xref: /freebsd/sys/kern/kern_malloc.c (revision 9f31240773ae369c8285b700840a35e6bfa9f762)
1 /*-
2  * Copyright (c) 1987, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2005-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
36  * based on memory types.  Back end is implemented using the UMA(9) zone
37  * allocator.  A set of fixed-size buckets are used for smaller allocations,
38  * and a special UMA allocation interface is used for larger allocations.
39  * Callers declare memory types, and statistics are maintained independently
40  * for each memory type.  Statistics are maintained per-CPU for performance
41  * reasons.  See malloc(9) and comments in malloc.h for a detailed
42  * description.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_ddb.h"
49 #include "opt_vm.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/kdb.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/vmmeter.h>
59 #include <sys/proc.h>
60 #include <sys/sbuf.h>
61 #include <sys/sysctl.h>
62 #include <sys/time.h>
63 #include <sys/vmem.h>
64 
65 #include <vm/vm.h>
66 #include <vm/pmap.h>
67 #include <vm/vm_pageout.h>
68 #include <vm/vm_param.h>
69 #include <vm/vm_kern.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_page.h>
73 #include <vm/uma.h>
74 #include <vm/uma_int.h>
75 #include <vm/uma_dbg.h>
76 
77 #ifdef DEBUG_MEMGUARD
78 #include <vm/memguard.h>
79 #endif
80 #ifdef DEBUG_REDZONE
81 #include <vm/redzone.h>
82 #endif
83 
84 #if defined(INVARIANTS) && defined(__i386__)
85 #include <machine/cpu.h>
86 #endif
87 
88 #include <ddb/ddb.h>
89 
90 #ifdef KDTRACE_HOOKS
91 #include <sys/dtrace_bsd.h>
92 
93 dtrace_malloc_probe_func_t	dtrace_malloc_probe;
94 #endif
95 
96 /*
97  * When realloc() is called, if the new size is sufficiently smaller than
98  * the old size, realloc() will allocate a new, smaller block to avoid
99  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
100  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
101  */
102 #ifndef REALLOC_FRACTION
103 #define	REALLOC_FRACTION	1	/* new block if <= half the size */
104 #endif
105 
106 /*
107  * Centrally define some common malloc types.
108  */
109 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
110 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
111 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
112 
113 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
114 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
115 
116 static struct malloc_type *kmemstatistics;
117 static int kmemcount;
118 
119 #define KMEM_ZSHIFT	4
120 #define KMEM_ZBASE	16
121 #define KMEM_ZMASK	(KMEM_ZBASE - 1)
122 
123 #define KMEM_ZMAX	PAGE_SIZE
124 #define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
125 static uint8_t kmemsize[KMEM_ZSIZE + 1];
126 
127 #ifndef MALLOC_DEBUG_MAXZONES
128 #define	MALLOC_DEBUG_MAXZONES	1
129 #endif
130 static int numzones = MALLOC_DEBUG_MAXZONES;
131 
132 /*
133  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
134  * of various sizes.
135  *
136  * XXX: The comment here used to read "These won't be powers of two for
137  * long."  It's possible that a significant amount of wasted memory could be
138  * recovered by tuning the sizes of these buckets.
139  */
140 struct {
141 	int kz_size;
142 	char *kz_name;
143 	uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
144 } kmemzones[] = {
145 	{16, "16", },
146 	{32, "32", },
147 	{64, "64", },
148 	{128, "128", },
149 	{256, "256", },
150 	{512, "512", },
151 	{1024, "1024", },
152 	{2048, "2048", },
153 	{4096, "4096", },
154 #if PAGE_SIZE > 4096
155 	{8192, "8192", },
156 #if PAGE_SIZE > 8192
157 	{16384, "16384", },
158 #if PAGE_SIZE > 16384
159 	{32768, "32768", },
160 #if PAGE_SIZE > 32768
161 	{65536, "65536", },
162 #if PAGE_SIZE > 65536
163 #error	"Unsupported PAGE_SIZE"
164 #endif	/* 65536 */
165 #endif	/* 32768 */
166 #endif	/* 16384 */
167 #endif	/* 8192 */
168 #endif	/* 4096 */
169 	{0, NULL},
170 };
171 
172 /*
173  * Zone to allocate malloc type descriptions from.  For ABI reasons, memory
174  * types are described by a data structure passed by the declaring code, but
175  * the malloc(9) implementation has its own data structure describing the
176  * type and statistics.  This permits the malloc(9)-internal data structures
177  * to be modified without breaking binary-compiled kernel modules that
178  * declare malloc types.
179  */
180 static uma_zone_t mt_zone;
181 
182 u_long vm_kmem_size;
183 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
184     "Size of kernel memory");
185 
186 static u_long vm_kmem_size_min;
187 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
188     "Minimum size of kernel memory");
189 
190 static u_long vm_kmem_size_max;
191 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
192     "Maximum size of kernel memory");
193 
194 static u_int vm_kmem_size_scale;
195 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
196     "Scale factor for kernel memory size");
197 
198 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
199 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
200     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
201     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
202 
203 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
204 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
205     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
206     sysctl_kmem_map_free, "LU", "Free space in kmem");
207 
208 /*
209  * The malloc_mtx protects the kmemstatistics linked list.
210  */
211 struct mtx malloc_mtx;
212 
213 #ifdef MALLOC_PROFILE
214 uint64_t krequests[KMEM_ZSIZE + 1];
215 
216 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
217 #endif
218 
219 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
220 
221 /*
222  * time_uptime of the last malloc(9) failure (induced or real).
223  */
224 static time_t t_malloc_fail;
225 
226 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
227 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
228     "Kernel malloc debugging options");
229 #endif
230 
231 /*
232  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
233  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
234  */
235 #ifdef MALLOC_MAKE_FAILURES
236 static int malloc_failure_rate;
237 static int malloc_nowait_count;
238 static int malloc_failure_count;
239 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
240     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
241 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
242     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
243 #endif
244 
245 static int
246 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
247 {
248 	u_long size;
249 
250 	size = vmem_size(kmem_arena, VMEM_ALLOC);
251 	return (sysctl_handle_long(oidp, &size, 0, req));
252 }
253 
254 static int
255 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
256 {
257 	u_long size;
258 
259 	size = vmem_size(kmem_arena, VMEM_FREE);
260 	return (sysctl_handle_long(oidp, &size, 0, req));
261 }
262 
263 /*
264  * malloc(9) uma zone separation -- sub-page buffer overruns in one
265  * malloc type will affect only a subset of other malloc types.
266  */
267 #if MALLOC_DEBUG_MAXZONES > 1
268 static void
269 tunable_set_numzones(void)
270 {
271 
272 	TUNABLE_INT_FETCH("debug.malloc.numzones",
273 	    &numzones);
274 
275 	/* Sanity check the number of malloc uma zones. */
276 	if (numzones <= 0)
277 		numzones = 1;
278 	if (numzones > MALLOC_DEBUG_MAXZONES)
279 		numzones = MALLOC_DEBUG_MAXZONES;
280 }
281 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
282 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
283     &numzones, 0, "Number of malloc uma subzones");
284 
285 /*
286  * Any number that changes regularly is an okay choice for the
287  * offset.  Build numbers are pretty good of you have them.
288  */
289 static u_int zone_offset = __FreeBSD_version;
290 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
291 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
292     &zone_offset, 0, "Separate malloc types by examining the "
293     "Nth character in the malloc type short description.");
294 
295 static u_int
296 mtp_get_subzone(const char *desc)
297 {
298 	size_t len;
299 	u_int val;
300 
301 	if (desc == NULL || (len = strlen(desc)) == 0)
302 		return (0);
303 	val = desc[zone_offset % len];
304 	return (val % numzones);
305 }
306 #elif MALLOC_DEBUG_MAXZONES == 0
307 #error "MALLOC_DEBUG_MAXZONES must be positive."
308 #else
309 static inline u_int
310 mtp_get_subzone(const char *desc)
311 {
312 
313 	return (0);
314 }
315 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
316 
317 int
318 malloc_last_fail(void)
319 {
320 
321 	return (time_uptime - t_malloc_fail);
322 }
323 
324 /*
325  * An allocation has succeeded -- update malloc type statistics for the
326  * amount of bucket size.  Occurs within a critical section so that the
327  * thread isn't preempted and doesn't migrate while updating per-PCU
328  * statistics.
329  */
330 static void
331 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
332     int zindx)
333 {
334 	struct malloc_type_internal *mtip;
335 	struct malloc_type_stats *mtsp;
336 
337 	critical_enter();
338 	mtip = mtp->ks_handle;
339 	mtsp = &mtip->mti_stats[curcpu];
340 	if (size > 0) {
341 		mtsp->mts_memalloced += size;
342 		mtsp->mts_numallocs++;
343 	}
344 	if (zindx != -1)
345 		mtsp->mts_size |= 1 << zindx;
346 
347 #ifdef KDTRACE_HOOKS
348 	if (dtrace_malloc_probe != NULL) {
349 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
350 		if (probe_id != 0)
351 			(dtrace_malloc_probe)(probe_id,
352 			    (uintptr_t) mtp, (uintptr_t) mtip,
353 			    (uintptr_t) mtsp, size, zindx);
354 	}
355 #endif
356 
357 	critical_exit();
358 }
359 
360 void
361 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
362 {
363 
364 	if (size > 0)
365 		malloc_type_zone_allocated(mtp, size, -1);
366 }
367 
368 /*
369  * A free operation has occurred -- update malloc type statistics for the
370  * amount of the bucket size.  Occurs within a critical section so that the
371  * thread isn't preempted and doesn't migrate while updating per-CPU
372  * statistics.
373  */
374 void
375 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
376 {
377 	struct malloc_type_internal *mtip;
378 	struct malloc_type_stats *mtsp;
379 
380 	critical_enter();
381 	mtip = mtp->ks_handle;
382 	mtsp = &mtip->mti_stats[curcpu];
383 	mtsp->mts_memfreed += size;
384 	mtsp->mts_numfrees++;
385 
386 #ifdef KDTRACE_HOOKS
387 	if (dtrace_malloc_probe != NULL) {
388 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
389 		if (probe_id != 0)
390 			(dtrace_malloc_probe)(probe_id,
391 			    (uintptr_t) mtp, (uintptr_t) mtip,
392 			    (uintptr_t) mtsp, size, 0);
393 	}
394 #endif
395 
396 	critical_exit();
397 }
398 
399 /*
400  *	contigmalloc:
401  *
402  *	Allocate a block of physically contiguous memory.
403  *
404  *	If M_NOWAIT is set, this routine will not block and return NULL if
405  *	the allocation fails.
406  */
407 void *
408 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
409     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
410     vm_paddr_t boundary)
411 {
412 	void *ret;
413 
414 	ret = (void *)kmem_alloc_contig(kernel_arena, size, flags, low, high,
415 	    alignment, boundary, VM_MEMATTR_DEFAULT);
416 	if (ret != NULL)
417 		malloc_type_allocated(type, round_page(size));
418 	return (ret);
419 }
420 
421 /*
422  *	contigfree:
423  *
424  *	Free a block of memory allocated by contigmalloc.
425  *
426  *	This routine may not block.
427  */
428 void
429 contigfree(void *addr, unsigned long size, struct malloc_type *type)
430 {
431 
432 	kmem_free(kernel_arena, (vm_offset_t)addr, size);
433 	malloc_type_freed(type, round_page(size));
434 }
435 
436 /*
437  *	malloc:
438  *
439  *	Allocate a block of memory.
440  *
441  *	If M_NOWAIT is set, this routine will not block and return NULL if
442  *	the allocation fails.
443  */
444 void *
445 malloc(unsigned long size, struct malloc_type *mtp, int flags)
446 {
447 	int indx;
448 	struct malloc_type_internal *mtip;
449 	caddr_t va;
450 	uma_zone_t zone;
451 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
452 	unsigned long osize = size;
453 #endif
454 
455 #ifdef INVARIANTS
456 	KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
457 	/*
458 	 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
459 	 */
460 	indx = flags & (M_WAITOK | M_NOWAIT);
461 	if (indx != M_NOWAIT && indx != M_WAITOK) {
462 		static	struct timeval lasterr;
463 		static	int curerr, once;
464 		if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
465 			printf("Bad malloc flags: %x\n", indx);
466 			kdb_backtrace();
467 			flags |= M_WAITOK;
468 			once++;
469 		}
470 	}
471 #endif
472 #ifdef MALLOC_MAKE_FAILURES
473 	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
474 		atomic_add_int(&malloc_nowait_count, 1);
475 		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
476 			atomic_add_int(&malloc_failure_count, 1);
477 			t_malloc_fail = time_uptime;
478 			return (NULL);
479 		}
480 	}
481 #endif
482 	if (flags & M_WAITOK)
483 		KASSERT(curthread->td_intr_nesting_level == 0,
484 		   ("malloc(M_WAITOK) in interrupt context"));
485 
486 #ifdef DEBUG_MEMGUARD
487 	if (memguard_cmp_mtp(mtp, size)) {
488 		va = memguard_alloc(size, flags);
489 		if (va != NULL)
490 			return (va);
491 		/* This is unfortunate but should not be fatal. */
492 	}
493 #endif
494 
495 #ifdef DEBUG_REDZONE
496 	size = redzone_size_ntor(size);
497 #endif
498 
499 	if (size <= KMEM_ZMAX) {
500 		mtip = mtp->ks_handle;
501 		if (size & KMEM_ZMASK)
502 			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
503 		indx = kmemsize[size >> KMEM_ZSHIFT];
504 		KASSERT(mtip->mti_zone < numzones,
505 		    ("mti_zone %u out of range %d",
506 		    mtip->mti_zone, numzones));
507 		zone = kmemzones[indx].kz_zone[mtip->mti_zone];
508 #ifdef MALLOC_PROFILE
509 		krequests[size >> KMEM_ZSHIFT]++;
510 #endif
511 		va = uma_zalloc(zone, flags);
512 		if (va != NULL)
513 			size = zone->uz_size;
514 		malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
515 	} else {
516 		size = roundup(size, PAGE_SIZE);
517 		zone = NULL;
518 		va = uma_large_malloc(size, flags);
519 		malloc_type_allocated(mtp, va == NULL ? 0 : size);
520 	}
521 	if (flags & M_WAITOK)
522 		KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
523 	else if (va == NULL)
524 		t_malloc_fail = time_uptime;
525 #ifdef DIAGNOSTIC
526 	if (va != NULL && !(flags & M_ZERO)) {
527 		memset(va, 0x70, osize);
528 	}
529 #endif
530 #ifdef DEBUG_REDZONE
531 	if (va != NULL)
532 		va = redzone_setup(va, osize);
533 #endif
534 	return ((void *) va);
535 }
536 
537 /*
538  *	free:
539  *
540  *	Free a block of memory allocated by malloc.
541  *
542  *	This routine may not block.
543  */
544 void
545 free(void *addr, struct malloc_type *mtp)
546 {
547 	uma_slab_t slab;
548 	u_long size;
549 
550 	KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
551 
552 	/* free(NULL, ...) does nothing */
553 	if (addr == NULL)
554 		return;
555 
556 #ifdef DEBUG_MEMGUARD
557 	if (is_memguard_addr(addr)) {
558 		memguard_free(addr);
559 		return;
560 	}
561 #endif
562 
563 #ifdef DEBUG_REDZONE
564 	redzone_check(addr);
565 	addr = redzone_addr_ntor(addr);
566 #endif
567 
568 	slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
569 
570 	if (slab == NULL)
571 		panic("free: address %p(%p) has not been allocated.\n",
572 		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
573 
574 	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
575 #ifdef INVARIANTS
576 		struct malloc_type **mtpp = addr;
577 #endif
578 		size = slab->us_keg->uk_size;
579 #ifdef INVARIANTS
580 		/*
581 		 * Cache a pointer to the malloc_type that most recently freed
582 		 * this memory here.  This way we know who is most likely to
583 		 * have stepped on it later.
584 		 *
585 		 * This code assumes that size is a multiple of 8 bytes for
586 		 * 64 bit machines
587 		 */
588 		mtpp = (struct malloc_type **)
589 		    ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
590 		mtpp += (size - sizeof(struct malloc_type *)) /
591 		    sizeof(struct malloc_type *);
592 		*mtpp = mtp;
593 #endif
594 		uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
595 	} else {
596 		size = slab->us_size;
597 		uma_large_free(slab);
598 	}
599 	malloc_type_freed(mtp, size);
600 }
601 
602 /*
603  *	realloc: change the size of a memory block
604  */
605 void *
606 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
607 {
608 	uma_slab_t slab;
609 	unsigned long alloc;
610 	void *newaddr;
611 
612 	KASSERT(mtp->ks_magic == M_MAGIC,
613 	    ("realloc: bad malloc type magic"));
614 
615 	/* realloc(NULL, ...) is equivalent to malloc(...) */
616 	if (addr == NULL)
617 		return (malloc(size, mtp, flags));
618 
619 	/*
620 	 * XXX: Should report free of old memory and alloc of new memory to
621 	 * per-CPU stats.
622 	 */
623 
624 #ifdef DEBUG_MEMGUARD
625 	if (is_memguard_addr(addr))
626 		return (memguard_realloc(addr, size, mtp, flags));
627 #endif
628 
629 #ifdef DEBUG_REDZONE
630 	slab = NULL;
631 	alloc = redzone_get_size(addr);
632 #else
633 	slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
634 
635 	/* Sanity check */
636 	KASSERT(slab != NULL,
637 	    ("realloc: address %p out of range", (void *)addr));
638 
639 	/* Get the size of the original block */
640 	if (!(slab->us_flags & UMA_SLAB_MALLOC))
641 		alloc = slab->us_keg->uk_size;
642 	else
643 		alloc = slab->us_size;
644 
645 	/* Reuse the original block if appropriate */
646 	if (size <= alloc
647 	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
648 		return (addr);
649 #endif /* !DEBUG_REDZONE */
650 
651 	/* Allocate a new, bigger (or smaller) block */
652 	if ((newaddr = malloc(size, mtp, flags)) == NULL)
653 		return (NULL);
654 
655 	/* Copy over original contents */
656 	bcopy(addr, newaddr, min(size, alloc));
657 	free(addr, mtp);
658 	return (newaddr);
659 }
660 
661 /*
662  *	reallocf: same as realloc() but free memory on failure.
663  */
664 void *
665 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
666 {
667 	void *mem;
668 
669 	if ((mem = realloc(addr, size, mtp, flags)) == NULL)
670 		free(addr, mtp);
671 	return (mem);
672 }
673 
674 /*
675  * Wake the page daemon when we exhaust KVA.  It will call the lowmem handler
676  * and uma_reclaim() callbacks in a context that is safe.
677  */
678 static void
679 kmem_reclaim(vmem_t *vm, int flags)
680 {
681 
682 	pagedaemon_wakeup();
683 }
684 
685 #ifndef __sparc64__
686 CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
687 #endif
688 
689 /*
690  * Initialize the kernel memory (kmem) arena.
691  */
692 void
693 kmeminit(void)
694 {
695 	u_long mem_size;
696 	u_long tmp;
697 
698 #ifdef VM_KMEM_SIZE
699 	if (vm_kmem_size == 0)
700 		vm_kmem_size = VM_KMEM_SIZE;
701 #endif
702 #ifdef VM_KMEM_SIZE_MIN
703 	if (vm_kmem_size_min == 0)
704 		vm_kmem_size_min = VM_KMEM_SIZE_MIN;
705 #endif
706 #ifdef VM_KMEM_SIZE_MAX
707 	if (vm_kmem_size_max == 0)
708 		vm_kmem_size_max = VM_KMEM_SIZE_MAX;
709 #endif
710 	/*
711 	 * Calculate the amount of kernel virtual address (KVA) space that is
712 	 * preallocated to the kmem arena.  In order to support a wide range
713 	 * of machines, it is a function of the physical memory size,
714 	 * specifically,
715 	 *
716 	 *	min(max(physical memory size / VM_KMEM_SIZE_SCALE,
717 	 *	    VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
718 	 *
719 	 * Every architecture must define an integral value for
720 	 * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
721 	 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
722 	 * ceiling on this preallocation, are optional.  Typically,
723 	 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
724 	 * a given architecture.
725 	 */
726 	mem_size = vm_cnt.v_page_count;
727 
728 	if (vm_kmem_size_scale < 1)
729 		vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
730 
731 	/*
732 	 * Check if we should use defaults for the "vm_kmem_size"
733 	 * variable:
734 	 */
735 	if (vm_kmem_size == 0) {
736 		vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
737 
738 		if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
739 			vm_kmem_size = vm_kmem_size_min;
740 		if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
741 			vm_kmem_size = vm_kmem_size_max;
742 	}
743 
744 	/*
745 	 * The amount of KVA space that is preallocated to the
746 	 * kmem arena can be set statically at compile-time or manually
747 	 * through the kernel environment.  However, it is still limited to
748 	 * twice the physical memory size, which has been sufficient to handle
749 	 * the most severe cases of external fragmentation in the kmem arena.
750 	 */
751 	if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
752 		vm_kmem_size = 2 * mem_size * PAGE_SIZE;
753 
754 	vm_kmem_size = round_page(vm_kmem_size);
755 #ifdef DEBUG_MEMGUARD
756 	tmp = memguard_fudge(vm_kmem_size, kernel_map);
757 #else
758 	tmp = vm_kmem_size;
759 #endif
760 	vmem_init(kmem_arena, "kmem arena", kva_alloc(tmp), tmp, PAGE_SIZE,
761 	    0, 0);
762 	vmem_set_reclaim(kmem_arena, kmem_reclaim);
763 
764 #ifdef DEBUG_MEMGUARD
765 	/*
766 	 * Initialize MemGuard if support compiled in.  MemGuard is a
767 	 * replacement allocator used for detecting tamper-after-free
768 	 * scenarios as they occur.  It is only used for debugging.
769 	 */
770 	memguard_init(kmem_arena);
771 #endif
772 }
773 
774 /*
775  * Initialize the kernel memory allocator
776  */
777 /* ARGSUSED*/
778 static void
779 mallocinit(void *dummy)
780 {
781 	int i;
782 	uint8_t indx;
783 
784 	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
785 
786 	kmeminit();
787 
788 	uma_startup2();
789 
790 	mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
791 #ifdef INVARIANTS
792 	    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
793 #else
794 	    NULL, NULL, NULL, NULL,
795 #endif
796 	    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
797 	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
798 		int size = kmemzones[indx].kz_size;
799 		char *name = kmemzones[indx].kz_name;
800 		int subzone;
801 
802 		for (subzone = 0; subzone < numzones; subzone++) {
803 			kmemzones[indx].kz_zone[subzone] =
804 			    uma_zcreate(name, size,
805 #ifdef INVARIANTS
806 			    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
807 #else
808 			    NULL, NULL, NULL, NULL,
809 #endif
810 			    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
811 		}
812 		for (;i <= size; i+= KMEM_ZBASE)
813 			kmemsize[i >> KMEM_ZSHIFT] = indx;
814 
815 	}
816 }
817 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
818 
819 void
820 malloc_init(void *data)
821 {
822 	struct malloc_type_internal *mtip;
823 	struct malloc_type *mtp;
824 
825 	KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
826 
827 	mtp = data;
828 	if (mtp->ks_magic != M_MAGIC)
829 		panic("malloc_init: bad malloc type magic");
830 
831 	mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
832 	mtp->ks_handle = mtip;
833 	mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
834 
835 	mtx_lock(&malloc_mtx);
836 	mtp->ks_next = kmemstatistics;
837 	kmemstatistics = mtp;
838 	kmemcount++;
839 	mtx_unlock(&malloc_mtx);
840 }
841 
842 void
843 malloc_uninit(void *data)
844 {
845 	struct malloc_type_internal *mtip;
846 	struct malloc_type_stats *mtsp;
847 	struct malloc_type *mtp, *temp;
848 	uma_slab_t slab;
849 	long temp_allocs, temp_bytes;
850 	int i;
851 
852 	mtp = data;
853 	KASSERT(mtp->ks_magic == M_MAGIC,
854 	    ("malloc_uninit: bad malloc type magic"));
855 	KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
856 
857 	mtx_lock(&malloc_mtx);
858 	mtip = mtp->ks_handle;
859 	mtp->ks_handle = NULL;
860 	if (mtp != kmemstatistics) {
861 		for (temp = kmemstatistics; temp != NULL;
862 		    temp = temp->ks_next) {
863 			if (temp->ks_next == mtp) {
864 				temp->ks_next = mtp->ks_next;
865 				break;
866 			}
867 		}
868 		KASSERT(temp,
869 		    ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
870 	} else
871 		kmemstatistics = mtp->ks_next;
872 	kmemcount--;
873 	mtx_unlock(&malloc_mtx);
874 
875 	/*
876 	 * Look for memory leaks.
877 	 */
878 	temp_allocs = temp_bytes = 0;
879 	for (i = 0; i < MAXCPU; i++) {
880 		mtsp = &mtip->mti_stats[i];
881 		temp_allocs += mtsp->mts_numallocs;
882 		temp_allocs -= mtsp->mts_numfrees;
883 		temp_bytes += mtsp->mts_memalloced;
884 		temp_bytes -= mtsp->mts_memfreed;
885 	}
886 	if (temp_allocs > 0 || temp_bytes > 0) {
887 		printf("Warning: memory type %s leaked memory on destroy "
888 		    "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
889 		    temp_allocs, temp_bytes);
890 	}
891 
892 	slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
893 	uma_zfree_arg(mt_zone, mtip, slab);
894 }
895 
896 struct malloc_type *
897 malloc_desc2type(const char *desc)
898 {
899 	struct malloc_type *mtp;
900 
901 	mtx_assert(&malloc_mtx, MA_OWNED);
902 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
903 		if (strcmp(mtp->ks_shortdesc, desc) == 0)
904 			return (mtp);
905 	}
906 	return (NULL);
907 }
908 
909 static int
910 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
911 {
912 	struct malloc_type_stream_header mtsh;
913 	struct malloc_type_internal *mtip;
914 	struct malloc_type_header mth;
915 	struct malloc_type *mtp;
916 	int error, i;
917 	struct sbuf sbuf;
918 
919 	error = sysctl_wire_old_buffer(req, 0);
920 	if (error != 0)
921 		return (error);
922 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
923 	mtx_lock(&malloc_mtx);
924 
925 	/*
926 	 * Insert stream header.
927 	 */
928 	bzero(&mtsh, sizeof(mtsh));
929 	mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
930 	mtsh.mtsh_maxcpus = MAXCPU;
931 	mtsh.mtsh_count = kmemcount;
932 	(void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
933 
934 	/*
935 	 * Insert alternating sequence of type headers and type statistics.
936 	 */
937 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
938 		mtip = (struct malloc_type_internal *)mtp->ks_handle;
939 
940 		/*
941 		 * Insert type header.
942 		 */
943 		bzero(&mth, sizeof(mth));
944 		strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
945 		(void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
946 
947 		/*
948 		 * Insert type statistics for each CPU.
949 		 */
950 		for (i = 0; i < MAXCPU; i++) {
951 			(void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
952 			    sizeof(mtip->mti_stats[i]));
953 		}
954 	}
955 	mtx_unlock(&malloc_mtx);
956 	error = sbuf_finish(&sbuf);
957 	sbuf_delete(&sbuf);
958 	return (error);
959 }
960 
961 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
962     0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
963     "Return malloc types");
964 
965 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
966     "Count of kernel malloc types");
967 
968 void
969 malloc_type_list(malloc_type_list_func_t *func, void *arg)
970 {
971 	struct malloc_type *mtp, **bufmtp;
972 	int count, i;
973 	size_t buflen;
974 
975 	mtx_lock(&malloc_mtx);
976 restart:
977 	mtx_assert(&malloc_mtx, MA_OWNED);
978 	count = kmemcount;
979 	mtx_unlock(&malloc_mtx);
980 
981 	buflen = sizeof(struct malloc_type *) * count;
982 	bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
983 
984 	mtx_lock(&malloc_mtx);
985 
986 	if (count < kmemcount) {
987 		free(bufmtp, M_TEMP);
988 		goto restart;
989 	}
990 
991 	for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
992 		bufmtp[i] = mtp;
993 
994 	mtx_unlock(&malloc_mtx);
995 
996 	for (i = 0; i < count; i++)
997 		(func)(bufmtp[i], arg);
998 
999 	free(bufmtp, M_TEMP);
1000 }
1001 
1002 #ifdef DDB
1003 DB_SHOW_COMMAND(malloc, db_show_malloc)
1004 {
1005 	struct malloc_type_internal *mtip;
1006 	struct malloc_type *mtp;
1007 	uint64_t allocs, frees;
1008 	uint64_t alloced, freed;
1009 	int i;
1010 
1011 	db_printf("%18s %12s  %12s %12s\n", "Type", "InUse", "MemUse",
1012 	    "Requests");
1013 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1014 		mtip = (struct malloc_type_internal *)mtp->ks_handle;
1015 		allocs = 0;
1016 		frees = 0;
1017 		alloced = 0;
1018 		freed = 0;
1019 		for (i = 0; i < MAXCPU; i++) {
1020 			allocs += mtip->mti_stats[i].mts_numallocs;
1021 			frees += mtip->mti_stats[i].mts_numfrees;
1022 			alloced += mtip->mti_stats[i].mts_memalloced;
1023 			freed += mtip->mti_stats[i].mts_memfreed;
1024 		}
1025 		db_printf("%18s %12ju %12juK %12ju\n",
1026 		    mtp->ks_shortdesc, allocs - frees,
1027 		    (alloced - freed + 1023) / 1024, allocs);
1028 		if (db_pager_quit)
1029 			break;
1030 	}
1031 }
1032 
1033 #if MALLOC_DEBUG_MAXZONES > 1
1034 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
1035 {
1036 	struct malloc_type_internal *mtip;
1037 	struct malloc_type *mtp;
1038 	u_int subzone;
1039 
1040 	if (!have_addr) {
1041 		db_printf("Usage: show multizone_matches <malloc type/addr>\n");
1042 		return;
1043 	}
1044 	mtp = (void *)addr;
1045 	if (mtp->ks_magic != M_MAGIC) {
1046 		db_printf("Magic %lx does not match expected %x\n",
1047 		    mtp->ks_magic, M_MAGIC);
1048 		return;
1049 	}
1050 
1051 	mtip = mtp->ks_handle;
1052 	subzone = mtip->mti_zone;
1053 
1054 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1055 		mtip = mtp->ks_handle;
1056 		if (mtip->mti_zone != subzone)
1057 			continue;
1058 		db_printf("%s\n", mtp->ks_shortdesc);
1059 		if (db_pager_quit)
1060 			break;
1061 	}
1062 }
1063 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
1064 #endif /* DDB */
1065 
1066 #ifdef MALLOC_PROFILE
1067 
1068 static int
1069 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
1070 {
1071 	struct sbuf sbuf;
1072 	uint64_t count;
1073 	uint64_t waste;
1074 	uint64_t mem;
1075 	int error;
1076 	int rsize;
1077 	int size;
1078 	int i;
1079 
1080 	waste = 0;
1081 	mem = 0;
1082 
1083 	error = sysctl_wire_old_buffer(req, 0);
1084 	if (error != 0)
1085 		return (error);
1086 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1087 	sbuf_printf(&sbuf,
1088 	    "\n  Size                    Requests  Real Size\n");
1089 	for (i = 0; i < KMEM_ZSIZE; i++) {
1090 		size = i << KMEM_ZSHIFT;
1091 		rsize = kmemzones[kmemsize[i]].kz_size;
1092 		count = (long long unsigned)krequests[i];
1093 
1094 		sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
1095 		    (unsigned long long)count, rsize);
1096 
1097 		if ((rsize * count) > (size * count))
1098 			waste += (rsize * count) - (size * count);
1099 		mem += (rsize * count);
1100 	}
1101 	sbuf_printf(&sbuf,
1102 	    "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
1103 	    (unsigned long long)mem, (unsigned long long)waste);
1104 	error = sbuf_finish(&sbuf);
1105 	sbuf_delete(&sbuf);
1106 	return (error);
1107 }
1108 
1109 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
1110     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
1111 #endif /* MALLOC_PROFILE */
1112