1 /*- 2 * Copyright (c) 1987, 1991, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2005 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_vm.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kdb.h> 43 #include <sys/kernel.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/vmmeter.h> 49 #include <sys/proc.h> 50 #include <sys/sbuf.h> 51 #include <sys/sysctl.h> 52 #include <sys/time.h> 53 54 #include <vm/vm.h> 55 #include <vm/pmap.h> 56 #include <vm/vm_param.h> 57 #include <vm/vm_kern.h> 58 #include <vm/vm_extern.h> 59 #include <vm/vm_map.h> 60 #include <vm/vm_page.h> 61 #include <vm/uma.h> 62 #include <vm/uma_int.h> 63 #include <vm/uma_dbg.h> 64 65 #ifdef DEBUG_MEMGUARD 66 #include <vm/memguard.h> 67 #endif 68 #ifdef DEBUG_REDZONE 69 #include <vm/redzone.h> 70 #endif 71 72 #if defined(INVARIANTS) && defined(__i386__) 73 #include <machine/cpu.h> 74 #endif 75 76 #include <ddb/ddb.h> 77 78 /* 79 * When realloc() is called, if the new size is sufficiently smaller than 80 * the old size, realloc() will allocate a new, smaller block to avoid 81 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 82 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 83 */ 84 #ifndef REALLOC_FRACTION 85 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 86 #endif 87 88 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 89 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 90 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 91 92 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 93 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 94 95 static void kmeminit(void *); 96 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 97 98 static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); 99 100 static struct malloc_type *kmemstatistics; 101 static char *kmembase; 102 static char *kmemlimit; 103 static int kmemcount; 104 105 #define KMEM_ZSHIFT 4 106 #define KMEM_ZBASE 16 107 #define KMEM_ZMASK (KMEM_ZBASE - 1) 108 109 #define KMEM_ZMAX PAGE_SIZE 110 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 111 static u_int8_t kmemsize[KMEM_ZSIZE + 1]; 112 113 /* These won't be powers of two for long */ 114 struct { 115 int kz_size; 116 char *kz_name; 117 uma_zone_t kz_zone; 118 } kmemzones[] = { 119 {16, "16", NULL}, 120 {32, "32", NULL}, 121 {64, "64", NULL}, 122 {128, "128", NULL}, 123 {256, "256", NULL}, 124 {512, "512", NULL}, 125 {1024, "1024", NULL}, 126 {2048, "2048", NULL}, 127 {4096, "4096", NULL}, 128 #if PAGE_SIZE > 4096 129 {8192, "8192", NULL}, 130 #if PAGE_SIZE > 8192 131 {16384, "16384", NULL}, 132 #if PAGE_SIZE > 16384 133 {32768, "32768", NULL}, 134 #if PAGE_SIZE > 32768 135 {65536, "65536", NULL}, 136 #if PAGE_SIZE > 65536 137 #error "Unsupported PAGE_SIZE" 138 #endif /* 65536 */ 139 #endif /* 32768 */ 140 #endif /* 16384 */ 141 #endif /* 8192 */ 142 #endif /* 4096 */ 143 {0, NULL}, 144 }; 145 146 static uma_zone_t mt_zone; 147 148 u_int vm_kmem_size; 149 SYSCTL_UINT(_vm, OID_AUTO, kmem_size, CTLFLAG_RD, &vm_kmem_size, 0, 150 "Size of kernel memory"); 151 152 u_int vm_kmem_size_max; 153 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RD, &vm_kmem_size_max, 0, 154 "Maximum size of kernel memory"); 155 156 u_int vm_kmem_size_scale; 157 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RD, &vm_kmem_size_scale, 0, 158 "Scale factor for kernel memory size"); 159 160 /* 161 * The malloc_mtx protects the kmemstatistics linked list. 162 */ 163 164 struct mtx malloc_mtx; 165 166 #ifdef MALLOC_PROFILE 167 uint64_t krequests[KMEM_ZSIZE + 1]; 168 169 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 170 #endif 171 172 static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS); 173 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 174 175 /* time_uptime of last malloc(9) failure */ 176 static time_t t_malloc_fail; 177 178 #ifdef MALLOC_MAKE_FAILURES 179 /* 180 * Causes malloc failures every (n) mallocs with M_NOWAIT. If set to 0, 181 * doesn't cause failures. 182 */ 183 SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0, 184 "Kernel malloc debugging options"); 185 186 static int malloc_failure_rate; 187 static int malloc_nowait_count; 188 static int malloc_failure_count; 189 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW, 190 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 191 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate); 192 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 193 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 194 #endif 195 196 int 197 malloc_last_fail(void) 198 { 199 200 return (time_uptime - t_malloc_fail); 201 } 202 203 /* 204 * Add this to the informational malloc_type bucket. 205 */ 206 static void 207 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 208 int zindx) 209 { 210 struct malloc_type_internal *mtip; 211 struct malloc_type_stats *mtsp; 212 213 critical_enter(); 214 mtip = mtp->ks_handle; 215 mtsp = &mtip->mti_stats[curcpu]; 216 if (size > 0) { 217 mtsp->mts_memalloced += size; 218 mtsp->mts_numallocs++; 219 } 220 if (zindx != -1) 221 mtsp->mts_size |= 1 << zindx; 222 critical_exit(); 223 } 224 225 void 226 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 227 { 228 229 if (size > 0) 230 malloc_type_zone_allocated(mtp, size, -1); 231 } 232 233 /* 234 * Remove this allocation from the informational malloc_type bucket. 235 */ 236 void 237 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 238 { 239 struct malloc_type_internal *mtip; 240 struct malloc_type_stats *mtsp; 241 242 critical_enter(); 243 mtip = mtp->ks_handle; 244 mtsp = &mtip->mti_stats[curcpu]; 245 mtsp->mts_memfreed += size; 246 mtsp->mts_numfrees++; 247 critical_exit(); 248 } 249 250 /* 251 * malloc: 252 * 253 * Allocate a block of memory. 254 * 255 * If M_NOWAIT is set, this routine will not block and return NULL if 256 * the allocation fails. 257 */ 258 void * 259 malloc(unsigned long size, struct malloc_type *mtp, int flags) 260 { 261 int indx; 262 caddr_t va; 263 uma_zone_t zone; 264 uma_keg_t keg; 265 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE) 266 unsigned long osize = size; 267 #endif 268 269 #ifdef INVARIANTS 270 /* 271 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 272 */ 273 indx = flags & (M_WAITOK | M_NOWAIT); 274 if (indx != M_NOWAIT && indx != M_WAITOK) { 275 static struct timeval lasterr; 276 static int curerr, once; 277 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 278 printf("Bad malloc flags: %x\n", indx); 279 kdb_backtrace(); 280 flags |= M_WAITOK; 281 once++; 282 } 283 } 284 #endif 285 #if 0 286 if (size == 0) 287 kdb_enter("zero size malloc"); 288 #endif 289 #ifdef MALLOC_MAKE_FAILURES 290 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 291 atomic_add_int(&malloc_nowait_count, 1); 292 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 293 atomic_add_int(&malloc_failure_count, 1); 294 t_malloc_fail = time_uptime; 295 return (NULL); 296 } 297 } 298 #endif 299 if (flags & M_WAITOK) 300 KASSERT(curthread->td_intr_nesting_level == 0, 301 ("malloc(M_WAITOK) in interrupt context")); 302 303 #ifdef DEBUG_MEMGUARD 304 if (memguard_cmp(mtp)) 305 return memguard_alloc(size, flags); 306 #endif 307 308 #ifdef DEBUG_REDZONE 309 size = redzone_size_ntor(size); 310 #endif 311 312 if (size <= KMEM_ZMAX) { 313 if (size & KMEM_ZMASK) 314 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 315 indx = kmemsize[size >> KMEM_ZSHIFT]; 316 zone = kmemzones[indx].kz_zone; 317 keg = zone->uz_keg; 318 #ifdef MALLOC_PROFILE 319 krequests[size >> KMEM_ZSHIFT]++; 320 #endif 321 va = uma_zalloc(zone, flags); 322 if (va != NULL) 323 size = keg->uk_size; 324 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 325 } else { 326 size = roundup(size, PAGE_SIZE); 327 zone = NULL; 328 keg = NULL; 329 va = uma_large_malloc(size, flags); 330 malloc_type_allocated(mtp, va == NULL ? 0 : size); 331 } 332 if (flags & M_WAITOK) 333 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 334 else if (va == NULL) 335 t_malloc_fail = time_uptime; 336 #ifdef DIAGNOSTIC 337 if (va != NULL && !(flags & M_ZERO)) { 338 memset(va, 0x70, osize); 339 } 340 #endif 341 #ifdef DEBUG_REDZONE 342 if (va != NULL) 343 va = redzone_setup(va, osize); 344 #endif 345 return ((void *) va); 346 } 347 348 /* 349 * free: 350 * 351 * Free a block of memory allocated by malloc. 352 * 353 * This routine may not block. 354 */ 355 void 356 free(void *addr, struct malloc_type *mtp) 357 { 358 uma_slab_t slab; 359 u_long size; 360 361 /* free(NULL, ...) does nothing */ 362 if (addr == NULL) 363 return; 364 365 #ifdef DEBUG_MEMGUARD 366 if (memguard_cmp(mtp)) { 367 memguard_free(addr); 368 return; 369 } 370 #endif 371 372 #ifdef DEBUG_REDZONE 373 redzone_check(addr); 374 addr = redzone_addr_ntor(addr); 375 #endif 376 377 size = 0; 378 379 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 380 381 if (slab == NULL) 382 panic("free: address %p(%p) has not been allocated.\n", 383 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 384 385 386 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 387 #ifdef INVARIANTS 388 struct malloc_type **mtpp = addr; 389 #endif 390 size = slab->us_keg->uk_size; 391 #ifdef INVARIANTS 392 /* 393 * Cache a pointer to the malloc_type that most recently freed 394 * this memory here. This way we know who is most likely to 395 * have stepped on it later. 396 * 397 * This code assumes that size is a multiple of 8 bytes for 398 * 64 bit machines 399 */ 400 mtpp = (struct malloc_type **) 401 ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 402 mtpp += (size - sizeof(struct malloc_type *)) / 403 sizeof(struct malloc_type *); 404 *mtpp = mtp; 405 #endif 406 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab); 407 } else { 408 size = slab->us_size; 409 uma_large_free(slab); 410 } 411 malloc_type_freed(mtp, size); 412 } 413 414 /* 415 * realloc: change the size of a memory block 416 */ 417 void * 418 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags) 419 { 420 uma_slab_t slab; 421 unsigned long alloc; 422 void *newaddr; 423 424 /* realloc(NULL, ...) is equivalent to malloc(...) */ 425 if (addr == NULL) 426 return (malloc(size, mtp, flags)); 427 428 /* 429 * XXX: Should report free of old memory and alloc of new memory to 430 * per-CPU stats. 431 */ 432 433 #ifdef DEBUG_MEMGUARD 434 if (memguard_cmp(mtp)) { 435 slab = NULL; 436 alloc = size; 437 } else { 438 #endif 439 440 #ifdef DEBUG_REDZONE 441 slab = NULL; 442 alloc = redzone_get_size(addr); 443 #else 444 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); 445 446 /* Sanity check */ 447 KASSERT(slab != NULL, 448 ("realloc: address %p out of range", (void *)addr)); 449 450 /* Get the size of the original block */ 451 if (!(slab->us_flags & UMA_SLAB_MALLOC)) 452 alloc = slab->us_keg->uk_size; 453 else 454 alloc = slab->us_size; 455 456 /* Reuse the original block if appropriate */ 457 if (size <= alloc 458 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 459 return (addr); 460 #endif /* !DEBUG_REDZONE */ 461 462 #ifdef DEBUG_MEMGUARD 463 } 464 #endif 465 466 /* Allocate a new, bigger (or smaller) block */ 467 if ((newaddr = malloc(size, mtp, flags)) == NULL) 468 return (NULL); 469 470 /* Copy over original contents */ 471 bcopy(addr, newaddr, min(size, alloc)); 472 free(addr, mtp); 473 return (newaddr); 474 } 475 476 /* 477 * reallocf: same as realloc() but free memory on failure. 478 */ 479 void * 480 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags) 481 { 482 void *mem; 483 484 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 485 free(addr, mtp); 486 return (mem); 487 } 488 489 /* 490 * Initialize the kernel memory allocator 491 */ 492 /* ARGSUSED*/ 493 static void 494 kmeminit(void *dummy) 495 { 496 u_int8_t indx; 497 u_long mem_size; 498 int i; 499 500 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 501 502 /* 503 * Try to auto-tune the kernel memory size, so that it is 504 * more applicable for a wider range of machine sizes. 505 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while 506 * a VM_KMEM_SIZE of 12MB is a fair compromise. The 507 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space 508 * available, and on an X86 with a total KVA space of 256MB, 509 * try to keep VM_KMEM_SIZE_MAX at 80MB or below. 510 * 511 * Note that the kmem_map is also used by the zone allocator, 512 * so make sure that there is enough space. 513 */ 514 vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE; 515 mem_size = cnt.v_page_count; 516 517 #if defined(VM_KMEM_SIZE_SCALE) 518 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 519 #endif 520 TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale); 521 if (vm_kmem_size_scale > 0 && 522 (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE)) 523 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE; 524 525 #if defined(VM_KMEM_SIZE_MAX) 526 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 527 #endif 528 TUNABLE_INT_FETCH("vm.kmem_size_max", &vm_kmem_size_max); 529 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 530 vm_kmem_size = vm_kmem_size_max; 531 532 /* Allow final override from the kernel environment */ 533 #ifndef BURN_BRIDGES 534 if (TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size) != 0) 535 printf("kern.vm.kmem.size is now called vm.kmem_size!\n"); 536 #endif 537 TUNABLE_INT_FETCH("vm.kmem_size", &vm_kmem_size); 538 539 /* 540 * Limit kmem virtual size to twice the physical memory. 541 * This allows for kmem map sparseness, but limits the size 542 * to something sane. Be careful to not overflow the 32bit 543 * ints while doing the check. 544 */ 545 if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count) 546 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE; 547 548 /* 549 * Tune settings based on the kernel map's size at this time. 550 */ 551 init_param3(vm_kmem_size / PAGE_SIZE); 552 553 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase, 554 (vm_offset_t *)&kmemlimit, vm_kmem_size); 555 kmem_map->system_map = 1; 556 557 #ifdef DEBUG_MEMGUARD 558 /* 559 * Initialize MemGuard if support compiled in. MemGuard is a 560 * replacement allocator used for detecting tamper-after-free 561 * scenarios as they occur. It is only used for debugging. 562 */ 563 vm_memguard_divisor = 10; 564 TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor); 565 566 /* Pick a conservative value if provided value sucks. */ 567 if ((vm_memguard_divisor <= 0) || 568 ((vm_kmem_size / vm_memguard_divisor) == 0)) 569 vm_memguard_divisor = 10; 570 memguard_init(kmem_map, vm_kmem_size / vm_memguard_divisor); 571 #endif 572 573 uma_startup2(); 574 575 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal), 576 #ifdef INVARIANTS 577 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 578 #else 579 NULL, NULL, NULL, NULL, 580 #endif 581 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 582 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 583 int size = kmemzones[indx].kz_size; 584 char *name = kmemzones[indx].kz_name; 585 586 kmemzones[indx].kz_zone = uma_zcreate(name, size, 587 #ifdef INVARIANTS 588 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 589 #else 590 NULL, NULL, NULL, NULL, 591 #endif 592 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 593 594 for (;i <= size; i+= KMEM_ZBASE) 595 kmemsize[i >> KMEM_ZSHIFT] = indx; 596 597 } 598 } 599 600 void 601 malloc_init(void *data) 602 { 603 struct malloc_type_internal *mtip; 604 struct malloc_type *mtp; 605 606 KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init")); 607 608 mtp = data; 609 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO); 610 mtp->ks_handle = mtip; 611 612 mtx_lock(&malloc_mtx); 613 mtp->ks_next = kmemstatistics; 614 kmemstatistics = mtp; 615 kmemcount++; 616 mtx_unlock(&malloc_mtx); 617 } 618 619 void 620 malloc_uninit(void *data) 621 { 622 struct malloc_type_internal *mtip; 623 struct malloc_type_stats *mtsp; 624 struct malloc_type *mtp, *temp; 625 uma_slab_t slab; 626 long temp_allocs, temp_bytes; 627 int i; 628 629 mtp = data; 630 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL")); 631 mtx_lock(&malloc_mtx); 632 mtip = mtp->ks_handle; 633 mtp->ks_handle = NULL; 634 if (mtp != kmemstatistics) { 635 for (temp = kmemstatistics; temp != NULL; 636 temp = temp->ks_next) { 637 if (temp->ks_next == mtp) 638 temp->ks_next = mtp->ks_next; 639 } 640 } else 641 kmemstatistics = mtp->ks_next; 642 kmemcount--; 643 mtx_unlock(&malloc_mtx); 644 645 /* 646 * Look for memory leaks. 647 */ 648 temp_allocs = temp_bytes = 0; 649 for (i = 0; i < MAXCPU; i++) { 650 mtsp = &mtip->mti_stats[i]; 651 temp_allocs += mtsp->mts_numallocs; 652 temp_allocs -= mtsp->mts_numfrees; 653 temp_bytes += mtsp->mts_memalloced; 654 temp_bytes -= mtsp->mts_memfreed; 655 } 656 if (temp_allocs > 0 || temp_bytes > 0) { 657 printf("Warning: memory type %s leaked memory on destroy " 658 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 659 temp_allocs, temp_bytes); 660 } 661 662 slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK)); 663 uma_zfree_arg(mt_zone, mtip, slab); 664 } 665 666 struct malloc_type * 667 malloc_desc2type(const char *desc) 668 { 669 struct malloc_type *mtp; 670 671 mtx_assert(&malloc_mtx, MA_OWNED); 672 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 673 if (strcmp(mtp->ks_shortdesc, desc) == 0) 674 return (mtp); 675 } 676 return (NULL); 677 } 678 679 static int 680 sysctl_kern_malloc(SYSCTL_HANDLER_ARGS) 681 { 682 struct malloc_type_stats mts_local, *mtsp; 683 struct malloc_type_internal *mtip; 684 struct malloc_type *mtp; 685 struct sbuf sbuf; 686 long temp_allocs, temp_bytes; 687 int linesize = 128; 688 int bufsize; 689 int first; 690 int error; 691 char *buf; 692 int cnt; 693 int i; 694 695 cnt = 0; 696 697 /* Guess at how much room is needed. */ 698 mtx_lock(&malloc_mtx); 699 cnt = kmemcount; 700 mtx_unlock(&malloc_mtx); 701 702 bufsize = linesize * (cnt + 1); 703 buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 704 sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN); 705 706 mtx_lock(&malloc_mtx); 707 sbuf_printf(&sbuf, 708 "\n Type InUse MemUse HighUse Requests Size(s)\n"); 709 for (mtp = kmemstatistics; cnt != 0 && mtp != NULL; 710 mtp = mtp->ks_next, cnt--) { 711 mtip = mtp->ks_handle; 712 bzero(&mts_local, sizeof(mts_local)); 713 for (i = 0; i < MAXCPU; i++) { 714 mtsp = &mtip->mti_stats[i]; 715 mts_local.mts_memalloced += mtsp->mts_memalloced; 716 mts_local.mts_memfreed += mtsp->mts_memfreed; 717 mts_local.mts_numallocs += mtsp->mts_numallocs; 718 mts_local.mts_numfrees += mtsp->mts_numfrees; 719 mts_local.mts_size |= mtsp->mts_size; 720 } 721 if (mts_local.mts_numallocs == 0) 722 continue; 723 724 /* 725 * Due to races in per-CPU statistics gather, it's possible to 726 * get a slightly negative number here. If we do, approximate 727 * with 0. 728 */ 729 if (mts_local.mts_numallocs > mts_local.mts_numfrees) 730 temp_allocs = mts_local.mts_numallocs - 731 mts_local.mts_numfrees; 732 else 733 temp_allocs = 0; 734 735 /* 736 * Ditto for bytes allocated. 737 */ 738 if (mts_local.mts_memalloced > mts_local.mts_memfreed) 739 temp_bytes = mts_local.mts_memalloced - 740 mts_local.mts_memfreed; 741 else 742 temp_bytes = 0; 743 744 /* 745 * High-waterwark is no longer easily available, so we just 746 * print '-' for that column. 747 */ 748 sbuf_printf(&sbuf, "%13s%6lu%6luK -%9llu", 749 mtp->ks_shortdesc, 750 temp_allocs, 751 (temp_bytes + 1023) / 1024, 752 (unsigned long long)mts_local.mts_numallocs); 753 754 first = 1; 755 for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1; 756 i++) { 757 if (mts_local.mts_size & (1 << i)) { 758 if (first) 759 sbuf_printf(&sbuf, " "); 760 else 761 sbuf_printf(&sbuf, ","); 762 sbuf_printf(&sbuf, "%s", 763 kmemzones[i].kz_name); 764 first = 0; 765 } 766 } 767 sbuf_printf(&sbuf, "\n"); 768 } 769 sbuf_finish(&sbuf); 770 mtx_unlock(&malloc_mtx); 771 772 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 773 774 sbuf_delete(&sbuf); 775 free(buf, M_TEMP); 776 return (error); 777 } 778 779 SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD, 780 NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats"); 781 782 static int 783 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 784 { 785 struct malloc_type_stream_header mtsh; 786 struct malloc_type_internal *mtip; 787 struct malloc_type_header mth; 788 struct malloc_type *mtp; 789 int buflen, count, error, i; 790 struct sbuf sbuf; 791 char *buffer; 792 793 mtx_lock(&malloc_mtx); 794 restart: 795 mtx_assert(&malloc_mtx, MA_OWNED); 796 count = kmemcount; 797 mtx_unlock(&malloc_mtx); 798 buflen = sizeof(mtsh) + count * (sizeof(mth) + 799 sizeof(struct malloc_type_stats) * MAXCPU) + 1; 800 buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); 801 mtx_lock(&malloc_mtx); 802 if (count < kmemcount) { 803 free(buffer, M_TEMP); 804 goto restart; 805 } 806 807 sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN); 808 809 /* 810 * Insert stream header. 811 */ 812 bzero(&mtsh, sizeof(mtsh)); 813 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 814 mtsh.mtsh_maxcpus = MAXCPU; 815 mtsh.mtsh_count = kmemcount; 816 if (sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)) < 0) { 817 mtx_unlock(&malloc_mtx); 818 error = ENOMEM; 819 goto out; 820 } 821 822 /* 823 * Insert alternating sequence of type headers and type statistics. 824 */ 825 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 826 mtip = (struct malloc_type_internal *)mtp->ks_handle; 827 828 /* 829 * Insert type header. 830 */ 831 bzero(&mth, sizeof(mth)); 832 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 833 if (sbuf_bcat(&sbuf, &mth, sizeof(mth)) < 0) { 834 mtx_unlock(&malloc_mtx); 835 error = ENOMEM; 836 goto out; 837 } 838 839 /* 840 * Insert type statistics for each CPU. 841 */ 842 for (i = 0; i < MAXCPU; i++) { 843 if (sbuf_bcat(&sbuf, &mtip->mti_stats[i], 844 sizeof(mtip->mti_stats[i])) < 0) { 845 mtx_unlock(&malloc_mtx); 846 error = ENOMEM; 847 goto out; 848 } 849 } 850 } 851 mtx_unlock(&malloc_mtx); 852 sbuf_finish(&sbuf); 853 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 854 out: 855 sbuf_delete(&sbuf); 856 free(buffer, M_TEMP); 857 return (error); 858 } 859 860 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 861 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats", 862 "Return malloc types"); 863 864 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 865 "Count of kernel malloc types"); 866 867 #ifdef DDB 868 DB_SHOW_COMMAND(malloc, db_show_malloc) 869 { 870 struct malloc_type_internal *mtip; 871 struct malloc_type *mtp; 872 u_int64_t allocs, frees; 873 int i; 874 875 db_printf("%18s %12s %12s %12s\n", "Type", "Allocs", "Frees", 876 "Used"); 877 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 878 mtip = (struct malloc_type_internal *)mtp->ks_handle; 879 allocs = 0; 880 frees = 0; 881 for (i = 0; i < MAXCPU; i++) { 882 allocs += mtip->mti_stats[i].mts_numallocs; 883 frees += mtip->mti_stats[i].mts_numfrees; 884 } 885 db_printf("%18s %12ju %12ju %12ju\n", mtp->ks_shortdesc, 886 allocs, frees, allocs - frees); 887 } 888 } 889 #endif 890 891 #ifdef MALLOC_PROFILE 892 893 static int 894 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 895 { 896 int linesize = 64; 897 struct sbuf sbuf; 898 uint64_t count; 899 uint64_t waste; 900 uint64_t mem; 901 int bufsize; 902 int error; 903 char *buf; 904 int rsize; 905 int size; 906 int i; 907 908 bufsize = linesize * (KMEM_ZSIZE + 1); 909 bufsize += 128; /* For the stats line */ 910 bufsize += 128; /* For the banner line */ 911 waste = 0; 912 mem = 0; 913 914 buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 915 sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN); 916 sbuf_printf(&sbuf, 917 "\n Size Requests Real Size\n"); 918 for (i = 0; i < KMEM_ZSIZE; i++) { 919 size = i << KMEM_ZSHIFT; 920 rsize = kmemzones[kmemsize[i]].kz_size; 921 count = (long long unsigned)krequests[i]; 922 923 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size, 924 (unsigned long long)count, rsize); 925 926 if ((rsize * count) > (size * count)) 927 waste += (rsize * count) - (size * count); 928 mem += (rsize * count); 929 } 930 sbuf_printf(&sbuf, 931 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 932 (unsigned long long)mem, (unsigned long long)waste); 933 sbuf_finish(&sbuf); 934 935 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 936 937 sbuf_delete(&sbuf); 938 free(buf, M_TEMP); 939 return (error); 940 } 941 942 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 943 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 944 #endif /* MALLOC_PROFILE */ 945