1 /*- 2 * Copyright (c) 1987, 1991, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2005-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 32 */ 33 34 /* 35 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 36 * based on memory types. Back end is implemented using the UMA(9) zone 37 * allocator. A set of fixed-size buckets are used for smaller allocations, 38 * and a special UMA allocation interface is used for larger allocations. 39 * Callers declare memory types, and statistics are maintained independently 40 * for each memory type. Statistics are maintained per-CPU for performance 41 * reasons. See malloc(9) and comments in malloc.h for a detailed 42 * description. 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_ddb.h" 49 #include "opt_vm.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/kdb.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/mutex.h> 59 #include <sys/vmmeter.h> 60 #include <sys/proc.h> 61 #include <sys/sbuf.h> 62 #include <sys/sysctl.h> 63 #include <sys/time.h> 64 65 #include <vm/vm.h> 66 #include <vm/pmap.h> 67 #include <vm/vm_param.h> 68 #include <vm/vm_kern.h> 69 #include <vm/vm_extern.h> 70 #include <vm/vm_map.h> 71 #include <vm/vm_page.h> 72 #include <vm/uma.h> 73 #include <vm/uma_int.h> 74 #include <vm/uma_dbg.h> 75 76 #ifdef DEBUG_MEMGUARD 77 #include <vm/memguard.h> 78 #endif 79 #ifdef DEBUG_REDZONE 80 #include <vm/redzone.h> 81 #endif 82 83 #if defined(INVARIANTS) && defined(__i386__) 84 #include <machine/cpu.h> 85 #endif 86 87 #include <ddb/ddb.h> 88 89 /* 90 * When realloc() is called, if the new size is sufficiently smaller than 91 * the old size, realloc() will allocate a new, smaller block to avoid 92 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 93 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 94 */ 95 #ifndef REALLOC_FRACTION 96 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 97 #endif 98 99 /* 100 * Centrally define some common malloc types. 101 */ 102 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 103 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 104 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 105 106 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 107 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 108 109 static void kmeminit(void *); 110 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 111 112 static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); 113 114 static struct malloc_type *kmemstatistics; 115 static char *kmembase; 116 static char *kmemlimit; 117 static int kmemcount; 118 119 #define KMEM_ZSHIFT 4 120 #define KMEM_ZBASE 16 121 #define KMEM_ZMASK (KMEM_ZBASE - 1) 122 123 #define KMEM_ZMAX PAGE_SIZE 124 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 125 static u_int8_t kmemsize[KMEM_ZSIZE + 1]; 126 127 /* 128 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 129 * of various sizes. 130 * 131 * XXX: The comment here used to read "These won't be powers of two for 132 * long." It's possible that a significant amount of wasted memory could be 133 * recovered by tuning the sizes of these buckets. 134 */ 135 struct { 136 int kz_size; 137 char *kz_name; 138 uma_zone_t kz_zone; 139 } kmemzones[] = { 140 {16, "16", NULL}, 141 {32, "32", NULL}, 142 {64, "64", NULL}, 143 {128, "128", NULL}, 144 {256, "256", NULL}, 145 {512, "512", NULL}, 146 {1024, "1024", NULL}, 147 {2048, "2048", NULL}, 148 {4096, "4096", NULL}, 149 #if PAGE_SIZE > 4096 150 {8192, "8192", NULL}, 151 #if PAGE_SIZE > 8192 152 {16384, "16384", NULL}, 153 #if PAGE_SIZE > 16384 154 {32768, "32768", NULL}, 155 #if PAGE_SIZE > 32768 156 {65536, "65536", NULL}, 157 #if PAGE_SIZE > 65536 158 #error "Unsupported PAGE_SIZE" 159 #endif /* 65536 */ 160 #endif /* 32768 */ 161 #endif /* 16384 */ 162 #endif /* 8192 */ 163 #endif /* 4096 */ 164 {0, NULL}, 165 }; 166 167 /* 168 * Zone to allocate malloc type descriptions from. For ABI reasons, memory 169 * types are described by a data structure passed by the declaring code, but 170 * the malloc(9) implementation has its own data structure describing the 171 * type and statistics. This permits the malloc(9)-internal data structures 172 * to be modified without breaking binary-compiled kernel modules that 173 * declare malloc types. 174 */ 175 static uma_zone_t mt_zone; 176 177 u_int vm_kmem_size; 178 SYSCTL_UINT(_vm, OID_AUTO, kmem_size, CTLFLAG_RD, &vm_kmem_size, 0, 179 "Size of kernel memory"); 180 181 u_int vm_kmem_size_min; 182 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RD, &vm_kmem_size_min, 0, 183 "Minimum size of kernel memory"); 184 185 u_int vm_kmem_size_max; 186 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RD, &vm_kmem_size_max, 0, 187 "Maximum size of kernel memory"); 188 189 u_int vm_kmem_size_scale; 190 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RD, &vm_kmem_size_scale, 0, 191 "Scale factor for kernel memory size"); 192 193 /* 194 * The malloc_mtx protects the kmemstatistics linked list. 195 */ 196 struct mtx malloc_mtx; 197 198 #ifdef MALLOC_PROFILE 199 uint64_t krequests[KMEM_ZSIZE + 1]; 200 201 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 202 #endif 203 204 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 205 206 /* 207 * time_uptime of the last malloc(9) failure (induced or real). 208 */ 209 static time_t t_malloc_fail; 210 211 /* 212 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 213 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 214 */ 215 #ifdef MALLOC_MAKE_FAILURES 216 SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0, 217 "Kernel malloc debugging options"); 218 219 static int malloc_failure_rate; 220 static int malloc_nowait_count; 221 static int malloc_failure_count; 222 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW, 223 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 224 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate); 225 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 226 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 227 #endif 228 229 int 230 malloc_last_fail(void) 231 { 232 233 return (time_uptime - t_malloc_fail); 234 } 235 236 /* 237 * An allocation has succeeded -- update malloc type statistics for the 238 * amount of bucket size. Occurs within a critical section so that the 239 * thread isn't preempted and doesn't migrate while updating per-PCU 240 * statistics. 241 */ 242 static void 243 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 244 int zindx) 245 { 246 struct malloc_type_internal *mtip; 247 struct malloc_type_stats *mtsp; 248 249 critical_enter(); 250 mtip = mtp->ks_handle; 251 mtsp = &mtip->mti_stats[curcpu]; 252 if (size > 0) { 253 mtsp->mts_memalloced += size; 254 mtsp->mts_numallocs++; 255 } 256 if (zindx != -1) 257 mtsp->mts_size |= 1 << zindx; 258 critical_exit(); 259 } 260 261 void 262 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 263 { 264 265 if (size > 0) 266 malloc_type_zone_allocated(mtp, size, -1); 267 } 268 269 /* 270 * A free operation has occurred -- update malloc type statistis for the 271 * amount of the bucket size. Occurs within a critical section so that the 272 * thread isn't preempted and doesn't migrate while updating per-CPU 273 * statistics. 274 */ 275 void 276 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 277 { 278 struct malloc_type_internal *mtip; 279 struct malloc_type_stats *mtsp; 280 281 critical_enter(); 282 mtip = mtp->ks_handle; 283 mtsp = &mtip->mti_stats[curcpu]; 284 mtsp->mts_memfreed += size; 285 mtsp->mts_numfrees++; 286 critical_exit(); 287 } 288 289 /* 290 * malloc: 291 * 292 * Allocate a block of memory. 293 * 294 * If M_NOWAIT is set, this routine will not block and return NULL if 295 * the allocation fails. 296 */ 297 void * 298 malloc(unsigned long size, struct malloc_type *mtp, int flags) 299 { 300 int indx; 301 caddr_t va; 302 uma_zone_t zone; 303 uma_keg_t keg; 304 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE) 305 unsigned long osize = size; 306 #endif 307 308 #ifdef INVARIANTS 309 /* 310 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 311 */ 312 indx = flags & (M_WAITOK | M_NOWAIT); 313 if (indx != M_NOWAIT && indx != M_WAITOK) { 314 static struct timeval lasterr; 315 static int curerr, once; 316 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 317 printf("Bad malloc flags: %x\n", indx); 318 kdb_backtrace(); 319 flags |= M_WAITOK; 320 once++; 321 } 322 } 323 #endif 324 #if 0 325 if (size == 0) 326 kdb_enter("zero size malloc"); 327 #endif 328 #ifdef MALLOC_MAKE_FAILURES 329 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 330 atomic_add_int(&malloc_nowait_count, 1); 331 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 332 atomic_add_int(&malloc_failure_count, 1); 333 t_malloc_fail = time_uptime; 334 return (NULL); 335 } 336 } 337 #endif 338 if (flags & M_WAITOK) 339 KASSERT(curthread->td_intr_nesting_level == 0, 340 ("malloc(M_WAITOK) in interrupt context")); 341 342 #ifdef DEBUG_MEMGUARD 343 if (memguard_cmp(mtp)) 344 return memguard_alloc(size, flags); 345 #endif 346 347 #ifdef DEBUG_REDZONE 348 size = redzone_size_ntor(size); 349 #endif 350 351 if (size <= KMEM_ZMAX) { 352 if (size & KMEM_ZMASK) 353 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 354 indx = kmemsize[size >> KMEM_ZSHIFT]; 355 zone = kmemzones[indx].kz_zone; 356 keg = zone->uz_keg; 357 #ifdef MALLOC_PROFILE 358 krequests[size >> KMEM_ZSHIFT]++; 359 #endif 360 va = uma_zalloc(zone, flags); 361 if (va != NULL) 362 size = keg->uk_size; 363 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 364 } else { 365 size = roundup(size, PAGE_SIZE); 366 zone = NULL; 367 keg = NULL; 368 va = uma_large_malloc(size, flags); 369 malloc_type_allocated(mtp, va == NULL ? 0 : size); 370 } 371 if (flags & M_WAITOK) 372 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 373 else if (va == NULL) 374 t_malloc_fail = time_uptime; 375 #ifdef DIAGNOSTIC 376 if (va != NULL && !(flags & M_ZERO)) { 377 memset(va, 0x70, osize); 378 } 379 #endif 380 #ifdef DEBUG_REDZONE 381 if (va != NULL) 382 va = redzone_setup(va, osize); 383 #endif 384 return ((void *) va); 385 } 386 387 /* 388 * free: 389 * 390 * Free a block of memory allocated by malloc. 391 * 392 * This routine may not block. 393 */ 394 void 395 free(void *addr, struct malloc_type *mtp) 396 { 397 uma_slab_t slab; 398 u_long size; 399 400 /* free(NULL, ...) does nothing */ 401 if (addr == NULL) 402 return; 403 404 #ifdef DEBUG_MEMGUARD 405 if (memguard_cmp(mtp)) { 406 memguard_free(addr); 407 return; 408 } 409 #endif 410 411 #ifdef DEBUG_REDZONE 412 redzone_check(addr); 413 addr = redzone_addr_ntor(addr); 414 #endif 415 416 size = 0; 417 418 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 419 420 if (slab == NULL) 421 panic("free: address %p(%p) has not been allocated.\n", 422 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 423 424 425 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 426 #ifdef INVARIANTS 427 struct malloc_type **mtpp = addr; 428 #endif 429 size = slab->us_keg->uk_size; 430 #ifdef INVARIANTS 431 /* 432 * Cache a pointer to the malloc_type that most recently freed 433 * this memory here. This way we know who is most likely to 434 * have stepped on it later. 435 * 436 * This code assumes that size is a multiple of 8 bytes for 437 * 64 bit machines 438 */ 439 mtpp = (struct malloc_type **) 440 ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 441 mtpp += (size - sizeof(struct malloc_type *)) / 442 sizeof(struct malloc_type *); 443 *mtpp = mtp; 444 #endif 445 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab); 446 } else { 447 size = slab->us_size; 448 uma_large_free(slab); 449 } 450 malloc_type_freed(mtp, size); 451 } 452 453 /* 454 * realloc: change the size of a memory block 455 */ 456 void * 457 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags) 458 { 459 uma_slab_t slab; 460 unsigned long alloc; 461 void *newaddr; 462 463 /* realloc(NULL, ...) is equivalent to malloc(...) */ 464 if (addr == NULL) 465 return (malloc(size, mtp, flags)); 466 467 /* 468 * XXX: Should report free of old memory and alloc of new memory to 469 * per-CPU stats. 470 */ 471 472 #ifdef DEBUG_MEMGUARD 473 if (memguard_cmp(mtp)) { 474 slab = NULL; 475 alloc = size; 476 } else { 477 #endif 478 479 #ifdef DEBUG_REDZONE 480 slab = NULL; 481 alloc = redzone_get_size(addr); 482 #else 483 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); 484 485 /* Sanity check */ 486 KASSERT(slab != NULL, 487 ("realloc: address %p out of range", (void *)addr)); 488 489 /* Get the size of the original block */ 490 if (!(slab->us_flags & UMA_SLAB_MALLOC)) 491 alloc = slab->us_keg->uk_size; 492 else 493 alloc = slab->us_size; 494 495 /* Reuse the original block if appropriate */ 496 if (size <= alloc 497 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 498 return (addr); 499 #endif /* !DEBUG_REDZONE */ 500 501 #ifdef DEBUG_MEMGUARD 502 } 503 #endif 504 505 /* Allocate a new, bigger (or smaller) block */ 506 if ((newaddr = malloc(size, mtp, flags)) == NULL) 507 return (NULL); 508 509 /* Copy over original contents */ 510 bcopy(addr, newaddr, min(size, alloc)); 511 free(addr, mtp); 512 return (newaddr); 513 } 514 515 /* 516 * reallocf: same as realloc() but free memory on failure. 517 */ 518 void * 519 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags) 520 { 521 void *mem; 522 523 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 524 free(addr, mtp); 525 return (mem); 526 } 527 528 /* 529 * Initialize the kernel memory allocator 530 */ 531 /* ARGSUSED*/ 532 static void 533 kmeminit(void *dummy) 534 { 535 u_int8_t indx; 536 u_long mem_size; 537 int i; 538 539 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 540 541 /* 542 * Try to auto-tune the kernel memory size, so that it is 543 * more applicable for a wider range of machine sizes. 544 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while 545 * a VM_KMEM_SIZE of 12MB is a fair compromise. The 546 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space 547 * available, and on an X86 with a total KVA space of 256MB, 548 * try to keep VM_KMEM_SIZE_MAX at 80MB or below. 549 * 550 * Note that the kmem_map is also used by the zone allocator, 551 * so make sure that there is enough space. 552 */ 553 vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE; 554 mem_size = VMCNT_GET(page_count); 555 556 #if defined(VM_KMEM_SIZE_SCALE) 557 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 558 #endif 559 TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale); 560 if (vm_kmem_size_scale > 0 && 561 (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE)) 562 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE; 563 564 #if defined(VM_KMEM_SIZE_MIN) 565 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 566 #endif 567 TUNABLE_INT_FETCH("vm.kmem_size_min", &vm_kmem_size_min); 568 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) { 569 vm_kmem_size = vm_kmem_size_min; 570 } 571 572 #if defined(VM_KMEM_SIZE_MAX) 573 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 574 #endif 575 TUNABLE_INT_FETCH("vm.kmem_size_max", &vm_kmem_size_max); 576 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 577 vm_kmem_size = vm_kmem_size_max; 578 579 /* Allow final override from the kernel environment */ 580 #ifndef BURN_BRIDGES 581 if (TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size) != 0) 582 printf("kern.vm.kmem.size is now called vm.kmem_size!\n"); 583 #endif 584 TUNABLE_INT_FETCH("vm.kmem_size", &vm_kmem_size); 585 586 /* 587 * Limit kmem virtual size to twice the physical memory. 588 * This allows for kmem map sparseness, but limits the size 589 * to something sane. Be careful to not overflow the 32bit 590 * ints while doing the check. 591 */ 592 if (((vm_kmem_size / 2) / PAGE_SIZE) > VMCNT_GET(page_count)) 593 vm_kmem_size = 2 * VMCNT_GET(page_count) * PAGE_SIZE; 594 595 /* 596 * Tune settings based on the kernel map's size at this time. 597 */ 598 init_param3(vm_kmem_size / PAGE_SIZE); 599 600 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase, 601 (vm_offset_t *)&kmemlimit, vm_kmem_size); 602 kmem_map->system_map = 1; 603 604 #ifdef DEBUG_MEMGUARD 605 /* 606 * Initialize MemGuard if support compiled in. MemGuard is a 607 * replacement allocator used for detecting tamper-after-free 608 * scenarios as they occur. It is only used for debugging. 609 */ 610 vm_memguard_divisor = 10; 611 TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor); 612 613 /* Pick a conservative value if provided value sucks. */ 614 if ((vm_memguard_divisor <= 0) || 615 ((vm_kmem_size / vm_memguard_divisor) == 0)) 616 vm_memguard_divisor = 10; 617 memguard_init(kmem_map, vm_kmem_size / vm_memguard_divisor); 618 #endif 619 620 uma_startup2(); 621 622 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal), 623 #ifdef INVARIANTS 624 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 625 #else 626 NULL, NULL, NULL, NULL, 627 #endif 628 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 629 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 630 int size = kmemzones[indx].kz_size; 631 char *name = kmemzones[indx].kz_name; 632 633 kmemzones[indx].kz_zone = uma_zcreate(name, size, 634 #ifdef INVARIANTS 635 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 636 #else 637 NULL, NULL, NULL, NULL, 638 #endif 639 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 640 641 for (;i <= size; i+= KMEM_ZBASE) 642 kmemsize[i >> KMEM_ZSHIFT] = indx; 643 644 } 645 } 646 647 void 648 malloc_init(void *data) 649 { 650 struct malloc_type_internal *mtip; 651 struct malloc_type *mtp; 652 653 KASSERT(VMCNT_GET(page_count) != 0, 654 ("malloc_register before vm_init")); 655 656 mtp = data; 657 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO); 658 mtp->ks_handle = mtip; 659 660 mtx_lock(&malloc_mtx); 661 mtp->ks_next = kmemstatistics; 662 kmemstatistics = mtp; 663 kmemcount++; 664 mtx_unlock(&malloc_mtx); 665 } 666 667 void 668 malloc_uninit(void *data) 669 { 670 struct malloc_type_internal *mtip; 671 struct malloc_type_stats *mtsp; 672 struct malloc_type *mtp, *temp; 673 uma_slab_t slab; 674 long temp_allocs, temp_bytes; 675 int i; 676 677 mtp = data; 678 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL")); 679 mtx_lock(&malloc_mtx); 680 mtip = mtp->ks_handle; 681 mtp->ks_handle = NULL; 682 if (mtp != kmemstatistics) { 683 for (temp = kmemstatistics; temp != NULL; 684 temp = temp->ks_next) { 685 if (temp->ks_next == mtp) 686 temp->ks_next = mtp->ks_next; 687 } 688 } else 689 kmemstatistics = mtp->ks_next; 690 kmemcount--; 691 mtx_unlock(&malloc_mtx); 692 693 /* 694 * Look for memory leaks. 695 */ 696 temp_allocs = temp_bytes = 0; 697 for (i = 0; i < MAXCPU; i++) { 698 mtsp = &mtip->mti_stats[i]; 699 temp_allocs += mtsp->mts_numallocs; 700 temp_allocs -= mtsp->mts_numfrees; 701 temp_bytes += mtsp->mts_memalloced; 702 temp_bytes -= mtsp->mts_memfreed; 703 } 704 if (temp_allocs > 0 || temp_bytes > 0) { 705 printf("Warning: memory type %s leaked memory on destroy " 706 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 707 temp_allocs, temp_bytes); 708 } 709 710 slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK)); 711 uma_zfree_arg(mt_zone, mtip, slab); 712 } 713 714 struct malloc_type * 715 malloc_desc2type(const char *desc) 716 { 717 struct malloc_type *mtp; 718 719 mtx_assert(&malloc_mtx, MA_OWNED); 720 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 721 if (strcmp(mtp->ks_shortdesc, desc) == 0) 722 return (mtp); 723 } 724 return (NULL); 725 } 726 727 static int 728 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 729 { 730 struct malloc_type_stream_header mtsh; 731 struct malloc_type_internal *mtip; 732 struct malloc_type_header mth; 733 struct malloc_type *mtp; 734 int buflen, count, error, i; 735 struct sbuf sbuf; 736 char *buffer; 737 738 mtx_lock(&malloc_mtx); 739 restart: 740 mtx_assert(&malloc_mtx, MA_OWNED); 741 count = kmemcount; 742 mtx_unlock(&malloc_mtx); 743 buflen = sizeof(mtsh) + count * (sizeof(mth) + 744 sizeof(struct malloc_type_stats) * MAXCPU) + 1; 745 buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); 746 mtx_lock(&malloc_mtx); 747 if (count < kmemcount) { 748 free(buffer, M_TEMP); 749 goto restart; 750 } 751 752 sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN); 753 754 /* 755 * Insert stream header. 756 */ 757 bzero(&mtsh, sizeof(mtsh)); 758 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 759 mtsh.mtsh_maxcpus = MAXCPU; 760 mtsh.mtsh_count = kmemcount; 761 if (sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)) < 0) { 762 mtx_unlock(&malloc_mtx); 763 error = ENOMEM; 764 goto out; 765 } 766 767 /* 768 * Insert alternating sequence of type headers and type statistics. 769 */ 770 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 771 mtip = (struct malloc_type_internal *)mtp->ks_handle; 772 773 /* 774 * Insert type header. 775 */ 776 bzero(&mth, sizeof(mth)); 777 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 778 if (sbuf_bcat(&sbuf, &mth, sizeof(mth)) < 0) { 779 mtx_unlock(&malloc_mtx); 780 error = ENOMEM; 781 goto out; 782 } 783 784 /* 785 * Insert type statistics for each CPU. 786 */ 787 for (i = 0; i < MAXCPU; i++) { 788 if (sbuf_bcat(&sbuf, &mtip->mti_stats[i], 789 sizeof(mtip->mti_stats[i])) < 0) { 790 mtx_unlock(&malloc_mtx); 791 error = ENOMEM; 792 goto out; 793 } 794 } 795 } 796 mtx_unlock(&malloc_mtx); 797 sbuf_finish(&sbuf); 798 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 799 out: 800 sbuf_delete(&sbuf); 801 free(buffer, M_TEMP); 802 return (error); 803 } 804 805 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 806 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats", 807 "Return malloc types"); 808 809 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 810 "Count of kernel malloc types"); 811 812 #ifdef DDB 813 DB_SHOW_COMMAND(malloc, db_show_malloc) 814 { 815 struct malloc_type_internal *mtip; 816 struct malloc_type *mtp; 817 u_int64_t allocs, frees; 818 u_int64_t alloced, freed; 819 int i; 820 821 db_printf("%18s %12s %12s %12s\n", "Type", "InUse", "MemUse", 822 "Requests"); 823 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 824 mtip = (struct malloc_type_internal *)mtp->ks_handle; 825 allocs = 0; 826 frees = 0; 827 alloced = 0; 828 freed = 0; 829 for (i = 0; i < MAXCPU; i++) { 830 allocs += mtip->mti_stats[i].mts_numallocs; 831 frees += mtip->mti_stats[i].mts_numfrees; 832 alloced += mtip->mti_stats[i].mts_memalloced; 833 freed += mtip->mti_stats[i].mts_memfreed; 834 } 835 db_printf("%18s %12ju %12juK %12ju\n", 836 mtp->ks_shortdesc, allocs - frees, 837 (alloced - freed + 1023) / 1024, allocs); 838 } 839 } 840 #endif 841 842 #ifdef MALLOC_PROFILE 843 844 static int 845 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 846 { 847 int linesize = 64; 848 struct sbuf sbuf; 849 uint64_t count; 850 uint64_t waste; 851 uint64_t mem; 852 int bufsize; 853 int error; 854 char *buf; 855 int rsize; 856 int size; 857 int i; 858 859 bufsize = linesize * (KMEM_ZSIZE + 1); 860 bufsize += 128; /* For the stats line */ 861 bufsize += 128; /* For the banner line */ 862 waste = 0; 863 mem = 0; 864 865 buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 866 sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN); 867 sbuf_printf(&sbuf, 868 "\n Size Requests Real Size\n"); 869 for (i = 0; i < KMEM_ZSIZE; i++) { 870 size = i << KMEM_ZSHIFT; 871 rsize = kmemzones[kmemsize[i]].kz_size; 872 count = (long long unsigned)krequests[i]; 873 874 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size, 875 (unsigned long long)count, rsize); 876 877 if ((rsize * count) > (size * count)) 878 waste += (rsize * count) - (size * count); 879 mem += (rsize * count); 880 } 881 sbuf_printf(&sbuf, 882 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 883 (unsigned long long)mem, (unsigned long long)waste); 884 sbuf_finish(&sbuf); 885 886 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 887 888 sbuf_delete(&sbuf); 889 free(buf, M_TEMP); 890 return (error); 891 } 892 893 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 894 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 895 #endif /* MALLOC_PROFILE */ 896