1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1987, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005-2009 Robert N. M. Watson 7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray) 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 35 */ 36 37 /* 38 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 39 * based on memory types. Back end is implemented using the UMA(9) zone 40 * allocator. A set of fixed-size buckets are used for smaller allocations, 41 * and a special UMA allocation interface is used for larger allocations. 42 * Callers declare memory types, and statistics are maintained independently 43 * for each memory type. Statistics are maintained per-CPU for performance 44 * reasons. See malloc(9) and comments in malloc.h for a detailed 45 * description. 46 */ 47 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include "opt_ddb.h" 52 #include "opt_vm.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/kdb.h> 57 #include <sys/kernel.h> 58 #include <sys/lock.h> 59 #include <sys/malloc.h> 60 #include <sys/mutex.h> 61 #include <sys/vmmeter.h> 62 #include <sys/proc.h> 63 #include <sys/sbuf.h> 64 #include <sys/smp.h> 65 #include <sys/sysctl.h> 66 #include <sys/time.h> 67 #include <sys/vmem.h> 68 69 #include <vm/vm.h> 70 #include <vm/pmap.h> 71 #include <vm/vm_domainset.h> 72 #include <vm/vm_pageout.h> 73 #include <vm/vm_param.h> 74 #include <vm/vm_kern.h> 75 #include <vm/vm_extern.h> 76 #include <vm/vm_map.h> 77 #include <vm/vm_page.h> 78 #include <vm/uma.h> 79 #include <vm/uma_int.h> 80 #include <vm/uma_dbg.h> 81 82 #ifdef DEBUG_MEMGUARD 83 #include <vm/memguard.h> 84 #endif 85 #ifdef DEBUG_REDZONE 86 #include <vm/redzone.h> 87 #endif 88 89 #if defined(INVARIANTS) && defined(__i386__) 90 #include <machine/cpu.h> 91 #endif 92 93 #include <ddb/ddb.h> 94 95 #ifdef KDTRACE_HOOKS 96 #include <sys/dtrace_bsd.h> 97 98 bool __read_frequently dtrace_malloc_enabled; 99 dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; 100 #endif 101 102 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ 103 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) 104 #define MALLOC_DEBUG 1 105 #endif 106 107 /* 108 * When realloc() is called, if the new size is sufficiently smaller than 109 * the old size, realloc() will allocate a new, smaller block to avoid 110 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 111 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 112 */ 113 #ifndef REALLOC_FRACTION 114 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 115 #endif 116 117 /* 118 * Centrally define some common malloc types. 119 */ 120 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 121 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 122 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 123 124 static struct malloc_type *kmemstatistics; 125 static int kmemcount; 126 127 #define KMEM_ZSHIFT 4 128 #define KMEM_ZBASE 16 129 #define KMEM_ZMASK (KMEM_ZBASE - 1) 130 131 #define KMEM_ZMAX 65536 132 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 133 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 134 135 #ifndef MALLOC_DEBUG_MAXZONES 136 #define MALLOC_DEBUG_MAXZONES 1 137 #endif 138 static int numzones = MALLOC_DEBUG_MAXZONES; 139 140 /* 141 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 142 * of various sizes. 143 * 144 * XXX: The comment here used to read "These won't be powers of two for 145 * long." It's possible that a significant amount of wasted memory could be 146 * recovered by tuning the sizes of these buckets. 147 */ 148 struct { 149 int kz_size; 150 char *kz_name; 151 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 152 } kmemzones[] = { 153 {16, "16", }, 154 {32, "32", }, 155 {64, "64", }, 156 {128, "128", }, 157 {256, "256", }, 158 {512, "512", }, 159 {1024, "1024", }, 160 {2048, "2048", }, 161 {4096, "4096", }, 162 {8192, "8192", }, 163 {16384, "16384", }, 164 {32768, "32768", }, 165 {65536, "65536", }, 166 {0, NULL}, 167 }; 168 169 /* 170 * Zone to allocate malloc type descriptions from. For ABI reasons, memory 171 * types are described by a data structure passed by the declaring code, but 172 * the malloc(9) implementation has its own data structure describing the 173 * type and statistics. This permits the malloc(9)-internal data structures 174 * to be modified without breaking binary-compiled kernel modules that 175 * declare malloc types. 176 */ 177 static uma_zone_t mt_zone; 178 static uma_zone_t mt_stats_zone; 179 180 u_long vm_kmem_size; 181 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 182 "Size of kernel memory"); 183 184 static u_long kmem_zmax = KMEM_ZMAX; 185 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, 186 "Maximum allocation size that malloc(9) would use UMA as backend"); 187 188 static u_long vm_kmem_size_min; 189 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 190 "Minimum size of kernel memory"); 191 192 static u_long vm_kmem_size_max; 193 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 194 "Maximum size of kernel memory"); 195 196 static u_int vm_kmem_size_scale; 197 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 198 "Scale factor for kernel memory size"); 199 200 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 201 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 202 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 203 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 204 205 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 206 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 207 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 208 sysctl_kmem_map_free, "LU", "Free space in kmem"); 209 210 /* 211 * The malloc_mtx protects the kmemstatistics linked list. 212 */ 213 struct mtx malloc_mtx; 214 215 #ifdef MALLOC_PROFILE 216 uint64_t krequests[KMEM_ZSIZE + 1]; 217 218 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 219 #endif 220 221 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 222 223 /* 224 * time_uptime of the last malloc(9) failure (induced or real). 225 */ 226 static time_t t_malloc_fail; 227 228 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 229 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0, 230 "Kernel malloc debugging options"); 231 #endif 232 233 /* 234 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 235 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 236 */ 237 #ifdef MALLOC_MAKE_FAILURES 238 static int malloc_failure_rate; 239 static int malloc_nowait_count; 240 static int malloc_failure_count; 241 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, 242 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 243 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 244 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 245 #endif 246 247 static int 248 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 249 { 250 u_long size; 251 252 size = uma_size(); 253 return (sysctl_handle_long(oidp, &size, 0, req)); 254 } 255 256 static int 257 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 258 { 259 u_long size, limit; 260 261 /* The sysctl is unsigned, implement as a saturation value. */ 262 size = uma_size(); 263 limit = uma_limit(); 264 if (size > limit) 265 size = 0; 266 else 267 size = limit - size; 268 return (sysctl_handle_long(oidp, &size, 0, req)); 269 } 270 271 /* 272 * malloc(9) uma zone separation -- sub-page buffer overruns in one 273 * malloc type will affect only a subset of other malloc types. 274 */ 275 #if MALLOC_DEBUG_MAXZONES > 1 276 static void 277 tunable_set_numzones(void) 278 { 279 280 TUNABLE_INT_FETCH("debug.malloc.numzones", 281 &numzones); 282 283 /* Sanity check the number of malloc uma zones. */ 284 if (numzones <= 0) 285 numzones = 1; 286 if (numzones > MALLOC_DEBUG_MAXZONES) 287 numzones = MALLOC_DEBUG_MAXZONES; 288 } 289 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 290 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 291 &numzones, 0, "Number of malloc uma subzones"); 292 293 /* 294 * Any number that changes regularly is an okay choice for the 295 * offset. Build numbers are pretty good of you have them. 296 */ 297 static u_int zone_offset = __FreeBSD_version; 298 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 299 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 300 &zone_offset, 0, "Separate malloc types by examining the " 301 "Nth character in the malloc type short description."); 302 303 static void 304 mtp_set_subzone(struct malloc_type *mtp) 305 { 306 struct malloc_type_internal *mtip; 307 const char *desc; 308 size_t len; 309 u_int val; 310 311 mtip = mtp->ks_handle; 312 desc = mtp->ks_shortdesc; 313 if (desc == NULL || (len = strlen(desc)) == 0) 314 val = 0; 315 else 316 val = desc[zone_offset % len]; 317 mtip->mti_zone = (val % numzones); 318 } 319 320 static inline u_int 321 mtp_get_subzone(struct malloc_type *mtp) 322 { 323 struct malloc_type_internal *mtip; 324 325 mtip = mtp->ks_handle; 326 327 KASSERT(mtip->mti_zone < numzones, 328 ("mti_zone %u out of range %d", 329 mtip->mti_zone, numzones)); 330 return (mtip->mti_zone); 331 } 332 #elif MALLOC_DEBUG_MAXZONES == 0 333 #error "MALLOC_DEBUG_MAXZONES must be positive." 334 #else 335 static void 336 mtp_set_subzone(struct malloc_type *mtp) 337 { 338 struct malloc_type_internal *mtip; 339 340 mtip = mtp->ks_handle; 341 mtip->mti_zone = 0; 342 } 343 344 static inline u_int 345 mtp_get_subzone(struct malloc_type *mtp) 346 { 347 348 return (0); 349 } 350 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 351 352 int 353 malloc_last_fail(void) 354 { 355 356 return (time_uptime - t_malloc_fail); 357 } 358 359 /* 360 * An allocation has succeeded -- update malloc type statistics for the 361 * amount of bucket size. Occurs within a critical section so that the 362 * thread isn't preempted and doesn't migrate while updating per-PCU 363 * statistics. 364 */ 365 static void 366 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 367 int zindx) 368 { 369 struct malloc_type_internal *mtip; 370 struct malloc_type_stats *mtsp; 371 372 critical_enter(); 373 mtip = mtp->ks_handle; 374 mtsp = zpcpu_get(mtip->mti_stats); 375 if (size > 0) { 376 mtsp->mts_memalloced += size; 377 mtsp->mts_numallocs++; 378 } 379 if (zindx != -1) 380 mtsp->mts_size |= 1 << zindx; 381 382 #ifdef KDTRACE_HOOKS 383 if (__predict_false(dtrace_malloc_enabled)) { 384 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 385 if (probe_id != 0) 386 (dtrace_malloc_probe)(probe_id, 387 (uintptr_t) mtp, (uintptr_t) mtip, 388 (uintptr_t) mtsp, size, zindx); 389 } 390 #endif 391 392 critical_exit(); 393 } 394 395 void 396 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 397 { 398 399 if (size > 0) 400 malloc_type_zone_allocated(mtp, size, -1); 401 } 402 403 /* 404 * A free operation has occurred -- update malloc type statistics for the 405 * amount of the bucket size. Occurs within a critical section so that the 406 * thread isn't preempted and doesn't migrate while updating per-CPU 407 * statistics. 408 */ 409 void 410 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 411 { 412 struct malloc_type_internal *mtip; 413 struct malloc_type_stats *mtsp; 414 415 critical_enter(); 416 mtip = mtp->ks_handle; 417 mtsp = zpcpu_get(mtip->mti_stats); 418 mtsp->mts_memfreed += size; 419 mtsp->mts_numfrees++; 420 421 #ifdef KDTRACE_HOOKS 422 if (__predict_false(dtrace_malloc_enabled)) { 423 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 424 if (probe_id != 0) 425 (dtrace_malloc_probe)(probe_id, 426 (uintptr_t) mtp, (uintptr_t) mtip, 427 (uintptr_t) mtsp, size, 0); 428 } 429 #endif 430 431 critical_exit(); 432 } 433 434 /* 435 * contigmalloc: 436 * 437 * Allocate a block of physically contiguous memory. 438 * 439 * If M_NOWAIT is set, this routine will not block and return NULL if 440 * the allocation fails. 441 */ 442 void * 443 contigmalloc(unsigned long size, struct malloc_type *type, int flags, 444 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 445 vm_paddr_t boundary) 446 { 447 void *ret; 448 449 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, 450 boundary, VM_MEMATTR_DEFAULT); 451 if (ret != NULL) 452 malloc_type_allocated(type, round_page(size)); 453 return (ret); 454 } 455 456 void * 457 contigmalloc_domainset(unsigned long size, struct malloc_type *type, 458 struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, 459 unsigned long alignment, vm_paddr_t boundary) 460 { 461 void *ret; 462 463 ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high, 464 alignment, boundary, VM_MEMATTR_DEFAULT); 465 if (ret != NULL) 466 malloc_type_allocated(type, round_page(size)); 467 return (ret); 468 } 469 470 /* 471 * contigfree: 472 * 473 * Free a block of memory allocated by contigmalloc. 474 * 475 * This routine may not block. 476 */ 477 void 478 contigfree(void *addr, unsigned long size, struct malloc_type *type) 479 { 480 481 kmem_free((vm_offset_t)addr, size); 482 malloc_type_freed(type, round_page(size)); 483 } 484 485 #ifdef MALLOC_DEBUG 486 static int 487 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, 488 int flags) 489 { 490 #ifdef INVARIANTS 491 int indx; 492 493 KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic")); 494 /* 495 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 496 */ 497 indx = flags & (M_WAITOK | M_NOWAIT); 498 if (indx != M_NOWAIT && indx != M_WAITOK) { 499 static struct timeval lasterr; 500 static int curerr, once; 501 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 502 printf("Bad malloc flags: %x\n", indx); 503 kdb_backtrace(); 504 flags |= M_WAITOK; 505 once++; 506 } 507 } 508 #endif 509 #ifdef MALLOC_MAKE_FAILURES 510 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 511 atomic_add_int(&malloc_nowait_count, 1); 512 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 513 atomic_add_int(&malloc_failure_count, 1); 514 t_malloc_fail = time_uptime; 515 *vap = NULL; 516 return (EJUSTRETURN); 517 } 518 } 519 #endif 520 if (flags & M_WAITOK) { 521 KASSERT(curthread->td_intr_nesting_level == 0, 522 ("malloc(M_WAITOK) in interrupt context")); 523 KASSERT(curthread->td_epochnest == 0, 524 ("malloc(M_WAITOK) in epoch context")); 525 } 526 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 527 ("malloc: called with spinlock or critical section held")); 528 529 #ifdef DEBUG_MEMGUARD 530 if (memguard_cmp_mtp(mtp, *sizep)) { 531 *vap = memguard_alloc(*sizep, flags); 532 if (*vap != NULL) 533 return (EJUSTRETURN); 534 /* This is unfortunate but should not be fatal. */ 535 } 536 #endif 537 538 #ifdef DEBUG_REDZONE 539 *sizep = redzone_size_ntor(*sizep); 540 #endif 541 542 return (0); 543 } 544 #endif 545 546 /* 547 * malloc: 548 * 549 * Allocate a block of memory. 550 * 551 * If M_NOWAIT is set, this routine will not block and return NULL if 552 * the allocation fails. 553 */ 554 void * 555 (malloc)(size_t size, struct malloc_type *mtp, int flags) 556 { 557 int indx; 558 caddr_t va; 559 uma_zone_t zone; 560 #if defined(DEBUG_REDZONE) 561 unsigned long osize = size; 562 #endif 563 564 #ifdef MALLOC_DEBUG 565 va = NULL; 566 if (malloc_dbg(&va, &size, mtp, flags) != 0) 567 return (va); 568 #endif 569 570 if (size <= kmem_zmax && (flags & M_EXEC) == 0) { 571 if (size & KMEM_ZMASK) 572 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 573 indx = kmemsize[size >> KMEM_ZSHIFT]; 574 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 575 #ifdef MALLOC_PROFILE 576 krequests[size >> KMEM_ZSHIFT]++; 577 #endif 578 va = uma_zalloc(zone, flags); 579 if (va != NULL) 580 size = zone->uz_size; 581 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 582 } else { 583 size = roundup(size, PAGE_SIZE); 584 zone = NULL; 585 va = uma_large_malloc(size, flags); 586 malloc_type_allocated(mtp, va == NULL ? 0 : size); 587 } 588 if (flags & M_WAITOK) 589 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 590 else if (va == NULL) 591 t_malloc_fail = time_uptime; 592 #ifdef DEBUG_REDZONE 593 if (va != NULL) 594 va = redzone_setup(va, osize); 595 #endif 596 return ((void *) va); 597 } 598 599 static void * 600 malloc_domain(size_t size, struct malloc_type *mtp, int domain, int flags) 601 { 602 int indx; 603 caddr_t va; 604 uma_zone_t zone; 605 #if defined(DEBUG_REDZONE) 606 unsigned long osize = size; 607 #endif 608 609 #ifdef MALLOC_DEBUG 610 va = NULL; 611 if (malloc_dbg(&va, &size, mtp, flags) != 0) 612 return (va); 613 #endif 614 if (size <= kmem_zmax && (flags & M_EXEC) == 0) { 615 if (size & KMEM_ZMASK) 616 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 617 indx = kmemsize[size >> KMEM_ZSHIFT]; 618 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 619 #ifdef MALLOC_PROFILE 620 krequests[size >> KMEM_ZSHIFT]++; 621 #endif 622 va = uma_zalloc_domain(zone, NULL, domain, flags); 623 if (va != NULL) 624 size = zone->uz_size; 625 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 626 } else { 627 size = roundup(size, PAGE_SIZE); 628 zone = NULL; 629 va = uma_large_malloc_domain(size, domain, flags); 630 malloc_type_allocated(mtp, va == NULL ? 0 : size); 631 } 632 if (flags & M_WAITOK) 633 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 634 else if (va == NULL) 635 t_malloc_fail = time_uptime; 636 #ifdef DEBUG_REDZONE 637 if (va != NULL) 638 va = redzone_setup(va, osize); 639 #endif 640 return ((void *) va); 641 } 642 643 void * 644 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, 645 int flags) 646 { 647 struct vm_domainset_iter di; 648 void *ret; 649 int domain; 650 651 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 652 do { 653 ret = malloc_domain(size, mtp, domain, flags); 654 if (ret != NULL) 655 break; 656 } while (vm_domainset_iter_policy(&di, &domain) == 0); 657 658 return (ret); 659 } 660 661 void * 662 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) 663 { 664 665 if (WOULD_OVERFLOW(nmemb, size)) 666 panic("mallocarray: %zu * %zu overflowed", nmemb, size); 667 668 return (malloc(size * nmemb, type, flags)); 669 } 670 671 #ifdef INVARIANTS 672 static void 673 free_save_type(void *addr, struct malloc_type *mtp, u_long size) 674 { 675 struct malloc_type **mtpp = addr; 676 677 /* 678 * Cache a pointer to the malloc_type that most recently freed 679 * this memory here. This way we know who is most likely to 680 * have stepped on it later. 681 * 682 * This code assumes that size is a multiple of 8 bytes for 683 * 64 bit machines 684 */ 685 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 686 mtpp += (size - sizeof(struct malloc_type *)) / 687 sizeof(struct malloc_type *); 688 *mtpp = mtp; 689 } 690 #endif 691 692 #ifdef MALLOC_DEBUG 693 static int 694 free_dbg(void **addrp, struct malloc_type *mtp) 695 { 696 void *addr; 697 698 addr = *addrp; 699 KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic")); 700 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 701 ("free: called with spinlock or critical section held")); 702 703 /* free(NULL, ...) does nothing */ 704 if (addr == NULL) 705 return (EJUSTRETURN); 706 707 #ifdef DEBUG_MEMGUARD 708 if (is_memguard_addr(addr)) { 709 memguard_free(addr); 710 return (EJUSTRETURN); 711 } 712 #endif 713 714 #ifdef DEBUG_REDZONE 715 redzone_check(addr); 716 *addrp = redzone_addr_ntor(addr); 717 #endif 718 719 return (0); 720 } 721 #endif 722 723 /* 724 * free: 725 * 726 * Free a block of memory allocated by malloc. 727 * 728 * This routine may not block. 729 */ 730 void 731 free(void *addr, struct malloc_type *mtp) 732 { 733 uma_slab_t slab; 734 u_long size; 735 736 #ifdef MALLOC_DEBUG 737 if (free_dbg(&addr, mtp) != 0) 738 return; 739 #endif 740 /* free(NULL, ...) does nothing */ 741 if (addr == NULL) 742 return; 743 744 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 745 if (slab == NULL) 746 panic("free: address %p(%p) has not been allocated.\n", 747 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 748 749 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 750 size = slab->us_keg->uk_size; 751 #ifdef INVARIANTS 752 free_save_type(addr, mtp, size); 753 #endif 754 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab); 755 } else { 756 size = slab->us_size; 757 uma_large_free(slab); 758 } 759 malloc_type_freed(mtp, size); 760 } 761 762 void 763 free_domain(void *addr, struct malloc_type *mtp) 764 { 765 uma_slab_t slab; 766 u_long size; 767 768 #ifdef MALLOC_DEBUG 769 if (free_dbg(&addr, mtp) != 0) 770 return; 771 #endif 772 773 /* free(NULL, ...) does nothing */ 774 if (addr == NULL) 775 return; 776 777 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 778 if (slab == NULL) 779 panic("free_domain: address %p(%p) has not been allocated.\n", 780 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 781 782 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 783 size = slab->us_keg->uk_size; 784 #ifdef INVARIANTS 785 free_save_type(addr, mtp, size); 786 #endif 787 uma_zfree_domain(LIST_FIRST(&slab->us_keg->uk_zones), 788 addr, slab); 789 } else { 790 size = slab->us_size; 791 uma_large_free(slab); 792 } 793 malloc_type_freed(mtp, size); 794 } 795 796 /* 797 * realloc: change the size of a memory block 798 */ 799 void * 800 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) 801 { 802 uma_slab_t slab; 803 unsigned long alloc; 804 void *newaddr; 805 806 KASSERT(mtp->ks_magic == M_MAGIC, 807 ("realloc: bad malloc type magic")); 808 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 809 ("realloc: called with spinlock or critical section held")); 810 811 /* realloc(NULL, ...) is equivalent to malloc(...) */ 812 if (addr == NULL) 813 return (malloc(size, mtp, flags)); 814 815 /* 816 * XXX: Should report free of old memory and alloc of new memory to 817 * per-CPU stats. 818 */ 819 820 #ifdef DEBUG_MEMGUARD 821 if (is_memguard_addr(addr)) 822 return (memguard_realloc(addr, size, mtp, flags)); 823 #endif 824 825 #ifdef DEBUG_REDZONE 826 slab = NULL; 827 alloc = redzone_get_size(addr); 828 #else 829 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); 830 831 /* Sanity check */ 832 KASSERT(slab != NULL, 833 ("realloc: address %p out of range", (void *)addr)); 834 835 /* Get the size of the original block */ 836 if (!(slab->us_flags & UMA_SLAB_MALLOC)) 837 alloc = slab->us_keg->uk_size; 838 else 839 alloc = slab->us_size; 840 841 /* Reuse the original block if appropriate */ 842 if (size <= alloc 843 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 844 return (addr); 845 #endif /* !DEBUG_REDZONE */ 846 847 /* Allocate a new, bigger (or smaller) block */ 848 if ((newaddr = malloc(size, mtp, flags)) == NULL) 849 return (NULL); 850 851 /* Copy over original contents */ 852 bcopy(addr, newaddr, min(size, alloc)); 853 free(addr, mtp); 854 return (newaddr); 855 } 856 857 /* 858 * reallocf: same as realloc() but free memory on failure. 859 */ 860 void * 861 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) 862 { 863 void *mem; 864 865 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 866 free(addr, mtp); 867 return (mem); 868 } 869 870 #ifndef __sparc64__ 871 CTASSERT(VM_KMEM_SIZE_SCALE >= 1); 872 #endif 873 874 /* 875 * Initialize the kernel memory (kmem) arena. 876 */ 877 void 878 kmeminit(void) 879 { 880 u_long mem_size; 881 u_long tmp; 882 883 #ifdef VM_KMEM_SIZE 884 if (vm_kmem_size == 0) 885 vm_kmem_size = VM_KMEM_SIZE; 886 #endif 887 #ifdef VM_KMEM_SIZE_MIN 888 if (vm_kmem_size_min == 0) 889 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 890 #endif 891 #ifdef VM_KMEM_SIZE_MAX 892 if (vm_kmem_size_max == 0) 893 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 894 #endif 895 /* 896 * Calculate the amount of kernel virtual address (KVA) space that is 897 * preallocated to the kmem arena. In order to support a wide range 898 * of machines, it is a function of the physical memory size, 899 * specifically, 900 * 901 * min(max(physical memory size / VM_KMEM_SIZE_SCALE, 902 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) 903 * 904 * Every architecture must define an integral value for 905 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN 906 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and 907 * ceiling on this preallocation, are optional. Typically, 908 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on 909 * a given architecture. 910 */ 911 mem_size = vm_cnt.v_page_count; 912 if (mem_size <= 32768) /* delphij XXX 128MB */ 913 kmem_zmax = PAGE_SIZE; 914 915 if (vm_kmem_size_scale < 1) 916 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 917 918 /* 919 * Check if we should use defaults for the "vm_kmem_size" 920 * variable: 921 */ 922 if (vm_kmem_size == 0) { 923 vm_kmem_size = mem_size / vm_kmem_size_scale; 924 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ? 925 vm_kmem_size_max : vm_kmem_size * PAGE_SIZE; 926 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) 927 vm_kmem_size = vm_kmem_size_min; 928 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 929 vm_kmem_size = vm_kmem_size_max; 930 } 931 if (vm_kmem_size == 0) 932 panic("Tune VM_KMEM_SIZE_* for the platform"); 933 934 /* 935 * The amount of KVA space that is preallocated to the 936 * kmem arena can be set statically at compile-time or manually 937 * through the kernel environment. However, it is still limited to 938 * twice the physical memory size, which has been sufficient to handle 939 * the most severe cases of external fragmentation in the kmem arena. 940 */ 941 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 942 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 943 944 vm_kmem_size = round_page(vm_kmem_size); 945 #ifdef DEBUG_MEMGUARD 946 tmp = memguard_fudge(vm_kmem_size, kernel_map); 947 #else 948 tmp = vm_kmem_size; 949 #endif 950 uma_set_limit(tmp); 951 952 #ifdef DEBUG_MEMGUARD 953 /* 954 * Initialize MemGuard if support compiled in. MemGuard is a 955 * replacement allocator used for detecting tamper-after-free 956 * scenarios as they occur. It is only used for debugging. 957 */ 958 memguard_init(kernel_arena); 959 #endif 960 } 961 962 /* 963 * Initialize the kernel memory allocator 964 */ 965 /* ARGSUSED*/ 966 static void 967 mallocinit(void *dummy) 968 { 969 int i; 970 uint8_t indx; 971 972 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 973 974 kmeminit(); 975 976 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) 977 kmem_zmax = KMEM_ZMAX; 978 979 mt_stats_zone = uma_zcreate("mt_stats_zone", 980 sizeof(struct malloc_type_stats), NULL, NULL, NULL, NULL, 981 UMA_ALIGN_PTR, UMA_ZONE_PCPU); 982 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal), 983 #ifdef INVARIANTS 984 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 985 #else 986 NULL, NULL, NULL, NULL, 987 #endif 988 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 989 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 990 int size = kmemzones[indx].kz_size; 991 char *name = kmemzones[indx].kz_name; 992 int subzone; 993 994 for (subzone = 0; subzone < numzones; subzone++) { 995 kmemzones[indx].kz_zone[subzone] = 996 uma_zcreate(name, size, 997 #ifdef INVARIANTS 998 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 999 #else 1000 NULL, NULL, NULL, NULL, 1001 #endif 1002 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 1003 } 1004 for (;i <= size; i+= KMEM_ZBASE) 1005 kmemsize[i >> KMEM_ZSHIFT] = indx; 1006 1007 } 1008 } 1009 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); 1010 1011 void 1012 malloc_init(void *data) 1013 { 1014 struct malloc_type_internal *mtip; 1015 struct malloc_type *mtp; 1016 1017 KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init")); 1018 1019 mtp = data; 1020 if (mtp->ks_magic != M_MAGIC) 1021 panic("malloc_init: bad malloc type magic"); 1022 1023 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO); 1024 mtip->mti_stats = uma_zalloc_pcpu(mt_stats_zone, M_WAITOK | M_ZERO); 1025 mtp->ks_handle = mtip; 1026 mtp_set_subzone(mtp); 1027 1028 mtx_lock(&malloc_mtx); 1029 mtp->ks_next = kmemstatistics; 1030 kmemstatistics = mtp; 1031 kmemcount++; 1032 mtx_unlock(&malloc_mtx); 1033 } 1034 1035 void 1036 malloc_uninit(void *data) 1037 { 1038 struct malloc_type_internal *mtip; 1039 struct malloc_type_stats *mtsp; 1040 struct malloc_type *mtp, *temp; 1041 uma_slab_t slab; 1042 long temp_allocs, temp_bytes; 1043 int i; 1044 1045 mtp = data; 1046 KASSERT(mtp->ks_magic == M_MAGIC, 1047 ("malloc_uninit: bad malloc type magic")); 1048 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL")); 1049 1050 mtx_lock(&malloc_mtx); 1051 mtip = mtp->ks_handle; 1052 mtp->ks_handle = NULL; 1053 if (mtp != kmemstatistics) { 1054 for (temp = kmemstatistics; temp != NULL; 1055 temp = temp->ks_next) { 1056 if (temp->ks_next == mtp) { 1057 temp->ks_next = mtp->ks_next; 1058 break; 1059 } 1060 } 1061 KASSERT(temp, 1062 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 1063 } else 1064 kmemstatistics = mtp->ks_next; 1065 kmemcount--; 1066 mtx_unlock(&malloc_mtx); 1067 1068 /* 1069 * Look for memory leaks. 1070 */ 1071 temp_allocs = temp_bytes = 0; 1072 for (i = 0; i <= mp_maxid; i++) { 1073 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1074 temp_allocs += mtsp->mts_numallocs; 1075 temp_allocs -= mtsp->mts_numfrees; 1076 temp_bytes += mtsp->mts_memalloced; 1077 temp_bytes -= mtsp->mts_memfreed; 1078 } 1079 if (temp_allocs > 0 || temp_bytes > 0) { 1080 printf("Warning: memory type %s leaked memory on destroy " 1081 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 1082 temp_allocs, temp_bytes); 1083 } 1084 1085 slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK)); 1086 uma_zfree_pcpu(mt_stats_zone, mtip->mti_stats); 1087 uma_zfree_arg(mt_zone, mtip, slab); 1088 } 1089 1090 struct malloc_type * 1091 malloc_desc2type(const char *desc) 1092 { 1093 struct malloc_type *mtp; 1094 1095 mtx_assert(&malloc_mtx, MA_OWNED); 1096 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1097 if (strcmp(mtp->ks_shortdesc, desc) == 0) 1098 return (mtp); 1099 } 1100 return (NULL); 1101 } 1102 1103 static int 1104 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 1105 { 1106 struct malloc_type_stream_header mtsh; 1107 struct malloc_type_internal *mtip; 1108 struct malloc_type_stats *mtsp, zeromts; 1109 struct malloc_type_header mth; 1110 struct malloc_type *mtp; 1111 int error, i; 1112 struct sbuf sbuf; 1113 1114 error = sysctl_wire_old_buffer(req, 0); 1115 if (error != 0) 1116 return (error); 1117 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1118 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 1119 mtx_lock(&malloc_mtx); 1120 1121 bzero(&zeromts, sizeof(zeromts)); 1122 1123 /* 1124 * Insert stream header. 1125 */ 1126 bzero(&mtsh, sizeof(mtsh)); 1127 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 1128 mtsh.mtsh_maxcpus = MAXCPU; 1129 mtsh.mtsh_count = kmemcount; 1130 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 1131 1132 /* 1133 * Insert alternating sequence of type headers and type statistics. 1134 */ 1135 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1136 mtip = (struct malloc_type_internal *)mtp->ks_handle; 1137 1138 /* 1139 * Insert type header. 1140 */ 1141 bzero(&mth, sizeof(mth)); 1142 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 1143 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 1144 1145 /* 1146 * Insert type statistics for each CPU. 1147 */ 1148 for (i = 0; i <= mp_maxid; i++) { 1149 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1150 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); 1151 } 1152 /* 1153 * Fill in the missing CPUs. 1154 */ 1155 for (; i < MAXCPU; i++) { 1156 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); 1157 } 1158 1159 } 1160 mtx_unlock(&malloc_mtx); 1161 error = sbuf_finish(&sbuf); 1162 sbuf_delete(&sbuf); 1163 return (error); 1164 } 1165 1166 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 1167 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats", 1168 "Return malloc types"); 1169 1170 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 1171 "Count of kernel malloc types"); 1172 1173 void 1174 malloc_type_list(malloc_type_list_func_t *func, void *arg) 1175 { 1176 struct malloc_type *mtp, **bufmtp; 1177 int count, i; 1178 size_t buflen; 1179 1180 mtx_lock(&malloc_mtx); 1181 restart: 1182 mtx_assert(&malloc_mtx, MA_OWNED); 1183 count = kmemcount; 1184 mtx_unlock(&malloc_mtx); 1185 1186 buflen = sizeof(struct malloc_type *) * count; 1187 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 1188 1189 mtx_lock(&malloc_mtx); 1190 1191 if (count < kmemcount) { 1192 free(bufmtp, M_TEMP); 1193 goto restart; 1194 } 1195 1196 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 1197 bufmtp[i] = mtp; 1198 1199 mtx_unlock(&malloc_mtx); 1200 1201 for (i = 0; i < count; i++) 1202 (func)(bufmtp[i], arg); 1203 1204 free(bufmtp, M_TEMP); 1205 } 1206 1207 #ifdef DDB 1208 DB_SHOW_COMMAND(malloc, db_show_malloc) 1209 { 1210 struct malloc_type_internal *mtip; 1211 struct malloc_type_stats *mtsp; 1212 struct malloc_type *mtp; 1213 uint64_t allocs, frees; 1214 uint64_t alloced, freed; 1215 int i; 1216 1217 db_printf("%18s %12s %12s %12s\n", "Type", "InUse", "MemUse", 1218 "Requests"); 1219 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1220 mtip = (struct malloc_type_internal *)mtp->ks_handle; 1221 allocs = 0; 1222 frees = 0; 1223 alloced = 0; 1224 freed = 0; 1225 for (i = 0; i <= mp_maxid; i++) { 1226 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1227 allocs += mtsp->mts_numallocs; 1228 frees += mtsp->mts_numfrees; 1229 alloced += mtsp->mts_memalloced; 1230 freed += mtsp->mts_memfreed; 1231 } 1232 db_printf("%18s %12ju %12juK %12ju\n", 1233 mtp->ks_shortdesc, allocs - frees, 1234 (alloced - freed + 1023) / 1024, allocs); 1235 if (db_pager_quit) 1236 break; 1237 } 1238 } 1239 1240 #if MALLOC_DEBUG_MAXZONES > 1 1241 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1242 { 1243 struct malloc_type_internal *mtip; 1244 struct malloc_type *mtp; 1245 u_int subzone; 1246 1247 if (!have_addr) { 1248 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1249 return; 1250 } 1251 mtp = (void *)addr; 1252 if (mtp->ks_magic != M_MAGIC) { 1253 db_printf("Magic %lx does not match expected %x\n", 1254 mtp->ks_magic, M_MAGIC); 1255 return; 1256 } 1257 1258 mtip = mtp->ks_handle; 1259 subzone = mtip->mti_zone; 1260 1261 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1262 mtip = mtp->ks_handle; 1263 if (mtip->mti_zone != subzone) 1264 continue; 1265 db_printf("%s\n", mtp->ks_shortdesc); 1266 if (db_pager_quit) 1267 break; 1268 } 1269 } 1270 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1271 #endif /* DDB */ 1272 1273 #ifdef MALLOC_PROFILE 1274 1275 static int 1276 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 1277 { 1278 struct sbuf sbuf; 1279 uint64_t count; 1280 uint64_t waste; 1281 uint64_t mem; 1282 int error; 1283 int rsize; 1284 int size; 1285 int i; 1286 1287 waste = 0; 1288 mem = 0; 1289 1290 error = sysctl_wire_old_buffer(req, 0); 1291 if (error != 0) 1292 return (error); 1293 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1294 sbuf_printf(&sbuf, 1295 "\n Size Requests Real Size\n"); 1296 for (i = 0; i < KMEM_ZSIZE; i++) { 1297 size = i << KMEM_ZSHIFT; 1298 rsize = kmemzones[kmemsize[i]].kz_size; 1299 count = (long long unsigned)krequests[i]; 1300 1301 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size, 1302 (unsigned long long)count, rsize); 1303 1304 if ((rsize * count) > (size * count)) 1305 waste += (rsize * count) - (size * count); 1306 mem += (rsize * count); 1307 } 1308 sbuf_printf(&sbuf, 1309 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 1310 (unsigned long long)mem, (unsigned long long)waste); 1311 error = sbuf_finish(&sbuf); 1312 sbuf_delete(&sbuf); 1313 return (error); 1314 } 1315 1316 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 1317 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 1318 #endif /* MALLOC_PROFILE */ 1319