNOSTIC
522 	if (va != NULL && !(flags & M_ZERO)) {
523 		memset(va, 0x70, osize);
524 	}
525 #endif
526 #ifdef DEBUG_REDZONE
527 	if (va != NULL)
528 		va = redzone_setup(va, osize);
529 #endif
530 	return ((void *) va);
531 }
532 
533 /*
534  *	free:
535  *
536  *	Free a block of memory allocated by malloc.
537  *
538  *	This routine may not block.
539  */
540 void
541 free(void *addr, struct malloc_type *mtp)
542 {
543 	uma_slab_t slab;
544 	u_long size;
545 
546 	KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
547 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
548 	    ("free: called with spinlock or critical section held"));
549 
550 	/* free(NULL, ...) does nothing */
551 	if (addr == NULL)
552 		return;
553 
554 #ifdef DEBUG_MEMGUARD
555 	if (is_memguard_addr(addr)) {
556 		memguard_free(addr);
557 		return;
558 	}
559 #endif
560 
561 #ifdef DEBUG_REDZONE
562 	redzone_check(addr);
563 	addr = redzone_addr_ntor(addr);
564 #endif
565 
566 	slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
567 
568 	if (slab == NULL)
569 		panic("free: address %p(%p) has not been allocated.\n",
570 		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
571 
572 	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
573 #ifdef INVARIANTS
574 		struct malloc_type **mtpp = addr;
575 #endif
576 		size = slab->us_keg->uk_size;
577 #ifdef INVARIANTS
578 		/*
579 		 * Cache a pointer to the malloc_type that most recently freed
580 		 * this memory here.  This way we know who is most likely to
581 		 * have stepped on it later.
582 		 *
583 		 * This code assumes that size is a multiple of 8 bytes for
584 		 * 64 bit machines
585 		 */
586 		mtpp = (struct malloc_type **)
587 		    ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
588 		mtpp += (size - sizeof(struct malloc_type *)) /
589 		    sizeof(struct malloc_type *);
590 		*mtpp = mtp;
591 #endif
592 		uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
593 	} else {
594 		size = slab->us_size;
595 		uma_large_free(slab);
596 	}
597 	malloc_type_freed(mtp, size);
598 }
599 
600 /*
601  *	realloc: change the size of a memory block
602  */
603 void *
604 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
605 {
606 	uma_slab_t slab;
607 	unsigned long alloc;
608 	void *newaddr;
609 
610 	KASSERT(mtp->ks_magic == M_MAGIC,
611 	    ("realloc: bad malloc type magic"));
612 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
613 	    ("realloc: called with spinlock or critical section held"));
614 
615 	/* realloc(NULL, ...) is equivalent to malloc(...) */
616 	if (addr == NULL)
617 		return (malloc(size, mtp, flags));
618 
619 	/*
620 	 * XXX: Should report free of old memory and alloc of new memory to
621 	 * per-CPU stats.
622 	 */
623 
624 #ifdef DEBUG_MEMGUARD
625 	if (is_memguard_addr(addr))
626 		return (memguard_realloc(addr, size, mtp, flags));
627 #endif
628 
629 #ifdef DEBUG_REDZONE
630 	slab = NULL;
631 	alloc = redzone_get_size(addr);
632 #else
633 	slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
634 
635 	/* Sanity check */
636 	KASSERT(slab != NULL,
637 	    ("realloc: address %p out of range", (void *)addr));
638 
639 	/* Get the size of the original block */
640 	if (!(slab->us_flags & UMA_SLAB_MALLOC))
641 		alloc = slab->us_keg->uk_size;
642 	else
643 		alloc = slab->us_size;
644 
645 	/* Reuse the original block if appropriate */
646 	if (size <= alloc
647 	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
648 		return (addr);
649 #endif /* !DEBUG_REDZONE */
650 
651 	/* Allocate a new, bigger (or smaller) block */
652 	if ((newaddr = malloc(size, mtp, flags)) == NULL)
653 		return (NULL);
654 
655 	/* Copy over original contents */
656 	bcopy(addr, newaddr, min(size, alloc));
657 	free(addr, mtp);
658 	return (newaddr);
659 }
660 
661 /*
662  *	reallocf: same as realloc() but free memory on failure.
663  */
664 void *
665 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
666 {
667 	void *mem;
668 
669 	if ((mem = realloc(addr, size, mtp, flags)) == NULL)
670 		free(addr, mtp);
671 	return (mem);
672 }
673 
674 /*
675  * Wake the uma reclamation pagedaemon thread when we exhaust KVA.  It
676  * will call the lowmem handler and uma_reclaim() callbacks in a
677  * context that is safe.
678  */
679 static void
680 kmem_reclaim(vmem_t *vm, int flags)
681 {
682 
683 	uma_reclaim_wakeup();
684 	pagedaemon_wakeup();
685 }
686 
687 #ifndef __sparc64__
688 CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
689 #endif
690 
691 /*
692  * Initialize the kernel memory (kmem) arena.
693  */
694 void
695 kmeminit(void)
696 {
697 	u_long mem_size;
698 	u_long tmp;
699 
700 #ifdef VM_KMEM_SIZE
701 	if (vm_kmem_size == 0)
702 		vm_kmem_size = VM_KMEM_SIZE;
703 #endif
704 #ifdef VM_KMEM_SIZE_MIN
705 	if (vm_kmem_size_min == 0)
706 		vm_kmem_size_min = VM_KMEM_SIZE_MIN;
707 #endif
708 #ifdef VM_KMEM_SIZE_MAX
709 	if (vm_kmem_size_max == 0)
710 		vm_kmem_size_max = VM_KMEM_SIZE_MAX;
711 #endif
712 	/*
713 	 * Calculate the amount of kernel virtual address (KVA) space that is
714 	 * preallocated to the kmem arena.  In order to support a wide range
715 	 * of machines, it is a function of the physical memory size,
716 	 * specifically,
717 	 *
718 	 *	min(max(physical memory size / VM_KMEM_SIZE_SCALE,
719 	 *	    VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
720 	 *
721 	 * Every architecture must define an integral value for
722 	 * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
723 	 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
724 	 * ceiling on this preallocation, are optional.  Typically,
725 	 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
726 	 * a given architecture.
727 	 */
728 	mem_size = vm_cnt.v_page_count;
729 	if (mem_size <= 32768) /* delphij XXX 128MB */
730 		kmem_zmax = PAGE_SIZE;
731 
732 	if (vm_kmem_size_scale < 1)
733 		vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
734 
735 	/*
736 	 * Check if we should use defaults for the "vm_kmem_size"
737 	 * variable:
738 	 */
739 	if (vm_kmem_size == 0) {
740 		vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
741 
742 		if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
743 			vm_kmem_size = vm_kmem_size_min;
744 		if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
745 			vm_kmem_size = vm_kmem_size_max;
746 	}
747 
748 	/*
749 	 * The amount of KVA space that is preallocated to the
750 	 * kmem arena can be set statically at compile-time or manually
751 	 * through the kernel environment.  However, it is still limited to
752 	 * twice the physical memory size, which has been sufficient to handle
753 	 * the most severe cases of external fragmentation in the kmem arena.
754 	 */
755 	if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
756 		vm_kmem_size = 2 * mem_size * PAGE_SIZE;
757 
758 	vm_kmem_size = round_page(vm_kmem_size);
759 #ifdef DEBUG_MEMGUARD
760 	tmp = memguard_fudge(vm_kmem_size, kernel_map);
761 #else
762 	tmp = vm_kmem_size;
763 #endif
764 	vmem_init(kmem_arena, "kmem arena", kva_alloc(tmp), tmp, PAGE_SIZE,
765 	    0, 0);
766 	vmem_set_reclaim(kmem_arena, kmem_reclaim);
767 
768 #ifdef DEBUG_MEMGUARD
769 	/*
770 	 * Initialize MemGuard if support compiled in.  MemGuard is a
771 	 * replacement allocator used for detecting tamper-after-free
772 	 * scenarios as they occur.  It is only used for debugging.
773 	 */
774 	memguard_init(kmem_arena);
775 #endif
776 }
777 
778 /*
779  * Initialize the kernel memory allocator
780  */
781 /* ARGSUSED*/
782 static void
783 mallocinit(void *dummy)
784 {
785 	int i;
786 	uint8_t indx;
787 
788 	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
789 
790 	kmeminit();
791 
792 	uma_startup2();
793 
794 	if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
795 		kmem_zmax = KMEM_ZMAX;
796 
797 	mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
798 #ifdef INVARIANTS
799 	    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
800 #else
801 	    NULL, NULL, NULL, NULL,
802 #endif
803 	    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
804 	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
805 		int size = kmemzones[indx].kz_size;
806 		char *name = kmemzones[indx].kz_name;
807 		int subzone;
808 
809 		for (subzone = 0; subzone < numzones; subzone++) {
810 			kmemzones[indx].kz_zone[subzone] =
811 			    uma_zcreate(name, size,
812 #ifdef INVARIANTS
813 			    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
814 #else
815 			    NULL, NULL, NULL, NULL,
816 #endif
817 			    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
818 		}
819 		for (;i <= size; i+= KMEM_ZBASE)
820 			kmemsize[i >> KMEM_ZSHIFT] = indx;
821 
822 	}
823 }
824 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
825 
826 void
827 malloc_init(void *data)
828 {
829 	struct malloc_type_internal *mtip;
830 	struct malloc_type *mtp;
831 
832 	KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
833 
834 	mtp = data;
835 	if (mtp->ks_magic != M_MAGIC)
836 		panic("malloc_init: bad malloc type magic");
837 
838 	mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
839 	mtp->ks_handle = mtip;
840 	mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
841 
842 	mtx_lock(&malloc_mtx);
843 	mtp->ks_next = kmemstatistics;
844 	kmemstatistics = mtp;
845 	kmemcount++;
846 	mtx_unlock(&malloc_mtx);
847 }
848 
849 void
850 malloc_uninit(void *data)
851 {
852 	struct malloc_type_internal *mtip;
853 	struct malloc_type_stats *mtsp;
854 	struct malloc_type *mtp, *temp;
855 	uma_slab_t slab;
856 	long temp_allocs, temp_bytes;
857 	int i;
858 
859 	mtp = data;
860 	KASSERT(mtp->ks_magic == M_MAGIC,
861 	    ("malloc_uninit: bad malloc type magic"));
862 	KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
863 
864 	mtx_lock(&malloc_mtx);
865 	mtip = mtp->ks_handle;
866 	mtp->ks_handle = NULL;
867 	if (mtp != kmemstatistics) {
868 		for (temp = kmemstatistics; temp != NULL;
869 		    temp = temp->ks_next) {
870 			if (temp->ks_next == mtp) {
871 				temp->ks_next = mtp->ks_next;
872 				break;
873 			}
874 		}
875 		KASSERT(temp,
876 		    ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
877 	} else
878 		kmemstatistics = mtp->ks_next;
879 	kmemcount--;
880 	mtx_unlock(&malloc_mtx);
881 
882 	/*
883 	 * Look for memory leaks.
884 	 */
885 	temp_allocs = temp_bytes = 0;
886 	for (i = 0; i < MAXCPU; i++) {
887 		mtsp = &mtip->mti_stats[i];
888 		temp_allocs += mtsp->mts_numallocs;
889 		temp_allocs -= mtsp->mts_numfrees;
890 		temp_bytes += mtsp->mts_memalloced;
891 		temp_bytes -= mtsp->mts_memfreed;
892 	}
893 	if (temp_allocs > 0 || temp_bytes > 0) {
894 		printf("Warning: memory type %s leaked memory on destroy "
895 		    "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
896 		    temp_allocs, temp_bytes);
897 	}
898 
899 	slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
900 	uma_zfree_arg(mt_zone, mtip, slab);
901 }
902 
903 struct malloc_type *
904 malloc_desc2type(const char *desc)
905 {
906 	struct malloc_type *mtp;
907 
908 	mtx_assert(&malloc_mtx, MA_OWNED);
909 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
910 		if (strcmp(mtp->ks_shortdesc, desc) == 0)
911 			return (mtp);
912 	}
913 	return (NULL);
914 }
915 
916 static int
917 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
918 {
919 	struct malloc_type_stream_header mtsh;
920 	struct malloc_type_internal *mtip;
921 	struct malloc_type_header mth;
922 	struct malloc_type *mtp;
923 	int error, i;
924 	struct sbuf sbuf;
925 
926 	error = sysctl_wire_old_buffer(req, 0);
927 	if (error != 0)
928 		return (error);
929 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
930 	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
931 	mtx_lock(&malloc_mtx);
932 
933 	/*
934 	 * Insert stream header.
935 	 */
936 	bzero(&mtsh, sizeof(mtsh));
937 	mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
938 	mtsh.mtsh_maxcpus = MAXCPU;
939 	mtsh.mtsh_count = kmemcount;
940 	(void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
941 
942 	/*
943 	 * Insert alternating sequence of type headers and type statistics.
944 	 */
945 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
946 		mtip = (struct malloc_type_internal *)mtp->ks_handle;
947 
948 		/*
949 		 * Insert type header.
950 		 */
951 		bzero(&mth, sizeof(mth));
952 		strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
953 		(void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
954 
955 		/*
956 		 * Insert type statistics for each CPU.
957 		 */
958 		for (i = 0; i < MAXCPU; i++) {
959 			(void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
960 			    sizeof(mtip->mti_stats[i]));
961 		}
962 	}
963 	mtx_unlock(&malloc_mtx);
964 	error = sbuf_finish(&sbuf);
965 	sbuf_delete(&sbuf);
966 	return (error);
967 }
968 
969 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
970     0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
971     "Return malloc types");
972 
973 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
974     "Count of kernel malloc types");
975 
976 void
977 malloc_type_list(malloc_type_list_func_t *func, void *arg)
978 {
979 	struct malloc_type *mtp, **bufmtp;
980 	int count, i;
981 	size_t buflen;
982 
983 	mtx_lock(&malloc_mtx);
984 restart:
985 	mtx_assert(&malloc_mtx, MA_OWNED);
986 	count = kmemcount;
987 	mtx_unlock(&malloc_mtx);
988 
989 	buflen = sizeof(struct malloc_type *) * count;
990 	bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
991 
992 	mtx_lock(&malloc_mtx);
993 
994 	if (count < kmemcount) {
995 		free(bufmtp, M_TEMP);
996 		goto restart;
997 	}
998 
999 	for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
1000 		bufmtp[i] = mtp;
1001 
1002 	mtx_unlock(&malloc_mtx);
1003 
1004 	for (i = 0; i < count; i++)
1005 		(func)(bufmtp[i], arg);
1006 
1007 	free(bufmtp, M_TEMP);
1008 }
1009 
1010 #ifdef DDB
1011 DB_SHOW_COMMAND(malloc, db_show_malloc)
1012 {
1013 	struct malloc_type_internal *mtip;
1014 	struct malloc_type *mtp;
1015 	uint64_t allocs, frees;
1016 	uint64_t alloced, freed;
1017 	int i;
1018 
1019 	db_printf("%18s %12s  %12s %12s\n", "Type", "InUse", "MemUse",
1020 	    "Requests");
1021 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1022 		mtip = (struct malloc_type_internal *)mtp->ks_handle;
1023 		allocs = 0;
1024 		frees = 0;
1025 		alloced = 0;
1026 		freed = 0;
1027 		for (i = 0; i < MAXCPU; i++) {
1028 			allocs += mtip->mti_stats[i].mts_numallocs;
1029 			frees += mtip->mti_stats[i].mts_numfrees;
1030 			alloced += mtip->mti_stats[i].mts_memalloced;
1031 			freed += mtip->mti_stats[i].mts_memfreed;
1032 		}
1033 		db_printf("%18s %12ju %12juK %12ju\n",
1034 		    mtp->ks_shortdesc, allocs - frees,
1035 		    (alloced - freed + 1023) / 1024, allocs);
1036 		if (db_pager_quit)
1037 			break;
1038 	}
1039 }
1040 
1041 #if MALLOC_DEBUG_MAXZONES > 1
1042 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
1043 {
1044 	struct malloc_type_internal *mtip;
1045 	struct malloc_type *mtp;
1046 	u_int subzone;
1047 
1048 	if (!have_addr) {
1049 		db_printf("Usage: show multizone_matches <malloc type/addr>\n");
1050 		return;
1051 	}
1052 	mtp = (void *)addr;
1053 	if (mtp->ks_magic != M_MAGIC) {
1054 		db_printf("Magic %lx does not match expected %x\n",
1055 		    mtp->ks_magic, M_MAGIC);
1056 		return;
1057 	}
1058 
1059 	mtip = mtp->ks_handle;
1060 	subzone = mtip->mti_zone;
1061 
1062 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1063 		mtip = mtp->ks_handle;
1064 		if (mtip->mti_zone != subzone)
1065 			continue;
1066 		db_printf("%s\n", mtp->ks_shortdesc);
1067 		if (db_pager_quit)
1068 			break;
1069 	}
1070 }
1071 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
1072 #endif /* DDB */
1073 
1074 #ifdef MALLOC_PROFILE
1075 
1076 static int
1077 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
1078 {
1079 	struct sbuf sbuf;
1080 	uint64_t count;
1081 	uint64_t waste;
1082 	uint64_t mem;
1083 	int error;
1084 	int rsize;
1085 	int size;
1086 	int i;
1087 
1088 	waste = 0;
1089 	mem = 0;
1090 
1091 	error = sysctl_wire_old_buffer(req, 0);
1092 	if (error != 0)
1093 		return (error);
1094 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1095 	sbuf_printf(&sbuf,
1096 	    "\n  Size                    Requests  Real Size\n");
1097 	for (i = 0; i < KMEM_ZSIZE; i++) {
1098 		size = i << KMEM_ZSHIFT;
1099 		rsize = kmemzones[kmemsize[i]].kz_size;
1100 		count = (long long unsigned)krequests[i];
1101 
1102 		sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
1103 		    (unsigned long long)count, rsize);
1104 
1105 		if ((rsize * count) > (size * count))
1106 			waste += (rsize * count) - (size * count);
1107 		mem += (rsize * count);
1108 	}
1109 	sbuf_printf(&sbuf,
1110 	    "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
1111 	    (unsigned long long)mem, (unsigned long long)waste);
1112 	error = sbuf_finish(&sbuf);
1113 	sbuf_delete(&sbuf);
1114 	return (error);
1115 }
1116 
1117 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
1118     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
1119 #endif /* MALLOC_PROFILE */
1120