xref: /freebsd/sys/kern/kern_malloc.c (revision a18eacbefdfa1085ca3db829e86ece78cd416493)
1 /*-
2  * Copyright (c) 1987, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2005-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
36  * based on memory types.  Back end is implemented using the UMA(9) zone
37  * allocator.  A set of fixed-size buckets are used for smaller allocations,
38  * and a special UMA allocation interface is used for larger allocations.
39  * Callers declare memory types, and statistics are maintained independently
40  * for each memory type.  Statistics are maintained per-CPU for performance
41  * reasons.  See malloc(9) and comments in malloc.h for a detailed
42  * description.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_ddb.h"
49 #include "opt_kdtrace.h"
50 #include "opt_vm.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kdb.h>
55 #include <sys/kernel.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mutex.h>
59 #include <sys/vmmeter.h>
60 #include <sys/proc.h>
61 #include <sys/sbuf.h>
62 #include <sys/sysctl.h>
63 #include <sys/time.h>
64 #include <sys/vmem.h>
65 
66 #include <vm/vm.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_pageout.h>
69 #include <vm/vm_param.h>
70 #include <vm/vm_kern.h>
71 #include <vm/vm_extern.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_page.h>
74 #include <vm/uma.h>
75 #include <vm/uma_int.h>
76 #include <vm/uma_dbg.h>
77 
78 #ifdef DEBUG_MEMGUARD
79 #include <vm/memguard.h>
80 #endif
81 #ifdef DEBUG_REDZONE
82 #include <vm/redzone.h>
83 #endif
84 
85 #if defined(INVARIANTS) && defined(__i386__)
86 #include <machine/cpu.h>
87 #endif
88 
89 #include <ddb/ddb.h>
90 
91 #ifdef KDTRACE_HOOKS
92 #include <sys/dtrace_bsd.h>
93 
94 dtrace_malloc_probe_func_t	dtrace_malloc_probe;
95 #endif
96 
97 /*
98  * When realloc() is called, if the new size is sufficiently smaller than
99  * the old size, realloc() will allocate a new, smaller block to avoid
100  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
101  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
102  */
103 #ifndef REALLOC_FRACTION
104 #define	REALLOC_FRACTION	1	/* new block if <= half the size */
105 #endif
106 
107 /*
108  * Centrally define some common malloc types.
109  */
110 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
111 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
112 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
113 
114 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
115 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
116 
117 static struct malloc_type *kmemstatistics;
118 static int kmemcount;
119 
120 #define KMEM_ZSHIFT	4
121 #define KMEM_ZBASE	16
122 #define KMEM_ZMASK	(KMEM_ZBASE - 1)
123 
124 #define KMEM_ZMAX	PAGE_SIZE
125 #define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
126 static uint8_t kmemsize[KMEM_ZSIZE + 1];
127 
128 #ifndef MALLOC_DEBUG_MAXZONES
129 #define	MALLOC_DEBUG_MAXZONES	1
130 #endif
131 static int numzones = MALLOC_DEBUG_MAXZONES;
132 
133 /*
134  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
135  * of various sizes.
136  *
137  * XXX: The comment here used to read "These won't be powers of two for
138  * long."  It's possible that a significant amount of wasted memory could be
139  * recovered by tuning the sizes of these buckets.
140  */
141 struct {
142 	int kz_size;
143 	char *kz_name;
144 	uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
145 } kmemzones[] = {
146 	{16, "16", },
147 	{32, "32", },
148 	{64, "64", },
149 	{128, "128", },
150 	{256, "256", },
151 	{512, "512", },
152 	{1024, "1024", },
153 	{2048, "2048", },
154 	{4096, "4096", },
155 #if PAGE_SIZE > 4096
156 	{8192, "8192", },
157 #if PAGE_SIZE > 8192
158 	{16384, "16384", },
159 #if PAGE_SIZE > 16384
160 	{32768, "32768", },
161 #if PAGE_SIZE > 32768
162 	{65536, "65536", },
163 #if PAGE_SIZE > 65536
164 #error	"Unsupported PAGE_SIZE"
165 #endif	/* 65536 */
166 #endif	/* 32768 */
167 #endif	/* 16384 */
168 #endif	/* 8192 */
169 #endif	/* 4096 */
170 	{0, NULL},
171 };
172 
173 /*
174  * Zone to allocate malloc type descriptions from.  For ABI reasons, memory
175  * types are described by a data structure passed by the declaring code, but
176  * the malloc(9) implementation has its own data structure describing the
177  * type and statistics.  This permits the malloc(9)-internal data structures
178  * to be modified without breaking binary-compiled kernel modules that
179  * declare malloc types.
180  */
181 static uma_zone_t mt_zone;
182 
183 u_long vm_kmem_size;
184 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
185     "Size of kernel memory");
186 
187 static u_long vm_kmem_size_min;
188 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
189     "Minimum size of kernel memory");
190 
191 static u_long vm_kmem_size_max;
192 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
193     "Maximum size of kernel memory");
194 
195 static u_int vm_kmem_size_scale;
196 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
197     "Scale factor for kernel memory size");
198 
199 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
200 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
201     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
202     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
203 
204 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
205 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
206     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
207     sysctl_kmem_map_free, "LU", "Free space in kmem");
208 
209 /*
210  * The malloc_mtx protects the kmemstatistics linked list.
211  */
212 struct mtx malloc_mtx;
213 
214 #ifdef MALLOC_PROFILE
215 uint64_t krequests[KMEM_ZSIZE + 1];
216 
217 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
218 #endif
219 
220 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
221 
222 /*
223  * time_uptime of the last malloc(9) failure (induced or real).
224  */
225 static time_t t_malloc_fail;
226 
227 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
228 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
229     "Kernel malloc debugging options");
230 #endif
231 
232 /*
233  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
234  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
235  */
236 #ifdef MALLOC_MAKE_FAILURES
237 static int malloc_failure_rate;
238 static int malloc_nowait_count;
239 static int malloc_failure_count;
240 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
241     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
242 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
243 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
244     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
245 #endif
246 
247 static int
248 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
249 {
250 	u_long size;
251 
252 	size = vmem_size(kmem_arena, VMEM_ALLOC);
253 	return (sysctl_handle_long(oidp, &size, 0, req));
254 }
255 
256 static int
257 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
258 {
259 	u_long size;
260 
261 	size = vmem_size(kmem_arena, VMEM_FREE);
262 	return (sysctl_handle_long(oidp, &size, 0, req));
263 }
264 
265 /*
266  * malloc(9) uma zone separation -- sub-page buffer overruns in one
267  * malloc type will affect only a subset of other malloc types.
268  */
269 #if MALLOC_DEBUG_MAXZONES > 1
270 static void
271 tunable_set_numzones(void)
272 {
273 
274 	TUNABLE_INT_FETCH("debug.malloc.numzones",
275 	    &numzones);
276 
277 	/* Sanity check the number of malloc uma zones. */
278 	if (numzones <= 0)
279 		numzones = 1;
280 	if (numzones > MALLOC_DEBUG_MAXZONES)
281 		numzones = MALLOC_DEBUG_MAXZONES;
282 }
283 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
284 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN,
285     &numzones, 0, "Number of malloc uma subzones");
286 
287 /*
288  * Any number that changes regularly is an okay choice for the
289  * offset.  Build numbers are pretty good of you have them.
290  */
291 static u_int zone_offset = __FreeBSD_version;
292 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
293 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
294     &zone_offset, 0, "Separate malloc types by examining the "
295     "Nth character in the malloc type short description.");
296 
297 static u_int
298 mtp_get_subzone(const char *desc)
299 {
300 	size_t len;
301 	u_int val;
302 
303 	if (desc == NULL || (len = strlen(desc)) == 0)
304 		return (0);
305 	val = desc[zone_offset % len];
306 	return (val % numzones);
307 }
308 #elif MALLOC_DEBUG_MAXZONES == 0
309 #error "MALLOC_DEBUG_MAXZONES must be positive."
310 #else
311 static inline u_int
312 mtp_get_subzone(const char *desc)
313 {
314 
315 	return (0);
316 }
317 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
318 
319 int
320 malloc_last_fail(void)
321 {
322 
323 	return (time_uptime - t_malloc_fail);
324 }
325 
326 /*
327  * An allocation has succeeded -- update malloc type statistics for the
328  * amount of bucket size.  Occurs within a critical section so that the
329  * thread isn't preempted and doesn't migrate while updating per-PCU
330  * statistics.
331  */
332 static void
333 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
334     int zindx)
335 {
336 	struct malloc_type_internal *mtip;
337 	struct malloc_type_stats *mtsp;
338 
339 	critical_enter();
340 	mtip = mtp->ks_handle;
341 	mtsp = &mtip->mti_stats[curcpu];
342 	if (size > 0) {
343 		mtsp->mts_memalloced += size;
344 		mtsp->mts_numallocs++;
345 	}
346 	if (zindx != -1)
347 		mtsp->mts_size |= 1 << zindx;
348 
349 #ifdef KDTRACE_HOOKS
350 	if (dtrace_malloc_probe != NULL) {
351 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
352 		if (probe_id != 0)
353 			(dtrace_malloc_probe)(probe_id,
354 			    (uintptr_t) mtp, (uintptr_t) mtip,
355 			    (uintptr_t) mtsp, size, zindx);
356 	}
357 #endif
358 
359 	critical_exit();
360 }
361 
362 void
363 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
364 {
365 
366 	if (size > 0)
367 		malloc_type_zone_allocated(mtp, size, -1);
368 }
369 
370 /*
371  * A free operation has occurred -- update malloc type statistics for the
372  * amount of the bucket size.  Occurs within a critical section so that the
373  * thread isn't preempted and doesn't migrate while updating per-CPU
374  * statistics.
375  */
376 void
377 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
378 {
379 	struct malloc_type_internal *mtip;
380 	struct malloc_type_stats *mtsp;
381 
382 	critical_enter();
383 	mtip = mtp->ks_handle;
384 	mtsp = &mtip->mti_stats[curcpu];
385 	mtsp->mts_memfreed += size;
386 	mtsp->mts_numfrees++;
387 
388 #ifdef KDTRACE_HOOKS
389 	if (dtrace_malloc_probe != NULL) {
390 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
391 		if (probe_id != 0)
392 			(dtrace_malloc_probe)(probe_id,
393 			    (uintptr_t) mtp, (uintptr_t) mtip,
394 			    (uintptr_t) mtsp, size, 0);
395 	}
396 #endif
397 
398 	critical_exit();
399 }
400 
401 /*
402  *	contigmalloc:
403  *
404  *	Allocate a block of physically contiguous memory.
405  *
406  *	If M_NOWAIT is set, this routine will not block and return NULL if
407  *	the allocation fails.
408  */
409 void *
410 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
411     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
412     vm_paddr_t boundary)
413 {
414 	void *ret;
415 
416 	ret = (void *)kmem_alloc_contig(kernel_arena, size, flags, low, high,
417 	    alignment, boundary, VM_MEMATTR_DEFAULT);
418 	if (ret != NULL)
419 		malloc_type_allocated(type, round_page(size));
420 	return (ret);
421 }
422 
423 /*
424  *	contigfree:
425  *
426  *	Free a block of memory allocated by contigmalloc.
427  *
428  *	This routine may not block.
429  */
430 void
431 contigfree(void *addr, unsigned long size, struct malloc_type *type)
432 {
433 
434 	kmem_free(kernel_arena, (vm_offset_t)addr, size);
435 	malloc_type_freed(type, round_page(size));
436 }
437 
438 /*
439  *	malloc:
440  *
441  *	Allocate a block of memory.
442  *
443  *	If M_NOWAIT is set, this routine will not block and return NULL if
444  *	the allocation fails.
445  */
446 void *
447 malloc(unsigned long size, struct malloc_type *mtp, int flags)
448 {
449 	int indx;
450 	struct malloc_type_internal *mtip;
451 	caddr_t va;
452 	uma_zone_t zone;
453 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
454 	unsigned long osize = size;
455 #endif
456 
457 #ifdef INVARIANTS
458 	KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
459 	/*
460 	 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
461 	 */
462 	indx = flags & (M_WAITOK | M_NOWAIT);
463 	if (indx != M_NOWAIT && indx != M_WAITOK) {
464 		static	struct timeval lasterr;
465 		static	int curerr, once;
466 		if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
467 			printf("Bad malloc flags: %x\n", indx);
468 			kdb_backtrace();
469 			flags |= M_WAITOK;
470 			once++;
471 		}
472 	}
473 #endif
474 #ifdef MALLOC_MAKE_FAILURES
475 	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
476 		atomic_add_int(&malloc_nowait_count, 1);
477 		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
478 			atomic_add_int(&malloc_failure_count, 1);
479 			t_malloc_fail = time_uptime;
480 			return (NULL);
481 		}
482 	}
483 #endif
484 	if (flags & M_WAITOK)
485 		KASSERT(curthread->td_intr_nesting_level == 0,
486 		   ("malloc(M_WAITOK) in interrupt context"));
487 
488 #ifdef DEBUG_MEMGUARD
489 	if (memguard_cmp_mtp(mtp, size)) {
490 		va = memguard_alloc(size, flags);
491 		if (va != NULL)
492 			return (va);
493 		/* This is unfortunate but should not be fatal. */
494 	}
495 #endif
496 
497 #ifdef DEBUG_REDZONE
498 	size = redzone_size_ntor(size);
499 #endif
500 
501 	if (size <= KMEM_ZMAX) {
502 		mtip = mtp->ks_handle;
503 		if (size & KMEM_ZMASK)
504 			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
505 		indx = kmemsize[size >> KMEM_ZSHIFT];
506 		KASSERT(mtip->mti_zone < numzones,
507 		    ("mti_zone %u out of range %d",
508 		    mtip->mti_zone, numzones));
509 		zone = kmemzones[indx].kz_zone[mtip->mti_zone];
510 #ifdef MALLOC_PROFILE
511 		krequests[size >> KMEM_ZSHIFT]++;
512 #endif
513 		va = uma_zalloc(zone, flags);
514 		if (va != NULL)
515 			size = zone->uz_size;
516 		malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
517 	} else {
518 		size = roundup(size, PAGE_SIZE);
519 		zone = NULL;
520 		va = uma_large_malloc(size, flags);
521 		malloc_type_allocated(mtp, va == NULL ? 0 : size);
522 	}
523 	if (flags & M_WAITOK)
524 		KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
525 	else if (va == NULL)
526 		t_malloc_fail = time_uptime;
527 #ifdef DIAGNOSTIC
528 	if (va != NULL && !(flags & M_ZERO)) {
529 		memset(va, 0x70, osize);
530 	}
531 #endif
532 #ifdef DEBUG_REDZONE
533 	if (va != NULL)
534 		va = redzone_setup(va, osize);
535 #endif
536 	return ((void *) va);
537 }
538 
539 /*
540  *	free:
541  *
542  *	Free a block of memory allocated by malloc.
543  *
544  *	This routine may not block.
545  */
546 void
547 free(void *addr, struct malloc_type *mtp)
548 {
549 	uma_slab_t slab;
550 	u_long size;
551 
552 	KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
553 
554 	/* free(NULL, ...) does nothing */
555 	if (addr == NULL)
556 		return;
557 
558 #ifdef DEBUG_MEMGUARD
559 	if (is_memguard_addr(addr)) {
560 		memguard_free(addr);
561 		return;
562 	}
563 #endif
564 
565 #ifdef DEBUG_REDZONE
566 	redzone_check(addr);
567 	addr = redzone_addr_ntor(addr);
568 #endif
569 
570 	slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
571 
572 	if (slab == NULL)
573 		panic("free: address %p(%p) has not been allocated.\n",
574 		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
575 
576 	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
577 #ifdef INVARIANTS
578 		struct malloc_type **mtpp = addr;
579 #endif
580 		size = slab->us_keg->uk_size;
581 #ifdef INVARIANTS
582 		/*
583 		 * Cache a pointer to the malloc_type that most recently freed
584 		 * this memory here.  This way we know who is most likely to
585 		 * have stepped on it later.
586 		 *
587 		 * This code assumes that size is a multiple of 8 bytes for
588 		 * 64 bit machines
589 		 */
590 		mtpp = (struct malloc_type **)
591 		    ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
592 		mtpp += (size - sizeof(struct malloc_type *)) /
593 		    sizeof(struct malloc_type *);
594 		*mtpp = mtp;
595 #endif
596 		uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
597 	} else {
598 		size = slab->us_size;
599 		uma_large_free(slab);
600 	}
601 	malloc_type_freed(mtp, size);
602 }
603 
604 /*
605  *	realloc: change the size of a memory block
606  */
607 void *
608 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
609 {
610 	uma_slab_t slab;
611 	unsigned long alloc;
612 	void *newaddr;
613 
614 	KASSERT(mtp->ks_magic == M_MAGIC,
615 	    ("realloc: bad malloc type magic"));
616 
617 	/* realloc(NULL, ...) is equivalent to malloc(...) */
618 	if (addr == NULL)
619 		return (malloc(size, mtp, flags));
620 
621 	/*
622 	 * XXX: Should report free of old memory and alloc of new memory to
623 	 * per-CPU stats.
624 	 */
625 
626 #ifdef DEBUG_MEMGUARD
627 	if (is_memguard_addr(addr))
628 		return (memguard_realloc(addr, size, mtp, flags));
629 #endif
630 
631 #ifdef DEBUG_REDZONE
632 	slab = NULL;
633 	alloc = redzone_get_size(addr);
634 #else
635 	slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
636 
637 	/* Sanity check */
638 	KASSERT(slab != NULL,
639 	    ("realloc: address %p out of range", (void *)addr));
640 
641 	/* Get the size of the original block */
642 	if (!(slab->us_flags & UMA_SLAB_MALLOC))
643 		alloc = slab->us_keg->uk_size;
644 	else
645 		alloc = slab->us_size;
646 
647 	/* Reuse the original block if appropriate */
648 	if (size <= alloc
649 	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
650 		return (addr);
651 #endif /* !DEBUG_REDZONE */
652 
653 	/* Allocate a new, bigger (or smaller) block */
654 	if ((newaddr = malloc(size, mtp, flags)) == NULL)
655 		return (NULL);
656 
657 	/* Copy over original contents */
658 	bcopy(addr, newaddr, min(size, alloc));
659 	free(addr, mtp);
660 	return (newaddr);
661 }
662 
663 /*
664  *	reallocf: same as realloc() but free memory on failure.
665  */
666 void *
667 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
668 {
669 	void *mem;
670 
671 	if ((mem = realloc(addr, size, mtp, flags)) == NULL)
672 		free(addr, mtp);
673 	return (mem);
674 }
675 
676 /*
677  * Wake the page daemon when we exhaust KVA.  It will call the lowmem handler
678  * and uma_reclaim() callbacks in a context that is safe.
679  */
680 static void
681 kmem_reclaim(vmem_t *vm, int flags)
682 {
683 
684 	pagedaemon_wakeup();
685 }
686 
687 CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
688 
689 /*
690  * Initialize the kernel memory (kmem) arena.
691  */
692 void
693 kmeminit(void)
694 {
695 	u_long mem_size, tmp;
696 
697 	/*
698 	 * Calculate the amount of kernel virtual address (KVA) space that is
699 	 * preallocated to the kmem arena.  In order to support a wide range
700 	 * of machines, it is a function of the physical memory size,
701 	 * specifically,
702 	 *
703 	 *	min(max(physical memory size / VM_KMEM_SIZE_SCALE,
704 	 *	    VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
705 	 *
706 	 * Every architecture must define an integral value for
707 	 * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
708 	 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
709 	 * ceiling on this preallocation, are optional.  Typically,
710 	 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
711 	 * a given architecture.
712 	 */
713 	mem_size = cnt.v_page_count;
714 
715 	vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
716 	TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale);
717 	if (vm_kmem_size_scale < 1)
718 		vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
719 
720 	vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
721 
722 #if defined(VM_KMEM_SIZE_MIN)
723 	vm_kmem_size_min = VM_KMEM_SIZE_MIN;
724 #endif
725 	TUNABLE_ULONG_FETCH("vm.kmem_size_min", &vm_kmem_size_min);
726 	if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
727 		vm_kmem_size = vm_kmem_size_min;
728 
729 #if defined(VM_KMEM_SIZE_MAX)
730 	vm_kmem_size_max = VM_KMEM_SIZE_MAX;
731 #endif
732 	TUNABLE_ULONG_FETCH("vm.kmem_size_max", &vm_kmem_size_max);
733 	if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
734 		vm_kmem_size = vm_kmem_size_max;
735 
736 	/*
737 	 * Alternatively, the amount of KVA space that is preallocated to the
738 	 * kmem arena can be set statically at compile-time or manually
739 	 * through the kernel environment.  However, it is still limited to
740 	 * twice the physical memory size, which has been sufficient to handle
741 	 * the most severe cases of external fragmentation in the kmem arena.
742 	 */
743 #if defined(VM_KMEM_SIZE)
744 	vm_kmem_size = VM_KMEM_SIZE;
745 #endif
746 	TUNABLE_ULONG_FETCH("vm.kmem_size", &vm_kmem_size);
747 	if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
748 		vm_kmem_size = 2 * mem_size * PAGE_SIZE;
749 
750 	vm_kmem_size = round_page(vm_kmem_size);
751 #ifdef DEBUG_MEMGUARD
752 	tmp = memguard_fudge(vm_kmem_size, kernel_map);
753 #else
754 	tmp = vm_kmem_size;
755 #endif
756 	vmem_init(kmem_arena, "kmem arena", kva_alloc(tmp), tmp, PAGE_SIZE,
757 	    0, 0);
758 	vmem_set_reclaim(kmem_arena, kmem_reclaim);
759 
760 #ifdef DEBUG_MEMGUARD
761 	/*
762 	 * Initialize MemGuard if support compiled in.  MemGuard is a
763 	 * replacement allocator used for detecting tamper-after-free
764 	 * scenarios as they occur.  It is only used for debugging.
765 	 */
766 	memguard_init(kmem_arena);
767 #endif
768 }
769 
770 /*
771  * Initialize the kernel memory allocator
772  */
773 /* ARGSUSED*/
774 static void
775 mallocinit(void *dummy)
776 {
777 	int i;
778 	uint8_t indx;
779 
780 	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
781 
782 	kmeminit();
783 
784 	uma_startup2();
785 
786 	mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
787 #ifdef INVARIANTS
788 	    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
789 #else
790 	    NULL, NULL, NULL, NULL,
791 #endif
792 	    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
793 	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
794 		int size = kmemzones[indx].kz_size;
795 		char *name = kmemzones[indx].kz_name;
796 		int subzone;
797 
798 		for (subzone = 0; subzone < numzones; subzone++) {
799 			kmemzones[indx].kz_zone[subzone] =
800 			    uma_zcreate(name, size,
801 #ifdef INVARIANTS
802 			    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
803 #else
804 			    NULL, NULL, NULL, NULL,
805 #endif
806 			    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
807 		}
808 		for (;i <= size; i+= KMEM_ZBASE)
809 			kmemsize[i >> KMEM_ZSHIFT] = indx;
810 
811 	}
812 }
813 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, mallocinit, NULL);
814 
815 void
816 malloc_init(void *data)
817 {
818 	struct malloc_type_internal *mtip;
819 	struct malloc_type *mtp;
820 
821 	KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init"));
822 
823 	mtp = data;
824 	if (mtp->ks_magic != M_MAGIC)
825 		panic("malloc_init: bad malloc type magic");
826 
827 	mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
828 	mtp->ks_handle = mtip;
829 	mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
830 
831 	mtx_lock(&malloc_mtx);
832 	mtp->ks_next = kmemstatistics;
833 	kmemstatistics = mtp;
834 	kmemcount++;
835 	mtx_unlock(&malloc_mtx);
836 }
837 
838 void
839 malloc_uninit(void *data)
840 {
841 	struct malloc_type_internal *mtip;
842 	struct malloc_type_stats *mtsp;
843 	struct malloc_type *mtp, *temp;
844 	uma_slab_t slab;
845 	long temp_allocs, temp_bytes;
846 	int i;
847 
848 	mtp = data;
849 	KASSERT(mtp->ks_magic == M_MAGIC,
850 	    ("malloc_uninit: bad malloc type magic"));
851 	KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
852 
853 	mtx_lock(&malloc_mtx);
854 	mtip = mtp->ks_handle;
855 	mtp->ks_handle = NULL;
856 	if (mtp != kmemstatistics) {
857 		for (temp = kmemstatistics; temp != NULL;
858 		    temp = temp->ks_next) {
859 			if (temp->ks_next == mtp) {
860 				temp->ks_next = mtp->ks_next;
861 				break;
862 			}
863 		}
864 		KASSERT(temp,
865 		    ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
866 	} else
867 		kmemstatistics = mtp->ks_next;
868 	kmemcount--;
869 	mtx_unlock(&malloc_mtx);
870 
871 	/*
872 	 * Look for memory leaks.
873 	 */
874 	temp_allocs = temp_bytes = 0;
875 	for (i = 0; i < MAXCPU; i++) {
876 		mtsp = &mtip->mti_stats[i];
877 		temp_allocs += mtsp->mts_numallocs;
878 		temp_allocs -= mtsp->mts_numfrees;
879 		temp_bytes += mtsp->mts_memalloced;
880 		temp_bytes -= mtsp->mts_memfreed;
881 	}
882 	if (temp_allocs > 0 || temp_bytes > 0) {
883 		printf("Warning: memory type %s leaked memory on destroy "
884 		    "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
885 		    temp_allocs, temp_bytes);
886 	}
887 
888 	slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
889 	uma_zfree_arg(mt_zone, mtip, slab);
890 }
891 
892 struct malloc_type *
893 malloc_desc2type(const char *desc)
894 {
895 	struct malloc_type *mtp;
896 
897 	mtx_assert(&malloc_mtx, MA_OWNED);
898 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
899 		if (strcmp(mtp->ks_shortdesc, desc) == 0)
900 			return (mtp);
901 	}
902 	return (NULL);
903 }
904 
905 static int
906 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
907 {
908 	struct malloc_type_stream_header mtsh;
909 	struct malloc_type_internal *mtip;
910 	struct malloc_type_header mth;
911 	struct malloc_type *mtp;
912 	int error, i;
913 	struct sbuf sbuf;
914 
915 	error = sysctl_wire_old_buffer(req, 0);
916 	if (error != 0)
917 		return (error);
918 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
919 	mtx_lock(&malloc_mtx);
920 
921 	/*
922 	 * Insert stream header.
923 	 */
924 	bzero(&mtsh, sizeof(mtsh));
925 	mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
926 	mtsh.mtsh_maxcpus = MAXCPU;
927 	mtsh.mtsh_count = kmemcount;
928 	(void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
929 
930 	/*
931 	 * Insert alternating sequence of type headers and type statistics.
932 	 */
933 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
934 		mtip = (struct malloc_type_internal *)mtp->ks_handle;
935 
936 		/*
937 		 * Insert type header.
938 		 */
939 		bzero(&mth, sizeof(mth));
940 		strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
941 		(void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
942 
943 		/*
944 		 * Insert type statistics for each CPU.
945 		 */
946 		for (i = 0; i < MAXCPU; i++) {
947 			(void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
948 			    sizeof(mtip->mti_stats[i]));
949 		}
950 	}
951 	mtx_unlock(&malloc_mtx);
952 	error = sbuf_finish(&sbuf);
953 	sbuf_delete(&sbuf);
954 	return (error);
955 }
956 
957 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
958     0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
959     "Return malloc types");
960 
961 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
962     "Count of kernel malloc types");
963 
964 void
965 malloc_type_list(malloc_type_list_func_t *func, void *arg)
966 {
967 	struct malloc_type *mtp, **bufmtp;
968 	int count, i;
969 	size_t buflen;
970 
971 	mtx_lock(&malloc_mtx);
972 restart:
973 	mtx_assert(&malloc_mtx, MA_OWNED);
974 	count = kmemcount;
975 	mtx_unlock(&malloc_mtx);
976 
977 	buflen = sizeof(struct malloc_type *) * count;
978 	bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
979 
980 	mtx_lock(&malloc_mtx);
981 
982 	if (count < kmemcount) {
983 		free(bufmtp, M_TEMP);
984 		goto restart;
985 	}
986 
987 	for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
988 		bufmtp[i] = mtp;
989 
990 	mtx_unlock(&malloc_mtx);
991 
992 	for (i = 0; i < count; i++)
993 		(func)(bufmtp[i], arg);
994 
995 	free(bufmtp, M_TEMP);
996 }
997 
998 #ifdef DDB
999 DB_SHOW_COMMAND(malloc, db_show_malloc)
1000 {
1001 	struct malloc_type_internal *mtip;
1002 	struct malloc_type *mtp;
1003 	uint64_t allocs, frees;
1004 	uint64_t alloced, freed;
1005 	int i;
1006 
1007 	db_printf("%18s %12s  %12s %12s\n", "Type", "InUse", "MemUse",
1008 	    "Requests");
1009 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1010 		mtip = (struct malloc_type_internal *)mtp->ks_handle;
1011 		allocs = 0;
1012 		frees = 0;
1013 		alloced = 0;
1014 		freed = 0;
1015 		for (i = 0; i < MAXCPU; i++) {
1016 			allocs += mtip->mti_stats[i].mts_numallocs;
1017 			frees += mtip->mti_stats[i].mts_numfrees;
1018 			alloced += mtip->mti_stats[i].mts_memalloced;
1019 			freed += mtip->mti_stats[i].mts_memfreed;
1020 		}
1021 		db_printf("%18s %12ju %12juK %12ju\n",
1022 		    mtp->ks_shortdesc, allocs - frees,
1023 		    (alloced - freed + 1023) / 1024, allocs);
1024 		if (db_pager_quit)
1025 			break;
1026 	}
1027 }
1028 
1029 #if MALLOC_DEBUG_MAXZONES > 1
1030 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
1031 {
1032 	struct malloc_type_internal *mtip;
1033 	struct malloc_type *mtp;
1034 	u_int subzone;
1035 
1036 	if (!have_addr) {
1037 		db_printf("Usage: show multizone_matches <malloc type/addr>\n");
1038 		return;
1039 	}
1040 	mtp = (void *)addr;
1041 	if (mtp->ks_magic != M_MAGIC) {
1042 		db_printf("Magic %lx does not match expected %x\n",
1043 		    mtp->ks_magic, M_MAGIC);
1044 		return;
1045 	}
1046 
1047 	mtip = mtp->ks_handle;
1048 	subzone = mtip->mti_zone;
1049 
1050 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1051 		mtip = mtp->ks_handle;
1052 		if (mtip->mti_zone != subzone)
1053 			continue;
1054 		db_printf("%s\n", mtp->ks_shortdesc);
1055 		if (db_pager_quit)
1056 			break;
1057 	}
1058 }
1059 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
1060 #endif /* DDB */
1061 
1062 #ifdef MALLOC_PROFILE
1063 
1064 static int
1065 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
1066 {
1067 	struct sbuf sbuf;
1068 	uint64_t count;
1069 	uint64_t waste;
1070 	uint64_t mem;
1071 	int error;
1072 	int rsize;
1073 	int size;
1074 	int i;
1075 
1076 	waste = 0;
1077 	mem = 0;
1078 
1079 	error = sysctl_wire_old_buffer(req, 0);
1080 	if (error != 0)
1081 		return (error);
1082 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1083 	sbuf_printf(&sbuf,
1084 	    "\n  Size                    Requests  Real Size\n");
1085 	for (i = 0; i < KMEM_ZSIZE; i++) {
1086 		size = i << KMEM_ZSHIFT;
1087 		rsize = kmemzones[kmemsize[i]].kz_size;
1088 		count = (long long unsigned)krequests[i];
1089 
1090 		sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
1091 		    (unsigned long long)count, rsize);
1092 
1093 		if ((rsize * count) > (size * count))
1094 			waste += (rsize * count) - (size * count);
1095 		mem += (rsize * count);
1096 	}
1097 	sbuf_printf(&sbuf,
1098 	    "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
1099 	    (unsigned long long)mem, (unsigned long long)waste);
1100 	error = sbuf_finish(&sbuf);
1101 	sbuf_delete(&sbuf);
1102 	return (error);
1103 }
1104 
1105 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
1106     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
1107 #endif /* MALLOC_PROFILE */
1108