1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1987, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005-2009 Robert N. M. Watson 7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray) 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 37 * based on memory types. Back end is implemented using the UMA(9) zone 38 * allocator. A set of fixed-size buckets are used for smaller allocations, 39 * and a special UMA allocation interface is used for larger allocations. 40 * Callers declare memory types, and statistics are maintained independently 41 * for each memory type. Statistics are maintained per-CPU for performance 42 * reasons. See malloc(9) and comments in malloc.h for a detailed 43 * description. 44 */ 45 46 #include <sys/cdefs.h> 47 #include "opt_ddb.h" 48 #include "opt_vm.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/asan.h> 53 #include <sys/kdb.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/msan.h> 58 #include <sys/mutex.h> 59 #include <sys/vmmeter.h> 60 #include <sys/proc.h> 61 #include <sys/queue.h> 62 #include <sys/sbuf.h> 63 #include <sys/smp.h> 64 #include <sys/sysctl.h> 65 #include <sys/time.h> 66 #include <sys/vmem.h> 67 #ifdef EPOCH_TRACE 68 #include <sys/epoch.h> 69 #endif 70 71 #include <vm/vm.h> 72 #include <vm/pmap.h> 73 #include <vm/vm_domainset.h> 74 #include <vm/vm_pageout.h> 75 #include <vm/vm_param.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_extern.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_page.h> 80 #include <vm/vm_phys.h> 81 #include <vm/vm_pagequeue.h> 82 #include <vm/uma.h> 83 #include <vm/uma_int.h> 84 #include <vm/uma_dbg.h> 85 86 #ifdef DEBUG_MEMGUARD 87 #include <vm/memguard.h> 88 #endif 89 #ifdef DEBUG_REDZONE 90 #include <vm/redzone.h> 91 #endif 92 93 #if defined(INVARIANTS) && defined(__i386__) 94 #include <machine/cpu.h> 95 #endif 96 97 #include <ddb/ddb.h> 98 99 #ifdef KDTRACE_HOOKS 100 #include <sys/dtrace_bsd.h> 101 102 bool __read_frequently dtrace_malloc_enabled; 103 dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; 104 #endif 105 106 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ 107 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) 108 #define MALLOC_DEBUG 1 109 #endif 110 111 #if defined(KASAN) || defined(DEBUG_REDZONE) 112 #define DEBUG_REDZONE_ARG_DEF , unsigned long osize 113 #define DEBUG_REDZONE_ARG , osize 114 #else 115 #define DEBUG_REDZONE_ARG_DEF 116 #define DEBUG_REDZONE_ARG 117 #endif 118 119 typedef enum { 120 SLAB_COOKIE_SLAB_PTR = 0x0, 121 SLAB_COOKIE_MALLOC_LARGE = 0x1, 122 SLAB_COOKIE_CONTIG_MALLOC = 0x2, 123 } slab_cookie_t; 124 #define SLAB_COOKIE_MASK 0x3 125 #define SLAB_COOKIE_SHIFT 2 126 #define GET_SLAB_COOKIE(_slab) \ 127 ((slab_cookie_t)(uintptr_t)(_slab) & SLAB_COOKIE_MASK) 128 129 /* 130 * When realloc() is called, if the new size is sufficiently smaller than 131 * the old size, realloc() will allocate a new, smaller block to avoid 132 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 133 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 134 */ 135 #ifndef REALLOC_FRACTION 136 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 137 #endif 138 139 /* 140 * Centrally define some common malloc types. 141 */ 142 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 143 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 144 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 145 146 static struct malloc_type *kmemstatistics; 147 static int kmemcount; 148 149 #define KMEM_ZSHIFT 4 150 #define KMEM_ZBASE 16 151 #define KMEM_ZMASK (KMEM_ZBASE - 1) 152 153 #define KMEM_ZMAX 65536 154 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 155 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 156 157 #ifndef MALLOC_DEBUG_MAXZONES 158 #define MALLOC_DEBUG_MAXZONES 1 159 #endif 160 static int numzones = MALLOC_DEBUG_MAXZONES; 161 162 /* 163 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 164 * of various sizes. 165 * 166 * Warning: the layout of the struct is duplicated in libmemstat for KVM support. 167 * 168 * XXX: The comment here used to read "These won't be powers of two for 169 * long." It's possible that a significant amount of wasted memory could be 170 * recovered by tuning the sizes of these buckets. 171 */ 172 struct { 173 int kz_size; 174 const char *kz_name; 175 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 176 } kmemzones[] = { 177 {16, "malloc-16", }, 178 {32, "malloc-32", }, 179 {64, "malloc-64", }, 180 {128, "malloc-128", }, 181 {256, "malloc-256", }, 182 {384, "malloc-384", }, 183 {512, "malloc-512", }, 184 {1024, "malloc-1024", }, 185 {2048, "malloc-2048", }, 186 {4096, "malloc-4096", }, 187 {8192, "malloc-8192", }, 188 {16384, "malloc-16384", }, 189 {32768, "malloc-32768", }, 190 {65536, "malloc-65536", }, 191 {0, NULL}, 192 }; 193 194 u_long vm_kmem_size; 195 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 196 "Size of kernel memory"); 197 198 static u_long kmem_zmax = KMEM_ZMAX; 199 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, 200 "Maximum allocation size that malloc(9) would use UMA as backend"); 201 202 static u_long vm_kmem_size_min; 203 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 204 "Minimum size of kernel memory"); 205 206 static u_long vm_kmem_size_max; 207 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 208 "Maximum size of kernel memory"); 209 210 static u_int vm_kmem_size_scale; 211 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 212 "Scale factor for kernel memory size"); 213 214 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 215 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 216 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 217 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 218 219 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 220 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 221 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 222 sysctl_kmem_map_free, "LU", "Free space in kmem"); 223 224 static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 225 "Malloc information"); 226 227 static u_int vm_malloc_zone_count = nitems(kmemzones); 228 SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count, 229 CTLFLAG_RD, &vm_malloc_zone_count, 0, 230 "Number of malloc zones"); 231 232 static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS); 233 SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes, 234 CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0, 235 sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc"); 236 237 /* 238 * The malloc_mtx protects the kmemstatistics linked list. 239 */ 240 struct mtx malloc_mtx; 241 242 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 243 244 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 245 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 246 "Kernel malloc debugging options"); 247 #endif 248 249 /* 250 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 251 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 252 */ 253 #ifdef MALLOC_MAKE_FAILURES 254 static int malloc_failure_rate; 255 static int malloc_nowait_count; 256 static int malloc_failure_count; 257 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, 258 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 259 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 260 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 261 #endif 262 263 static int 264 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 265 { 266 u_long size; 267 268 size = uma_size(); 269 return (sysctl_handle_long(oidp, &size, 0, req)); 270 } 271 272 static int 273 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 274 { 275 u_long size, limit; 276 277 /* The sysctl is unsigned, implement as a saturation value. */ 278 size = uma_size(); 279 limit = uma_limit(); 280 if (size > limit) 281 size = 0; 282 else 283 size = limit - size; 284 return (sysctl_handle_long(oidp, &size, 0, req)); 285 } 286 287 static int 288 sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS) 289 { 290 int sizes[nitems(kmemzones)]; 291 int i; 292 293 for (i = 0; i < nitems(kmemzones); i++) { 294 sizes[i] = kmemzones[i].kz_size; 295 } 296 297 return (SYSCTL_OUT(req, &sizes, sizeof(sizes))); 298 } 299 300 /* 301 * malloc(9) uma zone separation -- sub-page buffer overruns in one 302 * malloc type will affect only a subset of other malloc types. 303 */ 304 #if MALLOC_DEBUG_MAXZONES > 1 305 static void 306 tunable_set_numzones(void) 307 { 308 309 TUNABLE_INT_FETCH("debug.malloc.numzones", 310 &numzones); 311 312 /* Sanity check the number of malloc uma zones. */ 313 if (numzones <= 0) 314 numzones = 1; 315 if (numzones > MALLOC_DEBUG_MAXZONES) 316 numzones = MALLOC_DEBUG_MAXZONES; 317 } 318 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 319 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 320 &numzones, 0, "Number of malloc uma subzones"); 321 322 /* 323 * Any number that changes regularly is an okay choice for the 324 * offset. Build numbers are pretty good of you have them. 325 */ 326 static u_int zone_offset = __FreeBSD_version; 327 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 328 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 329 &zone_offset, 0, "Separate malloc types by examining the " 330 "Nth character in the malloc type short description."); 331 332 static void 333 mtp_set_subzone(struct malloc_type *mtp) 334 { 335 struct malloc_type_internal *mtip; 336 const char *desc; 337 size_t len; 338 u_int val; 339 340 mtip = &mtp->ks_mti; 341 desc = mtp->ks_shortdesc; 342 if (desc == NULL || (len = strlen(desc)) == 0) 343 val = 0; 344 else 345 val = desc[zone_offset % len]; 346 mtip->mti_zone = (val % numzones); 347 } 348 349 static inline u_int 350 mtp_get_subzone(struct malloc_type *mtp) 351 { 352 struct malloc_type_internal *mtip; 353 354 mtip = &mtp->ks_mti; 355 356 KASSERT(mtip->mti_zone < numzones, 357 ("mti_zone %u out of range %d", 358 mtip->mti_zone, numzones)); 359 return (mtip->mti_zone); 360 } 361 #elif MALLOC_DEBUG_MAXZONES == 0 362 #error "MALLOC_DEBUG_MAXZONES must be positive." 363 #else 364 static void 365 mtp_set_subzone(struct malloc_type *mtp) 366 { 367 struct malloc_type_internal *mtip; 368 369 mtip = &mtp->ks_mti; 370 mtip->mti_zone = 0; 371 } 372 373 static inline u_int 374 mtp_get_subzone(struct malloc_type *mtp) 375 { 376 377 return (0); 378 } 379 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 380 381 /* 382 * An allocation has succeeded -- update malloc type statistics for the 383 * amount of bucket size. Occurs within a critical section so that the 384 * thread isn't preempted and doesn't migrate while updating per-PCU 385 * statistics. 386 */ 387 static void 388 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 389 int zindx) 390 { 391 struct malloc_type_internal *mtip; 392 struct malloc_type_stats *mtsp; 393 394 critical_enter(); 395 mtip = &mtp->ks_mti; 396 mtsp = zpcpu_get(mtip->mti_stats); 397 if (size > 0) { 398 mtsp->mts_memalloced += size; 399 mtsp->mts_numallocs++; 400 } 401 if (zindx != -1) 402 mtsp->mts_size |= 1 << zindx; 403 404 #ifdef KDTRACE_HOOKS 405 if (__predict_false(dtrace_malloc_enabled)) { 406 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 407 if (probe_id != 0) 408 (dtrace_malloc_probe)(probe_id, 409 (uintptr_t) mtp, (uintptr_t) mtip, 410 (uintptr_t) mtsp, size, zindx); 411 } 412 #endif 413 414 critical_exit(); 415 } 416 417 void 418 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 419 { 420 421 if (size > 0) 422 malloc_type_zone_allocated(mtp, size, -1); 423 } 424 425 /* 426 * A free operation has occurred -- update malloc type statistics for the 427 * amount of the bucket size. Occurs within a critical section so that the 428 * thread isn't preempted and doesn't migrate while updating per-CPU 429 * statistics. 430 */ 431 void 432 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 433 { 434 struct malloc_type_internal *mtip; 435 struct malloc_type_stats *mtsp; 436 437 critical_enter(); 438 mtip = &mtp->ks_mti; 439 mtsp = zpcpu_get(mtip->mti_stats); 440 mtsp->mts_memfreed += size; 441 mtsp->mts_numfrees++; 442 443 #ifdef KDTRACE_HOOKS 444 if (__predict_false(dtrace_malloc_enabled)) { 445 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 446 if (probe_id != 0) 447 (dtrace_malloc_probe)(probe_id, 448 (uintptr_t) mtp, (uintptr_t) mtip, 449 (uintptr_t) mtsp, size, 0); 450 } 451 #endif 452 453 critical_exit(); 454 } 455 456 /* 457 * contigmalloc: 458 * 459 * Allocate a block of physically contiguous memory. 460 * 461 * If M_NOWAIT is set, this routine will not block and return NULL if 462 * the allocation fails. 463 */ 464 #define IS_CONTIG_MALLOC(_slab) \ 465 (GET_SLAB_COOKIE(_slab) == SLAB_COOKIE_CONTIG_MALLOC) 466 #define CONTIG_MALLOC_SLAB(_size) \ 467 ((void *)(((_size) << SLAB_COOKIE_SHIFT) | SLAB_COOKIE_CONTIG_MALLOC)) 468 static inline size_t 469 contigmalloc_size(uma_slab_t slab) 470 { 471 uintptr_t va; 472 473 KASSERT(IS_CONTIG_MALLOC(slab), 474 ("%s: called on non-contigmalloc allocation: %p", __func__, slab)); 475 va = (uintptr_t)slab; 476 return (va >> SLAB_COOKIE_SHIFT); 477 } 478 479 void * 480 contigmalloc(unsigned long size, struct malloc_type *type, int flags, 481 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 482 vm_paddr_t boundary) 483 { 484 void *ret; 485 486 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, 487 boundary, VM_MEMATTR_DEFAULT); 488 if (ret != NULL) { 489 /* Use low bits unused for slab pointers. */ 490 vsetzoneslab((uintptr_t)ret, NULL, CONTIG_MALLOC_SLAB(size)); 491 malloc_type_allocated(type, round_page(size)); 492 } 493 return (ret); 494 } 495 496 void * 497 contigmalloc_domainset(unsigned long size, struct malloc_type *type, 498 struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, 499 unsigned long alignment, vm_paddr_t boundary) 500 { 501 void *ret; 502 503 ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high, 504 alignment, boundary, VM_MEMATTR_DEFAULT); 505 if (ret != NULL) { 506 /* Use low bits unused for slab pointers. */ 507 vsetzoneslab((uintptr_t)ret, NULL, CONTIG_MALLOC_SLAB(size)); 508 malloc_type_allocated(type, round_page(size)); 509 } 510 return (ret); 511 } 512 513 /* 514 * contigfree (deprecated). 515 * 516 * Free a block of memory allocated by contigmalloc. 517 * 518 * This routine may not block. 519 */ 520 void 521 contigfree(void *addr, unsigned long size __unused, struct malloc_type *type) 522 { 523 free(addr, type); 524 } 525 #undef IS_CONTIG_MALLOC 526 #undef CONTIG_MALLOC_SLAB 527 528 #ifdef MALLOC_DEBUG 529 static int 530 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, 531 int flags) 532 { 533 #ifdef INVARIANTS 534 int indx; 535 536 KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version")); 537 /* 538 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 539 */ 540 indx = flags & (M_WAITOK | M_NOWAIT); 541 if (indx != M_NOWAIT && indx != M_WAITOK) { 542 static struct timeval lasterr; 543 static int curerr, once; 544 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 545 printf("Bad malloc flags: %x\n", indx); 546 kdb_backtrace(); 547 flags |= M_WAITOK; 548 once++; 549 } 550 } 551 #endif 552 #ifdef MALLOC_MAKE_FAILURES 553 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 554 atomic_add_int(&malloc_nowait_count, 1); 555 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 556 atomic_add_int(&malloc_failure_count, 1); 557 *vap = NULL; 558 return (EJUSTRETURN); 559 } 560 } 561 #endif 562 if (flags & M_WAITOK) { 563 KASSERT(curthread->td_intr_nesting_level == 0, 564 ("malloc(M_WAITOK) in interrupt context")); 565 if (__predict_false(!THREAD_CAN_SLEEP())) { 566 #ifdef EPOCH_TRACE 567 epoch_trace_list(curthread); 568 #endif 569 KASSERT(0, 570 ("malloc(M_WAITOK) with sleeping prohibited")); 571 } 572 } 573 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 574 ("malloc: called with spinlock or critical section held")); 575 576 #ifdef DEBUG_MEMGUARD 577 if (memguard_cmp_mtp(mtp, *sizep)) { 578 *vap = memguard_alloc(*sizep, flags); 579 if (*vap != NULL) 580 return (EJUSTRETURN); 581 /* This is unfortunate but should not be fatal. */ 582 } 583 #endif 584 585 #ifdef DEBUG_REDZONE 586 *sizep = redzone_size_ntor(*sizep); 587 #endif 588 589 return (0); 590 } 591 #endif 592 593 /* 594 * Handle large allocations and frees by using kmem_malloc directly. 595 */ 596 #define IS_MALLOC_LARGE(_slab) \ 597 (GET_SLAB_COOKIE(_slab) == SLAB_COOKIE_MALLOC_LARGE) 598 #define MALLOC_LARGE_SLAB(_size) \ 599 ((void *)(((_size) << SLAB_COOKIE_SHIFT) | SLAB_COOKIE_MALLOC_LARGE)) 600 static inline size_t 601 malloc_large_size(uma_slab_t slab) 602 { 603 uintptr_t va; 604 605 va = (uintptr_t)slab; 606 KASSERT(IS_MALLOC_LARGE(slab), 607 ("%s: called on non-malloc_large allocation: %p", __func__, slab)); 608 return (va >> SLAB_COOKIE_SHIFT); 609 } 610 611 static caddr_t __noinline 612 malloc_large(size_t size, struct malloc_type *mtp, struct domainset *policy, 613 int flags DEBUG_REDZONE_ARG_DEF) 614 { 615 void *va; 616 617 size = roundup(size, PAGE_SIZE); 618 va = kmem_malloc_domainset(policy, size, flags); 619 if (va != NULL) { 620 /* Use low bits unused for slab pointers. */ 621 vsetzoneslab((uintptr_t)va, NULL, MALLOC_LARGE_SLAB(size)); 622 uma_total_inc(size); 623 } 624 malloc_type_allocated(mtp, va == NULL ? 0 : size); 625 if (__predict_false(va == NULL)) { 626 KASSERT((flags & M_WAITOK) == 0, 627 ("malloc(M_WAITOK) returned NULL")); 628 } else { 629 #ifdef DEBUG_REDZONE 630 va = redzone_setup(va, osize); 631 #endif 632 kasan_mark(va, osize, size, KASAN_MALLOC_REDZONE); 633 } 634 return (va); 635 } 636 637 static void 638 free_large(void *addr, size_t size) 639 { 640 641 kmem_free(addr, size); 642 uma_total_dec(size); 643 } 644 #undef IS_MALLOC_LARGE 645 #undef MALLOC_LARGE_SLAB 646 647 /* 648 * malloc: 649 * 650 * Allocate a block of memory. 651 * 652 * If M_NOWAIT is set, this routine will not block and return NULL if 653 * the allocation fails. 654 */ 655 void * 656 (malloc)(size_t size, struct malloc_type *mtp, int flags) 657 { 658 int indx; 659 caddr_t va; 660 uma_zone_t zone; 661 #if defined(DEBUG_REDZONE) || defined(KASAN) 662 unsigned long osize = size; 663 #endif 664 665 MPASS((flags & M_EXEC) == 0); 666 667 #ifdef MALLOC_DEBUG 668 va = NULL; 669 if (malloc_dbg(&va, &size, mtp, flags) != 0) 670 return (va); 671 #endif 672 673 if (__predict_false(size > kmem_zmax)) 674 return (malloc_large(size, mtp, DOMAINSET_RR(), flags 675 DEBUG_REDZONE_ARG)); 676 677 if (size & KMEM_ZMASK) 678 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 679 indx = kmemsize[size >> KMEM_ZSHIFT]; 680 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 681 va = uma_zalloc_arg(zone, zone, flags); 682 if (va != NULL) { 683 size = zone->uz_size; 684 if ((flags & M_ZERO) == 0) { 685 kmsan_mark(va, size, KMSAN_STATE_UNINIT); 686 kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR); 687 } 688 } 689 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 690 if (__predict_false(va == NULL)) { 691 KASSERT((flags & M_WAITOK) == 0, 692 ("malloc(M_WAITOK) returned NULL")); 693 } 694 #ifdef DEBUG_REDZONE 695 if (va != NULL) 696 va = redzone_setup(va, osize); 697 #endif 698 #ifdef KASAN 699 if (va != NULL) 700 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 701 #endif 702 return ((void *) va); 703 } 704 705 static void * 706 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain, 707 int flags) 708 { 709 uma_zone_t zone; 710 caddr_t va; 711 size_t size; 712 int indx; 713 714 size = *sizep; 715 KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0, 716 ("malloc_domain: Called with bad flag / size combination")); 717 if (size & KMEM_ZMASK) 718 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 719 indx = kmemsize[size >> KMEM_ZSHIFT]; 720 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 721 va = uma_zalloc_domain(zone, zone, domain, flags); 722 if (va != NULL) 723 *sizep = zone->uz_size; 724 *indxp = indx; 725 return ((void *)va); 726 } 727 728 void * 729 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, 730 int flags) 731 { 732 struct vm_domainset_iter di; 733 caddr_t va; 734 int domain; 735 int indx; 736 #if defined(KASAN) || defined(DEBUG_REDZONE) 737 unsigned long osize = size; 738 #endif 739 740 MPASS((flags & M_EXEC) == 0); 741 742 #ifdef MALLOC_DEBUG 743 va = NULL; 744 if (malloc_dbg(&va, &size, mtp, flags) != 0) 745 return (va); 746 #endif 747 748 if (__predict_false(size > kmem_zmax)) 749 return (malloc_large(size, mtp, DOMAINSET_RR(), flags 750 DEBUG_REDZONE_ARG)); 751 752 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 753 do { 754 va = malloc_domain(&size, &indx, mtp, domain, flags); 755 } while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0); 756 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 757 if (__predict_false(va == NULL)) { 758 KASSERT((flags & M_WAITOK) == 0, 759 ("malloc(M_WAITOK) returned NULL")); 760 } 761 #ifdef DEBUG_REDZONE 762 if (va != NULL) 763 va = redzone_setup(va, osize); 764 #endif 765 #ifdef KASAN 766 if (va != NULL) 767 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 768 #endif 769 #ifdef KMSAN 770 if ((flags & M_ZERO) == 0) { 771 kmsan_mark(va, size, KMSAN_STATE_UNINIT); 772 kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR); 773 } 774 #endif 775 return (va); 776 } 777 778 /* 779 * Allocate an executable area. 780 */ 781 void * 782 malloc_exec(size_t size, struct malloc_type *mtp, int flags) 783 { 784 785 return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags)); 786 } 787 788 void * 789 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds, 790 int flags) 791 { 792 #if defined(DEBUG_REDZONE) || defined(KASAN) 793 unsigned long osize = size; 794 #endif 795 #ifdef MALLOC_DEBUG 796 caddr_t va; 797 #endif 798 799 flags |= M_EXEC; 800 801 #ifdef MALLOC_DEBUG 802 va = NULL; 803 if (malloc_dbg(&va, &size, mtp, flags) != 0) 804 return (va); 805 #endif 806 807 return (malloc_large(size, mtp, ds, flags DEBUG_REDZONE_ARG)); 808 } 809 810 void * 811 malloc_aligned(size_t size, size_t align, struct malloc_type *type, int flags) 812 { 813 return (malloc_domainset_aligned(size, align, type, DOMAINSET_RR(), 814 flags)); 815 } 816 817 void * 818 malloc_domainset_aligned(size_t size, size_t align, 819 struct malloc_type *mtp, struct domainset *ds, int flags) 820 { 821 void *res; 822 size_t asize; 823 824 KASSERT(powerof2(align), 825 ("malloc_domainset_aligned: wrong align %#zx size %#zx", 826 align, size)); 827 KASSERT(align <= PAGE_SIZE, 828 ("malloc_domainset_aligned: align %#zx (size %#zx) too large", 829 align, size)); 830 831 /* 832 * Round the allocation size up to the next power of 2, 833 * because we can only guarantee alignment for 834 * power-of-2-sized allocations. Further increase the 835 * allocation size to align if the rounded size is less than 836 * align, since malloc zones provide alignment equal to their 837 * size. 838 */ 839 if (size == 0) 840 size = 1; 841 asize = size <= align ? align : 1UL << flsl(size - 1); 842 843 res = malloc_domainset(asize, mtp, ds, flags); 844 KASSERT(res == NULL || ((uintptr_t)res & (align - 1)) == 0, 845 ("malloc_domainset_aligned: result not aligned %p size %#zx " 846 "allocsize %#zx align %#zx", res, size, asize, align)); 847 return (res); 848 } 849 850 void * 851 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) 852 { 853 854 if (WOULD_OVERFLOW(nmemb, size)) 855 panic("mallocarray: %zu * %zu overflowed", nmemb, size); 856 857 return (malloc(size * nmemb, type, flags)); 858 } 859 860 void * 861 mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type, 862 struct domainset *ds, int flags) 863 { 864 865 if (WOULD_OVERFLOW(nmemb, size)) 866 panic("mallocarray_domainset: %zu * %zu overflowed", nmemb, size); 867 868 return (malloc_domainset(size * nmemb, type, ds, flags)); 869 } 870 871 #if defined(INVARIANTS) && !defined(KASAN) 872 static void 873 free_save_type(void *addr, struct malloc_type *mtp, u_long size) 874 { 875 struct malloc_type **mtpp = addr; 876 877 /* 878 * Cache a pointer to the malloc_type that most recently freed 879 * this memory here. This way we know who is most likely to 880 * have stepped on it later. 881 * 882 * This code assumes that size is a multiple of 8 bytes for 883 * 64 bit machines 884 */ 885 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 886 mtpp += (size - sizeof(struct malloc_type *)) / 887 sizeof(struct malloc_type *); 888 *mtpp = mtp; 889 } 890 #endif 891 892 #ifdef MALLOC_DEBUG 893 static int 894 free_dbg(void **addrp, struct malloc_type *mtp) 895 { 896 void *addr; 897 898 addr = *addrp; 899 KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version")); 900 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 901 ("free: called with spinlock or critical section held")); 902 903 /* free(NULL, ...) does nothing */ 904 if (addr == NULL) 905 return (EJUSTRETURN); 906 907 #ifdef DEBUG_MEMGUARD 908 if (is_memguard_addr(addr)) { 909 memguard_free(addr); 910 return (EJUSTRETURN); 911 } 912 #endif 913 914 #ifdef DEBUG_REDZONE 915 redzone_check(addr); 916 *addrp = redzone_addr_ntor(addr); 917 #endif 918 919 return (0); 920 } 921 #endif 922 923 /* 924 * free: 925 * 926 * Free a block of memory allocated by malloc. 927 * 928 * This routine may not block. 929 */ 930 void 931 free(void *addr, struct malloc_type *mtp) 932 { 933 uma_zone_t zone; 934 uma_slab_t slab; 935 u_long size; 936 937 #ifdef MALLOC_DEBUG 938 if (free_dbg(&addr, mtp) != 0) 939 return; 940 #endif 941 /* free(NULL, ...) does nothing */ 942 if (addr == NULL) 943 return; 944 945 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 946 if (slab == NULL) 947 panic("free: address %p(%p) has not been allocated", 948 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 949 950 switch (GET_SLAB_COOKIE(slab)) { 951 case __predict_true(SLAB_COOKIE_SLAB_PTR): 952 size = zone->uz_size; 953 #if defined(INVARIANTS) && !defined(KASAN) 954 free_save_type(addr, mtp, size); 955 #endif 956 uma_zfree_arg(zone, addr, slab); 957 break; 958 case SLAB_COOKIE_MALLOC_LARGE: 959 size = malloc_large_size(slab); 960 free_large(addr, size); 961 break; 962 case SLAB_COOKIE_CONTIG_MALLOC: 963 size = contigmalloc_size(slab); 964 kmem_free(addr, size); 965 size = round_page(size); 966 break; 967 default: 968 panic("%s: addr %p slab %p with unknown cookie %d", __func__, 969 addr, slab, GET_SLAB_COOKIE(slab)); 970 /* NOTREACHED */ 971 } 972 malloc_type_freed(mtp, size); 973 } 974 975 /* 976 * zfree: 977 * 978 * Zero then free a block of memory allocated by malloc. 979 * 980 * This routine may not block. 981 */ 982 void 983 zfree(void *addr, struct malloc_type *mtp) 984 { 985 uma_zone_t zone; 986 uma_slab_t slab; 987 u_long size; 988 989 #ifdef MALLOC_DEBUG 990 if (free_dbg(&addr, mtp) != 0) 991 return; 992 #endif 993 /* free(NULL, ...) does nothing */ 994 if (addr == NULL) 995 return; 996 997 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 998 if (slab == NULL) 999 panic("free: address %p(%p) has not been allocated", 1000 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 1001 1002 switch (GET_SLAB_COOKIE(slab)) { 1003 case __predict_true(SLAB_COOKIE_SLAB_PTR): 1004 size = zone->uz_size; 1005 #if defined(INVARIANTS) && !defined(KASAN) 1006 free_save_type(addr, mtp, size); 1007 #endif 1008 kasan_mark(addr, size, size, 0); 1009 explicit_bzero(addr, size); 1010 uma_zfree_arg(zone, addr, slab); 1011 break; 1012 case SLAB_COOKIE_MALLOC_LARGE: 1013 size = malloc_large_size(slab); 1014 kasan_mark(addr, size, size, 0); 1015 explicit_bzero(addr, size); 1016 free_large(addr, size); 1017 break; 1018 case SLAB_COOKIE_CONTIG_MALLOC: 1019 size = round_page(contigmalloc_size(slab)); 1020 explicit_bzero(addr, size); 1021 kmem_free(addr, size); 1022 break; 1023 default: 1024 panic("%s: addr %p slab %p with unknown cookie %d", __func__, 1025 addr, slab, GET_SLAB_COOKIE(slab)); 1026 /* NOTREACHED */ 1027 } 1028 malloc_type_freed(mtp, size); 1029 } 1030 1031 /* 1032 * realloc: change the size of a memory block 1033 */ 1034 void * 1035 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) 1036 { 1037 #ifndef DEBUG_REDZONE 1038 uma_zone_t zone; 1039 uma_slab_t slab; 1040 #endif 1041 unsigned long alloc; 1042 void *newaddr; 1043 1044 KASSERT(mtp->ks_version == M_VERSION, 1045 ("realloc: bad malloc type version")); 1046 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 1047 ("realloc: called with spinlock or critical section held")); 1048 1049 /* realloc(NULL, ...) is equivalent to malloc(...) */ 1050 if (addr == NULL) 1051 return (malloc(size, mtp, flags)); 1052 1053 /* 1054 * XXX: Should report free of old memory and alloc of new memory to 1055 * per-CPU stats. 1056 */ 1057 1058 #ifdef DEBUG_MEMGUARD 1059 if (is_memguard_addr(addr)) 1060 return (memguard_realloc(addr, size, mtp, flags)); 1061 #endif 1062 1063 #ifdef DEBUG_REDZONE 1064 alloc = redzone_get_size(addr); 1065 #else 1066 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1067 1068 /* Sanity check */ 1069 KASSERT(slab != NULL, 1070 ("realloc: address %p out of range", (void *)addr)); 1071 1072 /* Get the size of the original block */ 1073 switch (GET_SLAB_COOKIE(slab)) { 1074 case __predict_true(SLAB_COOKIE_SLAB_PTR): 1075 alloc = zone->uz_size; 1076 break; 1077 case SLAB_COOKIE_MALLOC_LARGE: 1078 alloc = malloc_large_size(slab); 1079 break; 1080 default: 1081 #ifdef INVARIANTS 1082 panic("%s: called for addr %p of unsupported allocation type; " 1083 "slab %p cookie %d", __func__, addr, slab, GET_SLAB_COOKIE(slab)); 1084 #endif 1085 return (NULL); 1086 } 1087 1088 /* Reuse the original block if appropriate */ 1089 if (size <= alloc && 1090 (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) { 1091 kasan_mark((void *)addr, size, alloc, KASAN_MALLOC_REDZONE); 1092 return (addr); 1093 } 1094 #endif /* !DEBUG_REDZONE */ 1095 1096 /* Allocate a new, bigger (or smaller) block */ 1097 if ((newaddr = malloc(size, mtp, flags)) == NULL) 1098 return (NULL); 1099 1100 /* 1101 * Copy over original contents. For KASAN, the redzone must be marked 1102 * valid before performing the copy. 1103 */ 1104 kasan_mark(addr, alloc, alloc, 0); 1105 bcopy(addr, newaddr, min(size, alloc)); 1106 free(addr, mtp); 1107 return (newaddr); 1108 } 1109 1110 /* 1111 * reallocf: same as realloc() but free memory on failure. 1112 */ 1113 void * 1114 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) 1115 { 1116 void *mem; 1117 1118 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 1119 free(addr, mtp); 1120 return (mem); 1121 } 1122 1123 /* 1124 * malloc_size: returns the number of bytes allocated for a request of the 1125 * specified size 1126 */ 1127 size_t 1128 malloc_size(size_t size) 1129 { 1130 int indx; 1131 1132 if (size > kmem_zmax) 1133 return (round_page(size)); 1134 if (size & KMEM_ZMASK) 1135 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 1136 indx = kmemsize[size >> KMEM_ZSHIFT]; 1137 return (kmemzones[indx].kz_size); 1138 } 1139 1140 /* 1141 * malloc_usable_size: returns the usable size of the allocation. 1142 */ 1143 size_t 1144 malloc_usable_size(const void *addr) 1145 { 1146 #ifndef DEBUG_REDZONE 1147 uma_zone_t zone; 1148 uma_slab_t slab; 1149 #endif 1150 u_long size; 1151 1152 if (addr == NULL) 1153 return (0); 1154 1155 #ifdef DEBUG_MEMGUARD 1156 if (is_memguard_addr(__DECONST(void *, addr))) 1157 return (memguard_get_req_size(addr)); 1158 #endif 1159 1160 #ifdef DEBUG_REDZONE 1161 size = redzone_get_size(__DECONST(void *, addr)); 1162 #else 1163 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1164 if (slab == NULL) 1165 panic("malloc_usable_size: address %p(%p) is not allocated", 1166 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 1167 1168 switch (GET_SLAB_COOKIE(slab)) { 1169 case __predict_true(SLAB_COOKIE_SLAB_PTR): 1170 size = zone->uz_size; 1171 break; 1172 case SLAB_COOKIE_MALLOC_LARGE: 1173 size = malloc_large_size(slab); 1174 break; 1175 default: 1176 __assert_unreachable(); 1177 size = 0; 1178 break; 1179 } 1180 #endif 1181 1182 /* 1183 * Unmark the redzone to avoid reports from consumers who are 1184 * (presumably) about to use the full allocation size. 1185 */ 1186 kasan_mark(addr, size, size, 0); 1187 1188 return (size); 1189 } 1190 1191 CTASSERT(VM_KMEM_SIZE_SCALE >= 1); 1192 1193 /* 1194 * Initialize the kernel memory (kmem) arena. 1195 */ 1196 void 1197 kmeminit(void) 1198 { 1199 u_long mem_size; 1200 u_long tmp; 1201 1202 #ifdef VM_KMEM_SIZE 1203 if (vm_kmem_size == 0) 1204 vm_kmem_size = VM_KMEM_SIZE; 1205 #endif 1206 #ifdef VM_KMEM_SIZE_MIN 1207 if (vm_kmem_size_min == 0) 1208 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 1209 #endif 1210 #ifdef VM_KMEM_SIZE_MAX 1211 if (vm_kmem_size_max == 0) 1212 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 1213 #endif 1214 /* 1215 * Calculate the amount of kernel virtual address (KVA) space that is 1216 * preallocated to the kmem arena. In order to support a wide range 1217 * of machines, it is a function of the physical memory size, 1218 * specifically, 1219 * 1220 * min(max(physical memory size / VM_KMEM_SIZE_SCALE, 1221 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) 1222 * 1223 * Every architecture must define an integral value for 1224 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN 1225 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and 1226 * ceiling on this preallocation, are optional. Typically, 1227 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on 1228 * a given architecture. 1229 */ 1230 mem_size = vm_cnt.v_page_count; 1231 if (mem_size <= 32768) /* delphij XXX 128MB */ 1232 kmem_zmax = PAGE_SIZE; 1233 1234 if (vm_kmem_size_scale < 1) 1235 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 1236 1237 /* 1238 * Check if we should use defaults for the "vm_kmem_size" 1239 * variable: 1240 */ 1241 if (vm_kmem_size == 0) { 1242 vm_kmem_size = mem_size / vm_kmem_size_scale; 1243 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ? 1244 vm_kmem_size_max : vm_kmem_size * PAGE_SIZE; 1245 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) 1246 vm_kmem_size = vm_kmem_size_min; 1247 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 1248 vm_kmem_size = vm_kmem_size_max; 1249 } 1250 if (vm_kmem_size == 0) 1251 panic("Tune VM_KMEM_SIZE_* for the platform"); 1252 1253 /* 1254 * The amount of KVA space that is preallocated to the 1255 * kmem arena can be set statically at compile-time or manually 1256 * through the kernel environment. However, it is still limited to 1257 * twice the physical memory size, which has been sufficient to handle 1258 * the most severe cases of external fragmentation in the kmem arena. 1259 */ 1260 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 1261 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 1262 1263 vm_kmem_size = round_page(vm_kmem_size); 1264 1265 /* 1266 * With KASAN or KMSAN enabled, dynamically allocated kernel memory is 1267 * shadowed. Account for this when setting the UMA limit. 1268 */ 1269 #if defined(KASAN) 1270 vm_kmem_size = (vm_kmem_size * KASAN_SHADOW_SCALE) / 1271 (KASAN_SHADOW_SCALE + 1); 1272 #elif defined(KMSAN) 1273 vm_kmem_size /= 3; 1274 #endif 1275 1276 #ifdef DEBUG_MEMGUARD 1277 tmp = memguard_fudge(vm_kmem_size, kernel_map); 1278 #else 1279 tmp = vm_kmem_size; 1280 #endif 1281 uma_set_limit(tmp); 1282 1283 #ifdef DEBUG_MEMGUARD 1284 /* 1285 * Initialize MemGuard if support compiled in. MemGuard is a 1286 * replacement allocator used for detecting tamper-after-free 1287 * scenarios as they occur. It is only used for debugging. 1288 */ 1289 memguard_init(kernel_arena); 1290 #endif 1291 } 1292 1293 /* 1294 * Initialize the kernel memory allocator 1295 */ 1296 /* ARGSUSED*/ 1297 static void 1298 mallocinit(void *dummy) 1299 { 1300 int i; 1301 uint8_t indx; 1302 1303 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 1304 1305 kmeminit(); 1306 1307 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) 1308 kmem_zmax = KMEM_ZMAX; 1309 1310 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 1311 int size = kmemzones[indx].kz_size; 1312 const char *name = kmemzones[indx].kz_name; 1313 size_t align; 1314 int subzone; 1315 1316 align = UMA_ALIGN_PTR; 1317 if (powerof2(size) && size > sizeof(void *)) 1318 align = MIN(size, PAGE_SIZE) - 1; 1319 for (subzone = 0; subzone < numzones; subzone++) { 1320 kmemzones[indx].kz_zone[subzone] = 1321 uma_zcreate(name, size, 1322 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 1323 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 1324 #else 1325 NULL, NULL, NULL, NULL, 1326 #endif 1327 align, UMA_ZONE_MALLOC); 1328 } 1329 for (;i <= size; i+= KMEM_ZBASE) 1330 kmemsize[i >> KMEM_ZSHIFT] = indx; 1331 } 1332 } 1333 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); 1334 1335 void 1336 malloc_init(void *data) 1337 { 1338 struct malloc_type_internal *mtip; 1339 struct malloc_type *mtp; 1340 1341 KASSERT(vm_cnt.v_page_count != 0, 1342 ("malloc_init() called before vm_mem_init()")); 1343 1344 mtp = data; 1345 if (mtp->ks_version != M_VERSION) 1346 panic("malloc_init: type %s with unsupported version %lu", 1347 mtp->ks_shortdesc, mtp->ks_version); 1348 1349 mtip = &mtp->ks_mti; 1350 mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO); 1351 mtp_set_subzone(mtp); 1352 1353 mtx_lock(&malloc_mtx); 1354 mtp->ks_next = kmemstatistics; 1355 kmemstatistics = mtp; 1356 kmemcount++; 1357 mtx_unlock(&malloc_mtx); 1358 } 1359 1360 void 1361 malloc_uninit(void *data) 1362 { 1363 struct malloc_type_internal *mtip; 1364 struct malloc_type_stats *mtsp; 1365 struct malloc_type *mtp, *temp; 1366 long temp_allocs, temp_bytes; 1367 int i; 1368 1369 mtp = data; 1370 KASSERT(mtp->ks_version == M_VERSION, 1371 ("malloc_uninit: bad malloc type version")); 1372 1373 mtx_lock(&malloc_mtx); 1374 mtip = &mtp->ks_mti; 1375 if (mtp != kmemstatistics) { 1376 for (temp = kmemstatistics; temp != NULL; 1377 temp = temp->ks_next) { 1378 if (temp->ks_next == mtp) { 1379 temp->ks_next = mtp->ks_next; 1380 break; 1381 } 1382 } 1383 KASSERT(temp, 1384 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 1385 } else 1386 kmemstatistics = mtp->ks_next; 1387 kmemcount--; 1388 mtx_unlock(&malloc_mtx); 1389 1390 /* 1391 * Look for memory leaks. 1392 */ 1393 temp_allocs = temp_bytes = 0; 1394 for (i = 0; i <= mp_maxid; i++) { 1395 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1396 temp_allocs += mtsp->mts_numallocs; 1397 temp_allocs -= mtsp->mts_numfrees; 1398 temp_bytes += mtsp->mts_memalloced; 1399 temp_bytes -= mtsp->mts_memfreed; 1400 } 1401 if (temp_allocs > 0 || temp_bytes > 0) { 1402 printf("Warning: memory type %s leaked memory on destroy " 1403 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 1404 temp_allocs, temp_bytes); 1405 } 1406 1407 uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats); 1408 } 1409 1410 struct malloc_type * 1411 malloc_desc2type(const char *desc) 1412 { 1413 struct malloc_type *mtp; 1414 1415 mtx_assert(&malloc_mtx, MA_OWNED); 1416 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1417 if (strcmp(mtp->ks_shortdesc, desc) == 0) 1418 return (mtp); 1419 } 1420 return (NULL); 1421 } 1422 1423 static int 1424 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 1425 { 1426 struct malloc_type_stream_header mtsh; 1427 struct malloc_type_internal *mtip; 1428 struct malloc_type_stats *mtsp, zeromts; 1429 struct malloc_type_header mth; 1430 struct malloc_type *mtp; 1431 int error, i; 1432 struct sbuf sbuf; 1433 1434 error = sysctl_wire_old_buffer(req, 0); 1435 if (error != 0) 1436 return (error); 1437 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1438 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 1439 mtx_lock(&malloc_mtx); 1440 1441 bzero(&zeromts, sizeof(zeromts)); 1442 1443 /* 1444 * Insert stream header. 1445 */ 1446 bzero(&mtsh, sizeof(mtsh)); 1447 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 1448 mtsh.mtsh_maxcpus = MAXCPU; 1449 mtsh.mtsh_count = kmemcount; 1450 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 1451 1452 /* 1453 * Insert alternating sequence of type headers and type statistics. 1454 */ 1455 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1456 mtip = &mtp->ks_mti; 1457 1458 /* 1459 * Insert type header. 1460 */ 1461 bzero(&mth, sizeof(mth)); 1462 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 1463 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 1464 1465 /* 1466 * Insert type statistics for each CPU. 1467 */ 1468 for (i = 0; i <= mp_maxid; i++) { 1469 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1470 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); 1471 } 1472 /* 1473 * Fill in the missing CPUs. 1474 */ 1475 for (; i < MAXCPU; i++) { 1476 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); 1477 } 1478 } 1479 mtx_unlock(&malloc_mtx); 1480 error = sbuf_finish(&sbuf); 1481 sbuf_delete(&sbuf); 1482 return (error); 1483 } 1484 1485 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, 1486 CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0, 1487 sysctl_kern_malloc_stats, "s,malloc_type_ustats", 1488 "Return malloc types"); 1489 1490 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 1491 "Count of kernel malloc types"); 1492 1493 void 1494 malloc_type_list(malloc_type_list_func_t *func, void *arg) 1495 { 1496 struct malloc_type *mtp, **bufmtp; 1497 int count, i; 1498 size_t buflen; 1499 1500 mtx_lock(&malloc_mtx); 1501 restart: 1502 mtx_assert(&malloc_mtx, MA_OWNED); 1503 count = kmemcount; 1504 mtx_unlock(&malloc_mtx); 1505 1506 buflen = sizeof(struct malloc_type *) * count; 1507 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 1508 1509 mtx_lock(&malloc_mtx); 1510 1511 if (count < kmemcount) { 1512 free(bufmtp, M_TEMP); 1513 goto restart; 1514 } 1515 1516 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 1517 bufmtp[i] = mtp; 1518 1519 mtx_unlock(&malloc_mtx); 1520 1521 for (i = 0; i < count; i++) 1522 (func)(bufmtp[i], arg); 1523 1524 free(bufmtp, M_TEMP); 1525 } 1526 1527 #ifdef DDB 1528 static int64_t 1529 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs, 1530 uint64_t *inuse) 1531 { 1532 const struct malloc_type_stats *mtsp; 1533 uint64_t frees, alloced, freed; 1534 int i; 1535 1536 *allocs = 0; 1537 frees = 0; 1538 alloced = 0; 1539 freed = 0; 1540 for (i = 0; i <= mp_maxid; i++) { 1541 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1542 1543 *allocs += mtsp->mts_numallocs; 1544 frees += mtsp->mts_numfrees; 1545 alloced += mtsp->mts_memalloced; 1546 freed += mtsp->mts_memfreed; 1547 } 1548 *inuse = *allocs - frees; 1549 return (alloced - freed); 1550 } 1551 1552 DB_SHOW_COMMAND_FLAGS(malloc, db_show_malloc, DB_CMD_MEMSAFE) 1553 { 1554 const char *fmt_hdr, *fmt_entry; 1555 struct malloc_type *mtp; 1556 uint64_t allocs, inuse; 1557 int64_t size; 1558 /* variables for sorting */ 1559 struct malloc_type *last_mtype, *cur_mtype; 1560 int64_t cur_size, last_size; 1561 int ties; 1562 1563 if (modif[0] == 'i') { 1564 fmt_hdr = "%s,%s,%s,%s\n"; 1565 fmt_entry = "\"%s\",%ju,%jdK,%ju\n"; 1566 } else { 1567 fmt_hdr = "%18s %12s %12s %12s\n"; 1568 fmt_entry = "%18s %12ju %12jdK %12ju\n"; 1569 } 1570 1571 db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests"); 1572 1573 /* Select sort, largest size first. */ 1574 last_mtype = NULL; 1575 last_size = INT64_MAX; 1576 for (;;) { 1577 cur_mtype = NULL; 1578 cur_size = -1; 1579 ties = 0; 1580 1581 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1582 /* 1583 * In the case of size ties, print out mtypes 1584 * in the order they are encountered. That is, 1585 * when we encounter the most recently output 1586 * mtype, we have already printed all preceding 1587 * ties, and we must print all following ties. 1588 */ 1589 if (mtp == last_mtype) { 1590 ties = 1; 1591 continue; 1592 } 1593 size = get_malloc_stats(&mtp->ks_mti, &allocs, 1594 &inuse); 1595 if (size > cur_size && size < last_size + ties) { 1596 cur_size = size; 1597 cur_mtype = mtp; 1598 } 1599 } 1600 if (cur_mtype == NULL) 1601 break; 1602 1603 size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse); 1604 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse, 1605 howmany(size, 1024), allocs); 1606 1607 if (db_pager_quit) 1608 break; 1609 1610 last_mtype = cur_mtype; 1611 last_size = cur_size; 1612 } 1613 } 1614 1615 #if MALLOC_DEBUG_MAXZONES > 1 1616 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1617 { 1618 struct malloc_type_internal *mtip; 1619 struct malloc_type *mtp; 1620 u_int subzone; 1621 1622 if (!have_addr) { 1623 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1624 return; 1625 } 1626 mtp = (void *)addr; 1627 if (mtp->ks_version != M_VERSION) { 1628 db_printf("Version %lx does not match expected %x\n", 1629 mtp->ks_version, M_VERSION); 1630 return; 1631 } 1632 1633 mtip = &mtp->ks_mti; 1634 subzone = mtip->mti_zone; 1635 1636 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1637 mtip = &mtp->ks_mti; 1638 if (mtip->mti_zone != subzone) 1639 continue; 1640 db_printf("%s\n", mtp->ks_shortdesc); 1641 if (db_pager_quit) 1642 break; 1643 } 1644 } 1645 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1646 #endif /* DDB */ 1647