xref: /freebsd/sys/kern/kern_malloc.c (revision 5bf5ca772c6de2d53344a78cf461447cc322ccea)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1987, 1991, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2005-2009 Robert N. M. Watson
7  * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray)
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
35  */
36 
37 /*
38  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
39  * based on memory types.  Back end is implemented using the UMA(9) zone
40  * allocator.  A set of fixed-size buckets are used for smaller allocations,
41  * and a special UMA allocation interface is used for larger allocations.
42  * Callers declare memory types, and statistics are maintained independently
43  * for each memory type.  Statistics are maintained per-CPU for performance
44  * reasons.  See malloc(9) and comments in malloc.h for a detailed
45  * description.
46  */
47 
48 #include <sys/cdefs.h>
49 __FBSDID("$FreeBSD$");
50 
51 #include "opt_ddb.h"
52 #include "opt_vm.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/kdb.h>
57 #include <sys/kernel.h>
58 #include <sys/lock.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/vmmeter.h>
62 #include <sys/proc.h>
63 #include <sys/sbuf.h>
64 #include <sys/sysctl.h>
65 #include <sys/time.h>
66 #include <sys/vmem.h>
67 
68 #include <vm/vm.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_pageout.h>
71 #include <vm/vm_param.h>
72 #include <vm/vm_kern.h>
73 #include <vm/vm_extern.h>
74 #include <vm/vm_map.h>
75 #include <vm/vm_page.h>
76 #include <vm/uma.h>
77 #include <vm/uma_int.h>
78 #include <vm/uma_dbg.h>
79 
80 #ifdef DEBUG_MEMGUARD
81 #include <vm/memguard.h>
82 #endif
83 #ifdef DEBUG_REDZONE
84 #include <vm/redzone.h>
85 #endif
86 
87 #if defined(INVARIANTS) && defined(__i386__)
88 #include <machine/cpu.h>
89 #endif
90 
91 #include <ddb/ddb.h>
92 
93 #ifdef KDTRACE_HOOKS
94 #include <sys/dtrace_bsd.h>
95 
96 dtrace_malloc_probe_func_t	dtrace_malloc_probe;
97 #endif
98 
99 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) ||		\
100     defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE)
101 #define	MALLOC_DEBUG	1
102 #endif
103 
104 /*
105  * When realloc() is called, if the new size is sufficiently smaller than
106  * the old size, realloc() will allocate a new, smaller block to avoid
107  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
108  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
109  */
110 #ifndef REALLOC_FRACTION
111 #define	REALLOC_FRACTION	1	/* new block if <= half the size */
112 #endif
113 
114 /*
115  * Centrally define some common malloc types.
116  */
117 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
118 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
119 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
120 
121 static struct malloc_type *kmemstatistics;
122 static int kmemcount;
123 
124 #define KMEM_ZSHIFT	4
125 #define KMEM_ZBASE	16
126 #define KMEM_ZMASK	(KMEM_ZBASE - 1)
127 
128 #define KMEM_ZMAX	65536
129 #define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
130 static uint8_t kmemsize[KMEM_ZSIZE + 1];
131 
132 #ifndef MALLOC_DEBUG_MAXZONES
133 #define	MALLOC_DEBUG_MAXZONES	1
134 #endif
135 static int numzones = MALLOC_DEBUG_MAXZONES;
136 
137 /*
138  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
139  * of various sizes.
140  *
141  * XXX: The comment here used to read "These won't be powers of two for
142  * long."  It's possible that a significant amount of wasted memory could be
143  * recovered by tuning the sizes of these buckets.
144  */
145 struct {
146 	int kz_size;
147 	char *kz_name;
148 	uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
149 } kmemzones[] = {
150 	{16, "16", },
151 	{32, "32", },
152 	{64, "64", },
153 	{128, "128", },
154 	{256, "256", },
155 	{512, "512", },
156 	{1024, "1024", },
157 	{2048, "2048", },
158 	{4096, "4096", },
159 	{8192, "8192", },
160 	{16384, "16384", },
161 	{32768, "32768", },
162 	{65536, "65536", },
163 	{0, NULL},
164 };
165 
166 /*
167  * Zone to allocate malloc type descriptions from.  For ABI reasons, memory
168  * types are described by a data structure passed by the declaring code, but
169  * the malloc(9) implementation has its own data structure describing the
170  * type and statistics.  This permits the malloc(9)-internal data structures
171  * to be modified without breaking binary-compiled kernel modules that
172  * declare malloc types.
173  */
174 static uma_zone_t mt_zone;
175 
176 u_long vm_kmem_size;
177 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
178     "Size of kernel memory");
179 
180 static u_long kmem_zmax = KMEM_ZMAX;
181 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
182     "Maximum allocation size that malloc(9) would use UMA as backend");
183 
184 static u_long vm_kmem_size_min;
185 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
186     "Minimum size of kernel memory");
187 
188 static u_long vm_kmem_size_max;
189 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
190     "Maximum size of kernel memory");
191 
192 static u_int vm_kmem_size_scale;
193 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
194     "Scale factor for kernel memory size");
195 
196 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
197 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
198     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
199     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
200 
201 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
202 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
203     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
204     sysctl_kmem_map_free, "LU", "Free space in kmem");
205 
206 /*
207  * The malloc_mtx protects the kmemstatistics linked list.
208  */
209 struct mtx malloc_mtx;
210 
211 #ifdef MALLOC_PROFILE
212 uint64_t krequests[KMEM_ZSIZE + 1];
213 
214 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
215 #endif
216 
217 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
218 
219 /*
220  * time_uptime of the last malloc(9) failure (induced or real).
221  */
222 static time_t t_malloc_fail;
223 
224 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
225 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
226     "Kernel malloc debugging options");
227 #endif
228 
229 /*
230  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
231  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
232  */
233 #ifdef MALLOC_MAKE_FAILURES
234 static int malloc_failure_rate;
235 static int malloc_nowait_count;
236 static int malloc_failure_count;
237 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
238     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
239 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
240     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
241 #endif
242 
243 static int
244 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
245 {
246 	u_long size;
247 
248 	size = uma_size();
249 	return (sysctl_handle_long(oidp, &size, 0, req));
250 }
251 
252 static int
253 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
254 {
255 	u_long size, limit;
256 
257 	/* The sysctl is unsigned, implement as a saturation value. */
258 	size = uma_size();
259 	limit = uma_limit();
260 	if (size > limit)
261 		size = 0;
262 	else
263 		size = limit - size;
264 	return (sysctl_handle_long(oidp, &size, 0, req));
265 }
266 
267 /*
268  * malloc(9) uma zone separation -- sub-page buffer overruns in one
269  * malloc type will affect only a subset of other malloc types.
270  */
271 #if MALLOC_DEBUG_MAXZONES > 1
272 static void
273 tunable_set_numzones(void)
274 {
275 
276 	TUNABLE_INT_FETCH("debug.malloc.numzones",
277 	    &numzones);
278 
279 	/* Sanity check the number of malloc uma zones. */
280 	if (numzones <= 0)
281 		numzones = 1;
282 	if (numzones > MALLOC_DEBUG_MAXZONES)
283 		numzones = MALLOC_DEBUG_MAXZONES;
284 }
285 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
286 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
287     &numzones, 0, "Number of malloc uma subzones");
288 
289 /*
290  * Any number that changes regularly is an okay choice for the
291  * offset.  Build numbers are pretty good of you have them.
292  */
293 static u_int zone_offset = __FreeBSD_version;
294 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
295 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
296     &zone_offset, 0, "Separate malloc types by examining the "
297     "Nth character in the malloc type short description.");
298 
299 static u_int
300 mtp_get_subzone(const char *desc)
301 {
302 	size_t len;
303 	u_int val;
304 
305 	if (desc == NULL || (len = strlen(desc)) == 0)
306 		return (0);
307 	val = desc[zone_offset % len];
308 	return (val % numzones);
309 }
310 #elif MALLOC_DEBUG_MAXZONES == 0
311 #error "MALLOC_DEBUG_MAXZONES must be positive."
312 #else
313 static inline u_int
314 mtp_get_subzone(const char *desc)
315 {
316 
317 	return (0);
318 }
319 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
320 
321 int
322 malloc_last_fail(void)
323 {
324 
325 	return (time_uptime - t_malloc_fail);
326 }
327 
328 /*
329  * An allocation has succeeded -- update malloc type statistics for the
330  * amount of bucket size.  Occurs within a critical section so that the
331  * thread isn't preempted and doesn't migrate while updating per-PCU
332  * statistics.
333  */
334 static void
335 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
336     int zindx)
337 {
338 	struct malloc_type_internal *mtip;
339 	struct malloc_type_stats *mtsp;
340 
341 	critical_enter();
342 	mtip = mtp->ks_handle;
343 	mtsp = &mtip->mti_stats[curcpu];
344 	if (size > 0) {
345 		mtsp->mts_memalloced += size;
346 		mtsp->mts_numallocs++;
347 	}
348 	if (zindx != -1)
349 		mtsp->mts_size |= 1 << zindx;
350 
351 #ifdef KDTRACE_HOOKS
352 	if (dtrace_malloc_probe != NULL) {
353 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
354 		if (probe_id != 0)
355 			(dtrace_malloc_probe)(probe_id,
356 			    (uintptr_t) mtp, (uintptr_t) mtip,
357 			    (uintptr_t) mtsp, size, zindx);
358 	}
359 #endif
360 
361 	critical_exit();
362 }
363 
364 void
365 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
366 {
367 
368 	if (size > 0)
369 		malloc_type_zone_allocated(mtp, size, -1);
370 }
371 
372 /*
373  * A free operation has occurred -- update malloc type statistics for the
374  * amount of the bucket size.  Occurs within a critical section so that the
375  * thread isn't preempted and doesn't migrate while updating per-CPU
376  * statistics.
377  */
378 void
379 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
380 {
381 	struct malloc_type_internal *mtip;
382 	struct malloc_type_stats *mtsp;
383 
384 	critical_enter();
385 	mtip = mtp->ks_handle;
386 	mtsp = &mtip->mti_stats[curcpu];
387 	mtsp->mts_memfreed += size;
388 	mtsp->mts_numfrees++;
389 
390 #ifdef KDTRACE_HOOKS
391 	if (dtrace_malloc_probe != NULL) {
392 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
393 		if (probe_id != 0)
394 			(dtrace_malloc_probe)(probe_id,
395 			    (uintptr_t) mtp, (uintptr_t) mtip,
396 			    (uintptr_t) mtsp, size, 0);
397 	}
398 #endif
399 
400 	critical_exit();
401 }
402 
403 /*
404  *	contigmalloc:
405  *
406  *	Allocate a block of physically contiguous memory.
407  *
408  *	If M_NOWAIT is set, this routine will not block and return NULL if
409  *	the allocation fails.
410  */
411 void *
412 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
413     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
414     vm_paddr_t boundary)
415 {
416 	void *ret;
417 
418 	ret = (void *)kmem_alloc_contig(kernel_arena, size, flags, low, high,
419 	    alignment, boundary, VM_MEMATTR_DEFAULT);
420 	if (ret != NULL)
421 		malloc_type_allocated(type, round_page(size));
422 	return (ret);
423 }
424 
425 void *
426 contigmalloc_domain(unsigned long size, struct malloc_type *type,
427     int domain, int flags, vm_paddr_t low, vm_paddr_t high,
428     unsigned long alignment, vm_paddr_t boundary)
429 {
430 	void *ret;
431 
432 	ret = (void *)kmem_alloc_contig_domain(domain, size, flags, low, high,
433 	    alignment, boundary, VM_MEMATTR_DEFAULT);
434 	if (ret != NULL)
435 		malloc_type_allocated(type, round_page(size));
436 	return (ret);
437 }
438 
439 /*
440  *	contigfree:
441  *
442  *	Free a block of memory allocated by contigmalloc.
443  *
444  *	This routine may not block.
445  */
446 void
447 contigfree(void *addr, unsigned long size, struct malloc_type *type)
448 {
449 
450 	kmem_free(kernel_arena, (vm_offset_t)addr, size);
451 	malloc_type_freed(type, round_page(size));
452 }
453 
454 #ifdef MALLOC_DEBUG
455 static int
456 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp,
457     int flags)
458 {
459 #ifdef INVARIANTS
460 	int indx;
461 
462 	KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
463 	/*
464 	 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
465 	 */
466 	indx = flags & (M_WAITOK | M_NOWAIT);
467 	if (indx != M_NOWAIT && indx != M_WAITOK) {
468 		static	struct timeval lasterr;
469 		static	int curerr, once;
470 		if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
471 			printf("Bad malloc flags: %x\n", indx);
472 			kdb_backtrace();
473 			flags |= M_WAITOK;
474 			once++;
475 		}
476 	}
477 #endif
478 #ifdef MALLOC_MAKE_FAILURES
479 	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
480 		atomic_add_int(&malloc_nowait_count, 1);
481 		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
482 			atomic_add_int(&malloc_failure_count, 1);
483 			t_malloc_fail = time_uptime;
484 			*vap = NULL;
485 			return (EJUSTRETURN);
486 		}
487 	}
488 #endif
489 	if (flags & M_WAITOK)
490 		KASSERT(curthread->td_intr_nesting_level == 0,
491 		   ("malloc(M_WAITOK) in interrupt context"));
492 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
493 	    ("malloc: called with spinlock or critical section held"));
494 
495 #ifdef DEBUG_MEMGUARD
496 	if (memguard_cmp_mtp(mtp, *sizep)) {
497 		*vap = memguard_alloc(*sizep, flags);
498 		if (*vap != NULL)
499 			return (EJUSTRETURN);
500 		/* This is unfortunate but should not be fatal. */
501 	}
502 #endif
503 
504 #ifdef DEBUG_REDZONE
505 	*sizep = redzone_size_ntor(*sizep);
506 #endif
507 
508 	return (0);
509 }
510 #endif
511 
512 /*
513  *	malloc:
514  *
515  *	Allocate a block of memory.
516  *
517  *	If M_NOWAIT is set, this routine will not block and return NULL if
518  *	the allocation fails.
519  */
520 void *
521 malloc(size_t size, struct malloc_type *mtp, int flags)
522 {
523 	int indx;
524 	struct malloc_type_internal *mtip;
525 	caddr_t va;
526 	uma_zone_t zone;
527 #if defined(DEBUG_REDZONE)
528 	unsigned long osize = size;
529 #endif
530 
531 #ifdef MALLOC_DEBUG
532 	if (malloc_dbg(&va, &size, mtp, flags) != 0)
533 		return (va);
534 #endif
535 
536 	if (size <= kmem_zmax) {
537 		mtip = mtp->ks_handle;
538 		if (size & KMEM_ZMASK)
539 			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
540 		indx = kmemsize[size >> KMEM_ZSHIFT];
541 		KASSERT(mtip->mti_zone < numzones,
542 		    ("mti_zone %u out of range %d",
543 		    mtip->mti_zone, numzones));
544 		zone = kmemzones[indx].kz_zone[mtip->mti_zone];
545 #ifdef MALLOC_PROFILE
546 		krequests[size >> KMEM_ZSHIFT]++;
547 #endif
548 		va = uma_zalloc(zone, flags);
549 		if (va != NULL)
550 			size = zone->uz_size;
551 		malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
552 	} else {
553 		size = roundup(size, PAGE_SIZE);
554 		zone = NULL;
555 		va = uma_large_malloc(size, flags);
556 		malloc_type_allocated(mtp, va == NULL ? 0 : size);
557 	}
558 	if (flags & M_WAITOK)
559 		KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
560 	else if (va == NULL)
561 		t_malloc_fail = time_uptime;
562 #ifdef DEBUG_REDZONE
563 	if (va != NULL)
564 		va = redzone_setup(va, osize);
565 #endif
566 	return ((void *) va);
567 }
568 
569 void *
570 malloc_domain(size_t size, struct malloc_type *mtp, int domain,
571     int flags)
572 {
573 	int indx;
574 	struct malloc_type_internal *mtip;
575 	caddr_t va;
576 	uma_zone_t zone;
577 #if defined(DEBUG_REDZONE)
578 	unsigned long osize = size;
579 #endif
580 
581 #ifdef MALLOC_DEBUG
582 	if (malloc_dbg(&va, &size, mtp, flags) != 0)
583 		return (va);
584 #endif
585 	if (size <= kmem_zmax) {
586 		mtip = mtp->ks_handle;
587 		if (size & KMEM_ZMASK)
588 			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
589 		indx = kmemsize[size >> KMEM_ZSHIFT];
590 		KASSERT(mtip->mti_zone < numzones,
591 		    ("mti_zone %u out of range %d",
592 		    mtip->mti_zone, numzones));
593 		zone = kmemzones[indx].kz_zone[mtip->mti_zone];
594 #ifdef MALLOC_PROFILE
595 		krequests[size >> KMEM_ZSHIFT]++;
596 #endif
597 		va = uma_zalloc_domain(zone, NULL, domain, flags);
598 		if (va != NULL)
599 			size = zone->uz_size;
600 		malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
601 	} else {
602 		size = roundup(size, PAGE_SIZE);
603 		zone = NULL;
604 		va = uma_large_malloc_domain(size, domain, flags);
605 		malloc_type_allocated(mtp, va == NULL ? 0 : size);
606 	}
607 	if (flags & M_WAITOK)
608 		KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
609 	else if (va == NULL)
610 		t_malloc_fail = time_uptime;
611 #ifdef DEBUG_REDZONE
612 	if (va != NULL)
613 		va = redzone_setup(va, osize);
614 #endif
615 	return ((void *) va);
616 }
617 
618 void *
619 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags)
620 {
621 
622 	if (WOULD_OVERFLOW(nmemb, size))
623 		panic("mallocarray: %zu * %zu overflowed", nmemb, size);
624 
625 	return (malloc(size * nmemb, type, flags));
626 }
627 
628 #ifdef INVARIANTS
629 static void
630 free_save_type(void *addr, struct malloc_type *mtp, u_long size)
631 {
632 	struct malloc_type **mtpp = addr;
633 
634 	/*
635 	 * Cache a pointer to the malloc_type that most recently freed
636 	 * this memory here.  This way we know who is most likely to
637 	 * have stepped on it later.
638 	 *
639 	 * This code assumes that size is a multiple of 8 bytes for
640 	 * 64 bit machines
641 	 */
642 	mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
643 	mtpp += (size - sizeof(struct malloc_type *)) /
644 	    sizeof(struct malloc_type *);
645 	*mtpp = mtp;
646 }
647 #endif
648 
649 #ifdef MALLOC_DEBUG
650 static int
651 free_dbg(void **addrp, struct malloc_type *mtp)
652 {
653 	void *addr;
654 
655 	addr = *addrp;
656 	KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
657 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
658 	    ("free: called with spinlock or critical section held"));
659 
660 	/* free(NULL, ...) does nothing */
661 	if (addr == NULL)
662 		return (EJUSTRETURN);
663 
664 #ifdef DEBUG_MEMGUARD
665 	if (is_memguard_addr(addr)) {
666 		memguard_free(addr);
667 		return (EJUSTRETURN);
668 	}
669 #endif
670 
671 #ifdef DEBUG_REDZONE
672 	redzone_check(addr);
673 	*addrp = redzone_addr_ntor(addr);
674 #endif
675 
676 	return (0);
677 }
678 #endif
679 
680 /*
681  *	free:
682  *
683  *	Free a block of memory allocated by malloc.
684  *
685  *	This routine may not block.
686  */
687 void
688 free(void *addr, struct malloc_type *mtp)
689 {
690 	uma_slab_t slab;
691 	u_long size;
692 
693 #ifdef MALLOC_DEBUG
694 	if (free_dbg(&addr, mtp) != 0)
695 		return;
696 #endif
697 	/* free(NULL, ...) does nothing */
698 	if (addr == NULL)
699 		return;
700 
701 	slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
702 	if (slab == NULL)
703 		panic("free: address %p(%p) has not been allocated.\n",
704 		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
705 
706 	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
707 		size = slab->us_keg->uk_size;
708 #ifdef INVARIANTS
709 		free_save_type(addr, mtp, size);
710 #endif
711 		uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
712 	} else {
713 		size = slab->us_size;
714 		uma_large_free(slab);
715 	}
716 	malloc_type_freed(mtp, size);
717 }
718 
719 void
720 free_domain(void *addr, struct malloc_type *mtp)
721 {
722 	uma_slab_t slab;
723 	u_long size;
724 
725 #ifdef MALLOC_DEBUG
726 	if (free_dbg(&addr, mtp) != 0)
727 		return;
728 #endif
729 
730 	/* free(NULL, ...) does nothing */
731 	if (addr == NULL)
732 		return;
733 
734 	slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
735 	if (slab == NULL)
736 		panic("free_domain: address %p(%p) has not been allocated.\n",
737 		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
738 
739 	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
740 		size = slab->us_keg->uk_size;
741 #ifdef INVARIANTS
742 		free_save_type(addr, mtp, size);
743 #endif
744 		uma_zfree_domain(LIST_FIRST(&slab->us_keg->uk_zones),
745 		    addr, slab);
746 	} else {
747 		size = slab->us_size;
748 		uma_large_free(slab);
749 	}
750 	malloc_type_freed(mtp, size);
751 }
752 
753 /*
754  *	realloc: change the size of a memory block
755  */
756 void *
757 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags)
758 {
759 	uma_slab_t slab;
760 	unsigned long alloc;
761 	void *newaddr;
762 
763 	KASSERT(mtp->ks_magic == M_MAGIC,
764 	    ("realloc: bad malloc type magic"));
765 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
766 	    ("realloc: called with spinlock or critical section held"));
767 
768 	/* realloc(NULL, ...) is equivalent to malloc(...) */
769 	if (addr == NULL)
770 		return (malloc(size, mtp, flags));
771 
772 	/*
773 	 * XXX: Should report free of old memory and alloc of new memory to
774 	 * per-CPU stats.
775 	 */
776 
777 #ifdef DEBUG_MEMGUARD
778 	if (is_memguard_addr(addr))
779 		return (memguard_realloc(addr, size, mtp, flags));
780 #endif
781 
782 #ifdef DEBUG_REDZONE
783 	slab = NULL;
784 	alloc = redzone_get_size(addr);
785 #else
786 	slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
787 
788 	/* Sanity check */
789 	KASSERT(slab != NULL,
790 	    ("realloc: address %p out of range", (void *)addr));
791 
792 	/* Get the size of the original block */
793 	if (!(slab->us_flags & UMA_SLAB_MALLOC))
794 		alloc = slab->us_keg->uk_size;
795 	else
796 		alloc = slab->us_size;
797 
798 	/* Reuse the original block if appropriate */
799 	if (size <= alloc
800 	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
801 		return (addr);
802 #endif /* !DEBUG_REDZONE */
803 
804 	/* Allocate a new, bigger (or smaller) block */
805 	if ((newaddr = malloc(size, mtp, flags)) == NULL)
806 		return (NULL);
807 
808 	/* Copy over original contents */
809 	bcopy(addr, newaddr, min(size, alloc));
810 	free(addr, mtp);
811 	return (newaddr);
812 }
813 
814 /*
815  *	reallocf: same as realloc() but free memory on failure.
816  */
817 void *
818 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags)
819 {
820 	void *mem;
821 
822 	if ((mem = realloc(addr, size, mtp, flags)) == NULL)
823 		free(addr, mtp);
824 	return (mem);
825 }
826 
827 #ifndef __sparc64__
828 CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
829 #endif
830 
831 /*
832  * Initialize the kernel memory (kmem) arena.
833  */
834 void
835 kmeminit(void)
836 {
837 	u_long mem_size;
838 	u_long tmp;
839 
840 #ifdef VM_KMEM_SIZE
841 	if (vm_kmem_size == 0)
842 		vm_kmem_size = VM_KMEM_SIZE;
843 #endif
844 #ifdef VM_KMEM_SIZE_MIN
845 	if (vm_kmem_size_min == 0)
846 		vm_kmem_size_min = VM_KMEM_SIZE_MIN;
847 #endif
848 #ifdef VM_KMEM_SIZE_MAX
849 	if (vm_kmem_size_max == 0)
850 		vm_kmem_size_max = VM_KMEM_SIZE_MAX;
851 #endif
852 	/*
853 	 * Calculate the amount of kernel virtual address (KVA) space that is
854 	 * preallocated to the kmem arena.  In order to support a wide range
855 	 * of machines, it is a function of the physical memory size,
856 	 * specifically,
857 	 *
858 	 *	min(max(physical memory size / VM_KMEM_SIZE_SCALE,
859 	 *	    VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
860 	 *
861 	 * Every architecture must define an integral value for
862 	 * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
863 	 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
864 	 * ceiling on this preallocation, are optional.  Typically,
865 	 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
866 	 * a given architecture.
867 	 */
868 	mem_size = vm_cnt.v_page_count;
869 	if (mem_size <= 32768) /* delphij XXX 128MB */
870 		kmem_zmax = PAGE_SIZE;
871 
872 	if (vm_kmem_size_scale < 1)
873 		vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
874 
875 	/*
876 	 * Check if we should use defaults for the "vm_kmem_size"
877 	 * variable:
878 	 */
879 	if (vm_kmem_size == 0) {
880 		vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
881 
882 		if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
883 			vm_kmem_size = vm_kmem_size_min;
884 		if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
885 			vm_kmem_size = vm_kmem_size_max;
886 	}
887 
888 	/*
889 	 * The amount of KVA space that is preallocated to the
890 	 * kmem arena can be set statically at compile-time or manually
891 	 * through the kernel environment.  However, it is still limited to
892 	 * twice the physical memory size, which has been sufficient to handle
893 	 * the most severe cases of external fragmentation in the kmem arena.
894 	 */
895 	if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
896 		vm_kmem_size = 2 * mem_size * PAGE_SIZE;
897 
898 	vm_kmem_size = round_page(vm_kmem_size);
899 #ifdef DEBUG_MEMGUARD
900 	tmp = memguard_fudge(vm_kmem_size, kernel_map);
901 #else
902 	tmp = vm_kmem_size;
903 #endif
904 	uma_set_limit(tmp);
905 
906 #ifdef DEBUG_MEMGUARD
907 	/*
908 	 * Initialize MemGuard if support compiled in.  MemGuard is a
909 	 * replacement allocator used for detecting tamper-after-free
910 	 * scenarios as they occur.  It is only used for debugging.
911 	 */
912 	memguard_init(kernel_arena);
913 #endif
914 }
915 
916 /*
917  * Initialize the kernel memory allocator
918  */
919 /* ARGSUSED*/
920 static void
921 mallocinit(void *dummy)
922 {
923 	int i;
924 	uint8_t indx;
925 
926 	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
927 
928 	kmeminit();
929 
930 	if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
931 		kmem_zmax = KMEM_ZMAX;
932 
933 	mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
934 #ifdef INVARIANTS
935 	    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
936 #else
937 	    NULL, NULL, NULL, NULL,
938 #endif
939 	    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
940 	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
941 		int size = kmemzones[indx].kz_size;
942 		char *name = kmemzones[indx].kz_name;
943 		int subzone;
944 
945 		for (subzone = 0; subzone < numzones; subzone++) {
946 			kmemzones[indx].kz_zone[subzone] =
947 			    uma_zcreate(name, size,
948 #ifdef INVARIANTS
949 			    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
950 #else
951 			    NULL, NULL, NULL, NULL,
952 #endif
953 			    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
954 		}
955 		for (;i <= size; i+= KMEM_ZBASE)
956 			kmemsize[i >> KMEM_ZSHIFT] = indx;
957 
958 	}
959 }
960 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
961 
962 void
963 malloc_init(void *data)
964 {
965 	struct malloc_type_internal *mtip;
966 	struct malloc_type *mtp;
967 
968 	KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
969 
970 	mtp = data;
971 	if (mtp->ks_magic != M_MAGIC)
972 		panic("malloc_init: bad malloc type magic");
973 
974 	mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
975 	mtp->ks_handle = mtip;
976 	mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
977 
978 	mtx_lock(&malloc_mtx);
979 	mtp->ks_next = kmemstatistics;
980 	kmemstatistics = mtp;
981 	kmemcount++;
982 	mtx_unlock(&malloc_mtx);
983 }
984 
985 void
986 malloc_uninit(void *data)
987 {
988 	struct malloc_type_internal *mtip;
989 	struct malloc_type_stats *mtsp;
990 	struct malloc_type *mtp, *temp;
991 	uma_slab_t slab;
992 	long temp_allocs, temp_bytes;
993 	int i;
994 
995 	mtp = data;
996 	KASSERT(mtp->ks_magic == M_MAGIC,
997 	    ("malloc_uninit: bad malloc type magic"));
998 	KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
999 
1000 	mtx_lock(&malloc_mtx);
1001 	mtip = mtp->ks_handle;
1002 	mtp->ks_handle = NULL;
1003 	if (mtp != kmemstatistics) {
1004 		for (temp = kmemstatistics; temp != NULL;
1005 		    temp = temp->ks_next) {
1006 			if (temp->ks_next == mtp) {
1007 				temp->ks_next = mtp->ks_next;
1008 				break;
1009 			}
1010 		}
1011 		KASSERT(temp,
1012 		    ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
1013 	} else
1014 		kmemstatistics = mtp->ks_next;
1015 	kmemcount--;
1016 	mtx_unlock(&malloc_mtx);
1017 
1018 	/*
1019 	 * Look for memory leaks.
1020 	 */
1021 	temp_allocs = temp_bytes = 0;
1022 	for (i = 0; i < MAXCPU; i++) {
1023 		mtsp = &mtip->mti_stats[i];
1024 		temp_allocs += mtsp->mts_numallocs;
1025 		temp_allocs -= mtsp->mts_numfrees;
1026 		temp_bytes += mtsp->mts_memalloced;
1027 		temp_bytes -= mtsp->mts_memfreed;
1028 	}
1029 	if (temp_allocs > 0 || temp_bytes > 0) {
1030 		printf("Warning: memory type %s leaked memory on destroy "
1031 		    "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
1032 		    temp_allocs, temp_bytes);
1033 	}
1034 
1035 	slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
1036 	uma_zfree_arg(mt_zone, mtip, slab);
1037 }
1038 
1039 struct malloc_type *
1040 malloc_desc2type(const char *desc)
1041 {
1042 	struct malloc_type *mtp;
1043 
1044 	mtx_assert(&malloc_mtx, MA_OWNED);
1045 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1046 		if (strcmp(mtp->ks_shortdesc, desc) == 0)
1047 			return (mtp);
1048 	}
1049 	return (NULL);
1050 }
1051 
1052 static int
1053 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
1054 {
1055 	struct malloc_type_stream_header mtsh;
1056 	struct malloc_type_internal *mtip;
1057 	struct malloc_type_header mth;
1058 	struct malloc_type *mtp;
1059 	int error, i;
1060 	struct sbuf sbuf;
1061 
1062 	error = sysctl_wire_old_buffer(req, 0);
1063 	if (error != 0)
1064 		return (error);
1065 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1066 	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
1067 	mtx_lock(&malloc_mtx);
1068 
1069 	/*
1070 	 * Insert stream header.
1071 	 */
1072 	bzero(&mtsh, sizeof(mtsh));
1073 	mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
1074 	mtsh.mtsh_maxcpus = MAXCPU;
1075 	mtsh.mtsh_count = kmemcount;
1076 	(void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
1077 
1078 	/*
1079 	 * Insert alternating sequence of type headers and type statistics.
1080 	 */
1081 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1082 		mtip = (struct malloc_type_internal *)mtp->ks_handle;
1083 
1084 		/*
1085 		 * Insert type header.
1086 		 */
1087 		bzero(&mth, sizeof(mth));
1088 		strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
1089 		(void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
1090 
1091 		/*
1092 		 * Insert type statistics for each CPU.
1093 		 */
1094 		for (i = 0; i < MAXCPU; i++) {
1095 			(void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
1096 			    sizeof(mtip->mti_stats[i]));
1097 		}
1098 	}
1099 	mtx_unlock(&malloc_mtx);
1100 	error = sbuf_finish(&sbuf);
1101 	sbuf_delete(&sbuf);
1102 	return (error);
1103 }
1104 
1105 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
1106     0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
1107     "Return malloc types");
1108 
1109 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
1110     "Count of kernel malloc types");
1111 
1112 void
1113 malloc_type_list(malloc_type_list_func_t *func, void *arg)
1114 {
1115 	struct malloc_type *mtp, **bufmtp;
1116 	int count, i;
1117 	size_t buflen;
1118 
1119 	mtx_lock(&malloc_mtx);
1120 restart:
1121 	mtx_assert(&malloc_mtx, MA_OWNED);
1122 	count = kmemcount;
1123 	mtx_unlock(&malloc_mtx);
1124 
1125 	buflen = sizeof(struct malloc_type *) * count;
1126 	bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
1127 
1128 	mtx_lock(&malloc_mtx);
1129 
1130 	if (count < kmemcount) {
1131 		free(bufmtp, M_TEMP);
1132 		goto restart;
1133 	}
1134 
1135 	for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
1136 		bufmtp[i] = mtp;
1137 
1138 	mtx_unlock(&malloc_mtx);
1139 
1140 	for (i = 0; i < count; i++)
1141 		(func)(bufmtp[i], arg);
1142 
1143 	free(bufmtp, M_TEMP);
1144 }
1145 
1146 #ifdef DDB
1147 DB_SHOW_COMMAND(malloc, db_show_malloc)
1148 {
1149 	struct malloc_type_internal *mtip;
1150 	struct malloc_type *mtp;
1151 	uint64_t allocs, frees;
1152 	uint64_t alloced, freed;
1153 	int i;
1154 
1155 	db_printf("%18s %12s  %12s %12s\n", "Type", "InUse", "MemUse",
1156 	    "Requests");
1157 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1158 		mtip = (struct malloc_type_internal *)mtp->ks_handle;
1159 		allocs = 0;
1160 		frees = 0;
1161 		alloced = 0;
1162 		freed = 0;
1163 		for (i = 0; i < MAXCPU; i++) {
1164 			allocs += mtip->mti_stats[i].mts_numallocs;
1165 			frees += mtip->mti_stats[i].mts_numfrees;
1166 			alloced += mtip->mti_stats[i].mts_memalloced;
1167 			freed += mtip->mti_stats[i].mts_memfreed;
1168 		}
1169 		db_printf("%18s %12ju %12juK %12ju\n",
1170 		    mtp->ks_shortdesc, allocs - frees,
1171 		    (alloced - freed + 1023) / 1024, allocs);
1172 		if (db_pager_quit)
1173 			break;
1174 	}
1175 }
1176 
1177 #if MALLOC_DEBUG_MAXZONES > 1
1178 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
1179 {
1180 	struct malloc_type_internal *mtip;
1181 	struct malloc_type *mtp;
1182 	u_int subzone;
1183 
1184 	if (!have_addr) {
1185 		db_printf("Usage: show multizone_matches <malloc type/addr>\n");
1186 		return;
1187 	}
1188 	mtp = (void *)addr;
1189 	if (mtp->ks_magic != M_MAGIC) {
1190 		db_printf("Magic %lx does not match expected %x\n",
1191 		    mtp->ks_magic, M_MAGIC);
1192 		return;
1193 	}
1194 
1195 	mtip = mtp->ks_handle;
1196 	subzone = mtip->mti_zone;
1197 
1198 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1199 		mtip = mtp->ks_handle;
1200 		if (mtip->mti_zone != subzone)
1201 			continue;
1202 		db_printf("%s\n", mtp->ks_shortdesc);
1203 		if (db_pager_quit)
1204 			break;
1205 	}
1206 }
1207 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
1208 #endif /* DDB */
1209 
1210 #ifdef MALLOC_PROFILE
1211 
1212 static int
1213 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
1214 {
1215 	struct sbuf sbuf;
1216 	uint64_t count;
1217 	uint64_t waste;
1218 	uint64_t mem;
1219 	int error;
1220 	int rsize;
1221 	int size;
1222 	int i;
1223 
1224 	waste = 0;
1225 	mem = 0;
1226 
1227 	error = sysctl_wire_old_buffer(req, 0);
1228 	if (error != 0)
1229 		return (error);
1230 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1231 	sbuf_printf(&sbuf,
1232 	    "\n  Size                    Requests  Real Size\n");
1233 	for (i = 0; i < KMEM_ZSIZE; i++) {
1234 		size = i << KMEM_ZSHIFT;
1235 		rsize = kmemzones[kmemsize[i]].kz_size;
1236 		count = (long long unsigned)krequests[i];
1237 
1238 		sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
1239 		    (unsigned long long)count, rsize);
1240 
1241 		if ((rsize * count) > (size * count))
1242 			waste += (rsize * count) - (size * count);
1243 		mem += (rsize * count);
1244 	}
1245 	sbuf_printf(&sbuf,
1246 	    "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
1247 	    (unsigned long long)mem, (unsigned long long)waste);
1248 	error = sbuf_finish(&sbuf);
1249 	sbuf_delete(&sbuf);
1250 	return (error);
1251 }
1252 
1253 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
1254     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
1255 #endif /* MALLOC_PROFILE */
1256