xref: /freebsd/sys/kern/kern_malloc.c (revision 729362425c09cf6b362366aabc6fb547eee8035a)
1 /*
2  * Copyright (c) 1987, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #include "opt_vm.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/mutex.h>
46 #include <sys/vmmeter.h>
47 #include <sys/proc.h>
48 #include <sys/sysctl.h>
49 #include <sys/time.h>
50 
51 #include <vm/vm.h>
52 #include <vm/pmap.h>
53 #include <vm/vm_param.h>
54 #include <vm/vm_kern.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_page.h>
58 #include <vm/uma.h>
59 #include <vm/uma_int.h>
60 #include <vm/uma_dbg.h>
61 
62 #if defined(INVARIANTS) && defined(__i386__)
63 #include <machine/cpu.h>
64 #endif
65 
66 /*
67  * When realloc() is called, if the new size is sufficiently smaller than
68  * the old size, realloc() will allocate a new, smaller block to avoid
69  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
70  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
71  */
72 #ifndef REALLOC_FRACTION
73 #define	REALLOC_FRACTION	1	/* new block if <= half the size */
74 #endif
75 
76 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
77 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
78 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
79 
80 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
81 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
82 
83 static void kmeminit(void *);
84 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
85 
86 static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
87 
88 static struct malloc_type *kmemstatistics;
89 static char *kmembase;
90 static char *kmemlimit;
91 
92 #define KMEM_ZSHIFT	4
93 #define KMEM_ZBASE	16
94 #define KMEM_ZMASK	(KMEM_ZBASE - 1)
95 
96 #define KMEM_ZMAX	65536
97 #define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
98 static u_int8_t kmemsize[KMEM_ZSIZE + 1];
99 
100 /* These won't be powers of two for long */
101 struct {
102 	int kz_size;
103 	char *kz_name;
104 	uma_zone_t kz_zone;
105 } kmemzones[] = {
106 	{16, "16", NULL},
107 	{32, "32", NULL},
108 	{64, "64", NULL},
109 	{128, "128", NULL},
110 	{256, "256", NULL},
111 	{512, "512", NULL},
112 	{1024, "1024", NULL},
113 	{2048, "2048", NULL},
114 	{4096, "4096", NULL},
115 	{8192, "8192", NULL},
116 	{16384, "16384", NULL},
117 	{32768, "32768", NULL},
118 	{65536, "65536", NULL},
119 	{0, NULL},
120 };
121 
122 u_int vm_kmem_size;
123 
124 /*
125  * The malloc_mtx protects the kmemstatistics linked list.
126  */
127 
128 struct mtx malloc_mtx;
129 
130 #ifdef MALLOC_PROFILE
131 uint64_t krequests[KMEM_ZSIZE + 1];
132 
133 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
134 #endif
135 
136 static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS);
137 
138 /* time_uptime of last malloc(9) failure */
139 static time_t t_malloc_fail;
140 
141 #ifdef MALLOC_MAKE_FAILURES
142 /*
143  * Causes malloc failures every (n) mallocs with M_NOWAIT.  If set to 0,
144  * doesn't cause failures.
145  */
146 SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
147     "Kernel malloc debugging options");
148 
149 static int malloc_failure_rate;
150 static int malloc_nowait_count;
151 static int malloc_failure_count;
152 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
153     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
154 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
155 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
156     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
157 #endif
158 
159 int
160 malloc_last_fail(void)
161 {
162 
163 	return (time_uptime - t_malloc_fail);
164 }
165 
166 /*
167  *	malloc:
168  *
169  *	Allocate a block of memory.
170  *
171  *	If M_NOWAIT is set, this routine will not block and return NULL if
172  *	the allocation fails.
173  */
174 void *
175 malloc(size, type, flags)
176 	unsigned long size;
177 	struct malloc_type *type;
178 	int flags;
179 {
180 	int indx;
181 	caddr_t va;
182 	uma_zone_t zone;
183 #ifdef DIAGNOSTIC
184 	unsigned long osize = size;
185 #endif
186 	register struct malloc_type *ksp = type;
187 
188 #ifdef INVARIANTS
189 	/*
190 	 * To make sure that WAITOK or NOWAIT is set, but not more than
191 	 * one, and check against the API botches that are common.
192 	 */
193 	indx = flags & (M_WAITOK | M_NOWAIT | M_DONTWAIT | M_TRYWAIT);
194 	if (indx != M_NOWAIT && indx != M_WAITOK) {
195 		static	struct timeval lasterr;
196 		static	int curerr, once;
197 		if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
198 			printf("Bad malloc flags: %x\n", indx);
199 			backtrace();
200 			flags |= M_WAITOK;
201 			once++;
202 		}
203 	}
204 #endif
205 #if 0
206 	if (size == 0)
207 		Debugger("zero size malloc");
208 #endif
209 #ifdef MALLOC_MAKE_FAILURES
210 	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
211 		atomic_add_int(&malloc_nowait_count, 1);
212 		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
213 			atomic_add_int(&malloc_failure_count, 1);
214 			return (NULL);
215 		}
216 	}
217 #endif
218 	if (flags & M_WAITOK)
219 		KASSERT(curthread->td_intr_nesting_level == 0,
220 		   ("malloc(M_WAITOK) in interrupt context"));
221 	if (size <= KMEM_ZMAX) {
222 		if (size & KMEM_ZMASK)
223 			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
224 		indx = kmemsize[size >> KMEM_ZSHIFT];
225 		zone = kmemzones[indx].kz_zone;
226 #ifdef MALLOC_PROFILE
227 		krequests[size >> KMEM_ZSHIFT]++;
228 #endif
229 		va = uma_zalloc(zone, flags);
230 		mtx_lock(&ksp->ks_mtx);
231 		if (va == NULL)
232 			goto out;
233 
234 		ksp->ks_size |= 1 << indx;
235 		size = zone->uz_size;
236 	} else {
237 		size = roundup(size, PAGE_SIZE);
238 		zone = NULL;
239 		va = uma_large_malloc(size, flags);
240 		mtx_lock(&ksp->ks_mtx);
241 		if (va == NULL)
242 			goto out;
243 	}
244 	ksp->ks_memuse += size;
245 	ksp->ks_inuse++;
246 out:
247 	ksp->ks_calls++;
248 	if (ksp->ks_memuse > ksp->ks_maxused)
249 		ksp->ks_maxused = ksp->ks_memuse;
250 
251 	mtx_unlock(&ksp->ks_mtx);
252 	if (!(flags & M_NOWAIT))
253 		KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
254 	if (va == NULL) {
255 		t_malloc_fail = time_uptime;
256 	}
257 #ifdef DIAGNOSTIC
258 	if (!(flags & M_ZERO)) {
259 		memset(va, 0x70, osize);
260 	}
261 #endif
262 	return ((void *) va);
263 }
264 
265 /*
266  *	free:
267  *
268  *	Free a block of memory allocated by malloc.
269  *
270  *	This routine may not block.
271  */
272 void
273 free(addr, type)
274 	void *addr;
275 	struct malloc_type *type;
276 {
277 	register struct malloc_type *ksp = type;
278 	uma_slab_t slab;
279 	u_long size;
280 
281 	/* free(NULL, ...) does nothing */
282 	if (addr == NULL)
283 		return;
284 
285 	size = 0;
286 
287 	slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
288 
289 	if (slab == NULL)
290 		panic("free: address %p(%p) has not been allocated.\n",
291 		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
292 
293 
294 	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
295 #ifdef INVARIANTS
296 		struct malloc_type **mtp = addr;
297 #endif
298 		size = slab->us_zone->uz_size;
299 #ifdef INVARIANTS
300 		/*
301 		 * Cache a pointer to the malloc_type that most recently freed
302 		 * this memory here.  This way we know who is most likely to
303 		 * have stepped on it later.
304 		 *
305 		 * This code assumes that size is a multiple of 8 bytes for
306 		 * 64 bit machines
307 		 */
308 		mtp = (struct malloc_type **)
309 		    ((unsigned long)mtp & ~UMA_ALIGN_PTR);
310 		mtp += (size - sizeof(struct malloc_type *)) /
311 		    sizeof(struct malloc_type *);
312 		*mtp = type;
313 #endif
314 		uma_zfree_arg(slab->us_zone, addr, slab);
315 	} else {
316 		size = slab->us_size;
317 		uma_large_free(slab);
318 	}
319 	mtx_lock(&ksp->ks_mtx);
320 	ksp->ks_memuse -= size;
321 	ksp->ks_inuse--;
322 	mtx_unlock(&ksp->ks_mtx);
323 }
324 
325 /*
326  *	realloc: change the size of a memory block
327  */
328 void *
329 realloc(addr, size, type, flags)
330 	void *addr;
331 	unsigned long size;
332 	struct malloc_type *type;
333 	int flags;
334 {
335 	uma_slab_t slab;
336 	unsigned long alloc;
337 	void *newaddr;
338 
339 	/* realloc(NULL, ...) is equivalent to malloc(...) */
340 	if (addr == NULL)
341 		return (malloc(size, type, flags));
342 
343 	slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
344 
345 	/* Sanity check */
346 	KASSERT(slab != NULL,
347 	    ("realloc: address %p out of range", (void *)addr));
348 
349 	/* Get the size of the original block */
350 	if (slab->us_zone)
351 		alloc = slab->us_zone->uz_size;
352 	else
353 		alloc = slab->us_size;
354 
355 	/* Reuse the original block if appropriate */
356 	if (size <= alloc
357 	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
358 		return (addr);
359 
360 	/* Allocate a new, bigger (or smaller) block */
361 	if ((newaddr = malloc(size, type, flags)) == NULL)
362 		return (NULL);
363 
364 	/* Copy over original contents */
365 	bcopy(addr, newaddr, min(size, alloc));
366 	free(addr, type);
367 	return (newaddr);
368 }
369 
370 /*
371  *	reallocf: same as realloc() but free memory on failure.
372  */
373 void *
374 reallocf(addr, size, type, flags)
375 	void *addr;
376 	unsigned long size;
377 	struct malloc_type *type;
378 	int flags;
379 {
380 	void *mem;
381 
382 	if ((mem = realloc(addr, size, type, flags)) == NULL)
383 		free(addr, type);
384 	return (mem);
385 }
386 
387 /*
388  * Initialize the kernel memory allocator
389  */
390 /* ARGSUSED*/
391 static void
392 kmeminit(dummy)
393 	void *dummy;
394 {
395 	u_int8_t indx;
396 	u_long npg;
397 	u_long mem_size;
398 	int i;
399 
400 	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
401 
402 	/*
403 	 * Try to auto-tune the kernel memory size, so that it is
404 	 * more applicable for a wider range of machine sizes.
405 	 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
406 	 * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
407 	 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
408 	 * available, and on an X86 with a total KVA space of 256MB,
409 	 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
410 	 *
411 	 * Note that the kmem_map is also used by the zone allocator,
412 	 * so make sure that there is enough space.
413 	 */
414 	vm_kmem_size = VM_KMEM_SIZE;
415 	mem_size = cnt.v_page_count * PAGE_SIZE;
416 
417 #if defined(VM_KMEM_SIZE_SCALE)
418 	if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size)
419 		vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
420 #endif
421 
422 #if defined(VM_KMEM_SIZE_MAX)
423 	if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
424 		vm_kmem_size = VM_KMEM_SIZE_MAX;
425 #endif
426 
427 	/* Allow final override from the kernel environment */
428 	TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size);
429 
430 	/*
431 	 * Limit kmem virtual size to twice the physical memory.
432 	 * This allows for kmem map sparseness, but limits the size
433 	 * to something sane. Be careful to not overflow the 32bit
434 	 * ints while doing the check.
435 	 */
436 	if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE))
437 		vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
438 
439 	/*
440 	 * In mbuf_init(), we set up submaps for mbufs and clusters, in which
441 	 * case we rounddown() (nmbufs * MSIZE) and (nmbclusters * MCLBYTES),
442 	 * respectively. Mathematically, this means that what we do here may
443 	 * amount to slightly more address space than we need for the submaps,
444 	 * but it never hurts to have an extra page in kmem_map.
445 	 */
446 	npg = (nmbufs*MSIZE + nmbclusters*MCLBYTES + vm_kmem_size) / PAGE_SIZE;
447 
448 	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
449 		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
450 	kmem_map->system_map = 1;
451 
452 	uma_startup2();
453 
454 	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
455 		int size = kmemzones[indx].kz_size;
456 		char *name = kmemzones[indx].kz_name;
457 
458 		kmemzones[indx].kz_zone = uma_zcreate(name, size,
459 #ifdef INVARIANTS
460 		    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
461 #else
462 		    NULL, NULL, NULL, NULL,
463 #endif
464 		    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
465 
466 		for (;i <= size; i+= KMEM_ZBASE)
467 			kmemsize[i >> KMEM_ZSHIFT] = indx;
468 
469 	}
470 }
471 
472 void
473 malloc_init(data)
474 	void *data;
475 {
476 	struct malloc_type *type = (struct malloc_type *)data;
477 
478 	mtx_lock(&malloc_mtx);
479 	if (type->ks_magic != M_MAGIC)
480 		panic("malloc type lacks magic");
481 
482 	if (cnt.v_page_count == 0)
483 		panic("malloc_init not allowed before vm init");
484 
485 	if (type->ks_next != NULL)
486 		return;
487 
488 	type->ks_next = kmemstatistics;
489 	kmemstatistics = type;
490 	mtx_init(&type->ks_mtx, type->ks_shortdesc, "Malloc Stats", MTX_DEF);
491 	mtx_unlock(&malloc_mtx);
492 }
493 
494 void
495 malloc_uninit(data)
496 	void *data;
497 {
498 	struct malloc_type *type = (struct malloc_type *)data;
499 	struct malloc_type *t;
500 
501 	mtx_lock(&malloc_mtx);
502 	mtx_lock(&type->ks_mtx);
503 	if (type->ks_magic != M_MAGIC)
504 		panic("malloc type lacks magic");
505 
506 	if (cnt.v_page_count == 0)
507 		panic("malloc_uninit not allowed before vm init");
508 
509 	if (type == kmemstatistics)
510 		kmemstatistics = type->ks_next;
511 	else {
512 		for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
513 			if (t->ks_next == type) {
514 				t->ks_next = type->ks_next;
515 				break;
516 			}
517 		}
518 	}
519 	type->ks_next = NULL;
520 	mtx_destroy(&type->ks_mtx);
521 	mtx_unlock(&malloc_mtx);
522 }
523 
524 static int
525 sysctl_kern_malloc(SYSCTL_HANDLER_ARGS)
526 {
527 	struct malloc_type *type;
528 	int linesize = 128;
529 	int curline;
530 	int bufsize;
531 	int first;
532 	int error;
533 	char *buf;
534 	char *p;
535 	int cnt;
536 	int len;
537 	int i;
538 
539 	cnt = 0;
540 
541 	mtx_lock(&malloc_mtx);
542 	for (type = kmemstatistics; type != NULL; type = type->ks_next)
543 		cnt++;
544 
545 	mtx_unlock(&malloc_mtx);
546 	bufsize = linesize * (cnt + 1);
547 	p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
548 	mtx_lock(&malloc_mtx);
549 
550 	len = snprintf(p, linesize,
551 	    "\n        Type  InUse MemUse HighUse Requests  Size(s)\n");
552 	p += len;
553 
554 	for (type = kmemstatistics; cnt != 0 && type != NULL;
555 	    type = type->ks_next, cnt--) {
556 		if (type->ks_calls == 0)
557 			continue;
558 
559 		curline = linesize - 2;	/* Leave room for the \n */
560 		len = snprintf(p, curline, "%13s%6lu%6luK%7luK%9llu",
561 			type->ks_shortdesc,
562 			type->ks_inuse,
563 			(type->ks_memuse + 1023) / 1024,
564 			(type->ks_maxused + 1023) / 1024,
565 			(long long unsigned)type->ks_calls);
566 		curline -= len;
567 		p += len;
568 
569 		first = 1;
570 		for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1;
571 		    i++) {
572 			if (type->ks_size & (1 << i)) {
573 				if (first)
574 					len = snprintf(p, curline, "  ");
575 				else
576 					len = snprintf(p, curline, ",");
577 				curline -= len;
578 				p += len;
579 
580 				len = snprintf(p, curline,
581 				    "%s", kmemzones[i].kz_name);
582 				curline -= len;
583 				p += len;
584 
585 				first = 0;
586 			}
587 		}
588 
589 		len = snprintf(p, 2, "\n");
590 		p += len;
591 	}
592 
593 	mtx_unlock(&malloc_mtx);
594 	error = SYSCTL_OUT(req, buf, p - buf);
595 
596 	free(buf, M_TEMP);
597 	return (error);
598 }
599 
600 SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD,
601     NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats");
602 
603 #ifdef MALLOC_PROFILE
604 
605 static int
606 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
607 {
608 	int linesize = 64;
609 	uint64_t count;
610 	uint64_t waste;
611 	uint64_t mem;
612 	int bufsize;
613 	int error;
614 	char *buf;
615 	int rsize;
616 	int size;
617 	char *p;
618 	int len;
619 	int i;
620 
621 	bufsize = linesize * (KMEM_ZSIZE + 1);
622 	bufsize += 128; 	/* For the stats line */
623 	bufsize += 128; 	/* For the banner line */
624 	waste = 0;
625 	mem = 0;
626 
627 	p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
628 	len = snprintf(p, bufsize,
629 	    "\n  Size                    Requests  Real Size\n");
630 	bufsize -= len;
631 	p += len;
632 
633 	for (i = 0; i < KMEM_ZSIZE; i++) {
634 		size = i << KMEM_ZSHIFT;
635 		rsize = kmemzones[kmemsize[i]].kz_size;
636 		count = (long long unsigned)krequests[i];
637 
638 		len = snprintf(p, bufsize, "%6d%28llu%11d\n",
639 		    size, (unsigned long long)count, rsize);
640 		bufsize -= len;
641 		p += len;
642 
643 		if ((rsize * count) > (size * count))
644 			waste += (rsize * count) - (size * count);
645 		mem += (rsize * count);
646 	}
647 
648 	len = snprintf(p, bufsize,
649 	    "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
650 	    (unsigned long long)mem, (unsigned long long)waste);
651 	p += len;
652 
653 	error = SYSCTL_OUT(req, buf, p - buf);
654 
655 	free(buf, M_TEMP);
656 	return (error);
657 }
658 
659 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
660     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
661 #endif /* MALLOC_PROFILE */
662