1 /* 2 * Copyright (c) 1987, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 34 * $FreeBSD$ 35 */ 36 37 #include "opt_vm.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/mutex.h> 46 #include <sys/vmmeter.h> 47 #include <sys/proc.h> 48 #include <sys/sysctl.h> 49 #include <sys/time.h> 50 51 #include <vm/vm.h> 52 #include <vm/pmap.h> 53 #include <vm/vm_param.h> 54 #include <vm/vm_kern.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_map.h> 57 #include <vm/vm_page.h> 58 #include <vm/uma.h> 59 #include <vm/uma_int.h> 60 #include <vm/uma_dbg.h> 61 62 #if defined(INVARIANTS) && defined(__i386__) 63 #include <machine/cpu.h> 64 #endif 65 66 /* 67 * When realloc() is called, if the new size is sufficiently smaller than 68 * the old size, realloc() will allocate a new, smaller block to avoid 69 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 70 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 71 */ 72 #ifndef REALLOC_FRACTION 73 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 74 #endif 75 76 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 77 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 78 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 79 80 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 81 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 82 83 static void kmeminit(void *); 84 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 85 86 static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); 87 88 static struct malloc_type *kmemstatistics; 89 static char *kmembase; 90 static char *kmemlimit; 91 92 #define KMEM_ZSHIFT 4 93 #define KMEM_ZBASE 16 94 #define KMEM_ZMASK (KMEM_ZBASE - 1) 95 96 #define KMEM_ZMAX 65536 97 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 98 static u_int8_t kmemsize[KMEM_ZSIZE + 1]; 99 100 /* These won't be powers of two for long */ 101 struct { 102 int kz_size; 103 char *kz_name; 104 uma_zone_t kz_zone; 105 } kmemzones[] = { 106 {16, "16", NULL}, 107 {32, "32", NULL}, 108 {64, "64", NULL}, 109 {128, "128", NULL}, 110 {256, "256", NULL}, 111 {512, "512", NULL}, 112 {1024, "1024", NULL}, 113 {2048, "2048", NULL}, 114 {4096, "4096", NULL}, 115 {8192, "8192", NULL}, 116 {16384, "16384", NULL}, 117 {32768, "32768", NULL}, 118 {65536, "65536", NULL}, 119 {0, NULL}, 120 }; 121 122 u_int vm_kmem_size; 123 124 /* 125 * The malloc_mtx protects the kmemstatistics linked list. 126 */ 127 128 struct mtx malloc_mtx; 129 130 #ifdef MALLOC_PROFILE 131 uint64_t krequests[KMEM_ZSIZE + 1]; 132 133 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 134 #endif 135 136 static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS); 137 138 /* time_uptime of last malloc(9) failure */ 139 static time_t t_malloc_fail; 140 141 #ifdef MALLOC_MAKE_FAILURES 142 /* 143 * Causes malloc failures every (n) mallocs with M_NOWAIT. If set to 0, 144 * doesn't cause failures. 145 */ 146 SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0, 147 "Kernel malloc debugging options"); 148 149 static int malloc_failure_rate; 150 static int malloc_nowait_count; 151 static int malloc_failure_count; 152 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW, 153 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 154 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate); 155 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 156 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 157 #endif 158 159 int 160 malloc_last_fail(void) 161 { 162 163 return (time_uptime - t_malloc_fail); 164 } 165 166 /* 167 * malloc: 168 * 169 * Allocate a block of memory. 170 * 171 * If M_NOWAIT is set, this routine will not block and return NULL if 172 * the allocation fails. 173 */ 174 void * 175 malloc(size, type, flags) 176 unsigned long size; 177 struct malloc_type *type; 178 int flags; 179 { 180 int indx; 181 caddr_t va; 182 uma_zone_t zone; 183 #ifdef DIAGNOSTIC 184 unsigned long osize = size; 185 #endif 186 register struct malloc_type *ksp = type; 187 188 #ifdef INVARIANTS 189 /* 190 * To make sure that WAITOK or NOWAIT is set, but not more than 191 * one, and check against the API botches that are common. 192 */ 193 indx = flags & (M_WAITOK | M_NOWAIT | M_DONTWAIT | M_TRYWAIT); 194 if (indx != M_NOWAIT && indx != M_WAITOK) { 195 static struct timeval lasterr; 196 static int curerr, once; 197 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 198 printf("Bad malloc flags: %x\n", indx); 199 backtrace(); 200 flags |= M_WAITOK; 201 once++; 202 } 203 } 204 #endif 205 #if 0 206 if (size == 0) 207 Debugger("zero size malloc"); 208 #endif 209 #ifdef MALLOC_MAKE_FAILURES 210 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 211 atomic_add_int(&malloc_nowait_count, 1); 212 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 213 atomic_add_int(&malloc_failure_count, 1); 214 t_malloc_fail = time_uptime; 215 return (NULL); 216 } 217 } 218 #endif 219 if (flags & M_WAITOK) 220 KASSERT(curthread->td_intr_nesting_level == 0, 221 ("malloc(M_WAITOK) in interrupt context")); 222 if (size <= KMEM_ZMAX) { 223 if (size & KMEM_ZMASK) 224 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 225 indx = kmemsize[size >> KMEM_ZSHIFT]; 226 zone = kmemzones[indx].kz_zone; 227 #ifdef MALLOC_PROFILE 228 krequests[size >> KMEM_ZSHIFT]++; 229 #endif 230 va = uma_zalloc(zone, flags); 231 mtx_lock(&ksp->ks_mtx); 232 if (va == NULL) 233 goto out; 234 235 ksp->ks_size |= 1 << indx; 236 size = zone->uz_size; 237 } else { 238 size = roundup(size, PAGE_SIZE); 239 zone = NULL; 240 va = uma_large_malloc(size, flags); 241 mtx_lock(&ksp->ks_mtx); 242 if (va == NULL) 243 goto out; 244 } 245 ksp->ks_memuse += size; 246 ksp->ks_inuse++; 247 out: 248 ksp->ks_calls++; 249 if (ksp->ks_memuse > ksp->ks_maxused) 250 ksp->ks_maxused = ksp->ks_memuse; 251 252 mtx_unlock(&ksp->ks_mtx); 253 if (!(flags & M_NOWAIT)) 254 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 255 if (va == NULL) { 256 t_malloc_fail = time_uptime; 257 } 258 #ifdef DIAGNOSTIC 259 if (!(flags & M_ZERO)) { 260 memset(va, 0x70, osize); 261 } 262 #endif 263 return ((void *) va); 264 } 265 266 /* 267 * free: 268 * 269 * Free a block of memory allocated by malloc. 270 * 271 * This routine may not block. 272 */ 273 void 274 free(addr, type) 275 void *addr; 276 struct malloc_type *type; 277 { 278 register struct malloc_type *ksp = type; 279 uma_slab_t slab; 280 u_long size; 281 282 /* free(NULL, ...) does nothing */ 283 if (addr == NULL) 284 return; 285 286 size = 0; 287 288 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 289 290 if (slab == NULL) 291 panic("free: address %p(%p) has not been allocated.\n", 292 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 293 294 295 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 296 #ifdef INVARIANTS 297 struct malloc_type **mtp = addr; 298 #endif 299 size = slab->us_zone->uz_size; 300 #ifdef INVARIANTS 301 /* 302 * Cache a pointer to the malloc_type that most recently freed 303 * this memory here. This way we know who is most likely to 304 * have stepped on it later. 305 * 306 * This code assumes that size is a multiple of 8 bytes for 307 * 64 bit machines 308 */ 309 mtp = (struct malloc_type **) 310 ((unsigned long)mtp & ~UMA_ALIGN_PTR); 311 mtp += (size - sizeof(struct malloc_type *)) / 312 sizeof(struct malloc_type *); 313 *mtp = type; 314 #endif 315 uma_zfree_arg(slab->us_zone, addr, slab); 316 } else { 317 size = slab->us_size; 318 uma_large_free(slab); 319 } 320 mtx_lock(&ksp->ks_mtx); 321 ksp->ks_memuse -= size; 322 ksp->ks_inuse--; 323 mtx_unlock(&ksp->ks_mtx); 324 } 325 326 /* 327 * realloc: change the size of a memory block 328 */ 329 void * 330 realloc(addr, size, type, flags) 331 void *addr; 332 unsigned long size; 333 struct malloc_type *type; 334 int flags; 335 { 336 uma_slab_t slab; 337 unsigned long alloc; 338 void *newaddr; 339 340 /* realloc(NULL, ...) is equivalent to malloc(...) */ 341 if (addr == NULL) 342 return (malloc(size, type, flags)); 343 344 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); 345 346 /* Sanity check */ 347 KASSERT(slab != NULL, 348 ("realloc: address %p out of range", (void *)addr)); 349 350 /* Get the size of the original block */ 351 if (slab->us_zone) 352 alloc = slab->us_zone->uz_size; 353 else 354 alloc = slab->us_size; 355 356 /* Reuse the original block if appropriate */ 357 if (size <= alloc 358 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 359 return (addr); 360 361 /* Allocate a new, bigger (or smaller) block */ 362 if ((newaddr = malloc(size, type, flags)) == NULL) 363 return (NULL); 364 365 /* Copy over original contents */ 366 bcopy(addr, newaddr, min(size, alloc)); 367 free(addr, type); 368 return (newaddr); 369 } 370 371 /* 372 * reallocf: same as realloc() but free memory on failure. 373 */ 374 void * 375 reallocf(addr, size, type, flags) 376 void *addr; 377 unsigned long size; 378 struct malloc_type *type; 379 int flags; 380 { 381 void *mem; 382 383 if ((mem = realloc(addr, size, type, flags)) == NULL) 384 free(addr, type); 385 return (mem); 386 } 387 388 /* 389 * Initialize the kernel memory allocator 390 */ 391 /* ARGSUSED*/ 392 static void 393 kmeminit(dummy) 394 void *dummy; 395 { 396 u_int8_t indx; 397 u_long npg; 398 u_long mem_size; 399 int i; 400 401 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 402 403 /* 404 * Try to auto-tune the kernel memory size, so that it is 405 * more applicable for a wider range of machine sizes. 406 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while 407 * a VM_KMEM_SIZE of 12MB is a fair compromise. The 408 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space 409 * available, and on an X86 with a total KVA space of 256MB, 410 * try to keep VM_KMEM_SIZE_MAX at 80MB or below. 411 * 412 * Note that the kmem_map is also used by the zone allocator, 413 * so make sure that there is enough space. 414 */ 415 vm_kmem_size = VM_KMEM_SIZE; 416 mem_size = cnt.v_page_count * PAGE_SIZE; 417 418 #if defined(VM_KMEM_SIZE_SCALE) 419 if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size) 420 vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE; 421 #endif 422 423 #if defined(VM_KMEM_SIZE_MAX) 424 if (vm_kmem_size >= VM_KMEM_SIZE_MAX) 425 vm_kmem_size = VM_KMEM_SIZE_MAX; 426 #endif 427 428 /* Allow final override from the kernel environment */ 429 TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size); 430 431 /* 432 * Limit kmem virtual size to twice the physical memory. 433 * This allows for kmem map sparseness, but limits the size 434 * to something sane. Be careful to not overflow the 32bit 435 * ints while doing the check. 436 */ 437 if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE)) 438 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE; 439 440 /* 441 * In mbuf_init(), we set up submaps for mbufs and clusters, in which 442 * case we rounddown() (nmbufs * MSIZE) and (nmbclusters * MCLBYTES), 443 * respectively. Mathematically, this means that what we do here may 444 * amount to slightly more address space than we need for the submaps, 445 * but it never hurts to have an extra page in kmem_map. 446 */ 447 npg = (nmbufs*MSIZE + nmbclusters*MCLBYTES + vm_kmem_size) / PAGE_SIZE; 448 449 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase, 450 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE)); 451 kmem_map->system_map = 1; 452 453 uma_startup2(); 454 455 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 456 int size = kmemzones[indx].kz_size; 457 char *name = kmemzones[indx].kz_name; 458 459 kmemzones[indx].kz_zone = uma_zcreate(name, size, 460 #ifdef INVARIANTS 461 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 462 #else 463 NULL, NULL, NULL, NULL, 464 #endif 465 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 466 467 for (;i <= size; i+= KMEM_ZBASE) 468 kmemsize[i >> KMEM_ZSHIFT] = indx; 469 470 } 471 } 472 473 void 474 malloc_init(data) 475 void *data; 476 { 477 struct malloc_type *type = (struct malloc_type *)data; 478 479 mtx_lock(&malloc_mtx); 480 if (type->ks_magic != M_MAGIC) 481 panic("malloc type lacks magic"); 482 483 if (cnt.v_page_count == 0) 484 panic("malloc_init not allowed before vm init"); 485 486 if (type->ks_next != NULL) 487 return; 488 489 type->ks_next = kmemstatistics; 490 kmemstatistics = type; 491 mtx_init(&type->ks_mtx, type->ks_shortdesc, "Malloc Stats", MTX_DEF); 492 mtx_unlock(&malloc_mtx); 493 } 494 495 void 496 malloc_uninit(data) 497 void *data; 498 { 499 struct malloc_type *type = (struct malloc_type *)data; 500 struct malloc_type *t; 501 502 mtx_lock(&malloc_mtx); 503 mtx_lock(&type->ks_mtx); 504 if (type->ks_magic != M_MAGIC) 505 panic("malloc type lacks magic"); 506 507 if (cnt.v_page_count == 0) 508 panic("malloc_uninit not allowed before vm init"); 509 510 if (type == kmemstatistics) 511 kmemstatistics = type->ks_next; 512 else { 513 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 514 if (t->ks_next == type) { 515 t->ks_next = type->ks_next; 516 break; 517 } 518 } 519 } 520 type->ks_next = NULL; 521 mtx_destroy(&type->ks_mtx); 522 mtx_unlock(&malloc_mtx); 523 } 524 525 static int 526 sysctl_kern_malloc(SYSCTL_HANDLER_ARGS) 527 { 528 struct malloc_type *type; 529 int linesize = 128; 530 int curline; 531 int bufsize; 532 int first; 533 int error; 534 char *buf; 535 char *p; 536 int cnt; 537 int len; 538 int i; 539 540 cnt = 0; 541 542 mtx_lock(&malloc_mtx); 543 for (type = kmemstatistics; type != NULL; type = type->ks_next) 544 cnt++; 545 546 mtx_unlock(&malloc_mtx); 547 bufsize = linesize * (cnt + 1); 548 p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 549 mtx_lock(&malloc_mtx); 550 551 len = snprintf(p, linesize, 552 "\n Type InUse MemUse HighUse Requests Size(s)\n"); 553 p += len; 554 555 for (type = kmemstatistics; cnt != 0 && type != NULL; 556 type = type->ks_next, cnt--) { 557 if (type->ks_calls == 0) 558 continue; 559 560 curline = linesize - 2; /* Leave room for the \n */ 561 len = snprintf(p, curline, "%13s%6lu%6luK%7luK%9llu", 562 type->ks_shortdesc, 563 type->ks_inuse, 564 (type->ks_memuse + 1023) / 1024, 565 (type->ks_maxused + 1023) / 1024, 566 (long long unsigned)type->ks_calls); 567 curline -= len; 568 p += len; 569 570 first = 1; 571 for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1; 572 i++) { 573 if (type->ks_size & (1 << i)) { 574 if (first) 575 len = snprintf(p, curline, " "); 576 else 577 len = snprintf(p, curline, ","); 578 curline -= len; 579 p += len; 580 581 len = snprintf(p, curline, 582 "%s", kmemzones[i].kz_name); 583 curline -= len; 584 p += len; 585 586 first = 0; 587 } 588 } 589 590 len = snprintf(p, 2, "\n"); 591 p += len; 592 } 593 594 mtx_unlock(&malloc_mtx); 595 error = SYSCTL_OUT(req, buf, p - buf); 596 597 free(buf, M_TEMP); 598 return (error); 599 } 600 601 SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD, 602 NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats"); 603 604 #ifdef MALLOC_PROFILE 605 606 static int 607 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 608 { 609 int linesize = 64; 610 uint64_t count; 611 uint64_t waste; 612 uint64_t mem; 613 int bufsize; 614 int error; 615 char *buf; 616 int rsize; 617 int size; 618 char *p; 619 int len; 620 int i; 621 622 bufsize = linesize * (KMEM_ZSIZE + 1); 623 bufsize += 128; /* For the stats line */ 624 bufsize += 128; /* For the banner line */ 625 waste = 0; 626 mem = 0; 627 628 p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 629 len = snprintf(p, bufsize, 630 "\n Size Requests Real Size\n"); 631 bufsize -= len; 632 p += len; 633 634 for (i = 0; i < KMEM_ZSIZE; i++) { 635 size = i << KMEM_ZSHIFT; 636 rsize = kmemzones[kmemsize[i]].kz_size; 637 count = (long long unsigned)krequests[i]; 638 639 len = snprintf(p, bufsize, "%6d%28llu%11d\n", 640 size, (unsigned long long)count, rsize); 641 bufsize -= len; 642 p += len; 643 644 if ((rsize * count) > (size * count)) 645 waste += (rsize * count) - (size * count); 646 mem += (rsize * count); 647 } 648 649 len = snprintf(p, bufsize, 650 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 651 (unsigned long long)mem, (unsigned long long)waste); 652 p += len; 653 654 error = SYSCTL_OUT(req, buf, p - buf); 655 656 free(buf, M_TEMP); 657 return (error); 658 } 659 660 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 661 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 662 #endif /* MALLOC_PROFILE */ 663