xref: /freebsd/sys/kern/kern_malloc.c (revision 5521ff5a4d1929056e7ffc982fac3341ca54df7c)
1 /*
2  * Copyright (c) 1987, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #include "opt_vm.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/mutex.h>
46 #include <sys/vmmeter.h>
47 #include <sys/proc.h>
48 
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_extern.h>
53 #include <vm/pmap.h>
54 #include <vm/vm_map.h>
55 
56 #if defined(INVARIANTS) && defined(__i386__)
57 #include <machine/cpu.h>
58 #endif
59 
60 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
61 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
62 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
63 
64 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
65 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
66 
67 static void kmeminit __P((void *));
68 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
69 
70 static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
71 
72 static struct malloc_type *kmemstatistics;
73 static struct kmembuckets bucket[MINBUCKET + 16];
74 static struct kmemusage *kmemusage;
75 static char *kmembase;
76 static char *kmemlimit;
77 
78 static struct mtx malloc_mtx;
79 
80 u_int vm_kmem_size;
81 
82 #ifdef INVARIANTS
83 /*
84  * This structure provides a set of masks to catch unaligned frees.
85  */
86 static long addrmask[] = { 0,
87 	0x00000001, 0x00000003, 0x00000007, 0x0000000f,
88 	0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
89 	0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
90 	0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
91 };
92 
93 /*
94  * The WEIRD_ADDR is used as known text to copy into free objects so
95  * that modifications after frees can be detected.
96  */
97 #define WEIRD_ADDR	0xdeadc0de
98 #define MAX_COPY	64
99 
100 /*
101  * Normally the first word of the structure is used to hold the list
102  * pointer for free objects. However, when running with diagnostics,
103  * we use the third and fourth fields, so as to catch modifications
104  * in the most commonly trashed first two words.
105  */
106 struct freelist {
107 	long	spare0;
108 	struct malloc_type *type;
109 	long	spare1;
110 	caddr_t	next;
111 };
112 #else /* !INVARIANTS */
113 struct freelist {
114 	caddr_t	next;
115 };
116 #endif /* INVARIANTS */
117 
118 /*
119  *	malloc:
120  *
121  *	Allocate a block of memory.
122  *
123  *	If M_NOWAIT is set, this routine will not block and return NULL if
124  *	the allocation fails.
125  *
126  *	If M_ASLEEP is set (M_NOWAIT must also be set), this routine
127  *	will have the side effect of calling asleep() if it returns NULL,
128  *	allowing the parent to await() at some future time.
129  */
130 void *
131 malloc(size, type, flags)
132 	unsigned long size;
133 	struct malloc_type *type;
134 	int flags;
135 {
136 	register struct kmembuckets *kbp;
137 	register struct kmemusage *kup;
138 	register struct freelist *freep;
139 	long indx, npg, allocsize;
140 	int s;
141 	caddr_t va, cp, savedlist;
142 #ifdef INVARIANTS
143 	long *end, *lp;
144 	int copysize;
145 	const char *savedtype;
146 #endif
147 	register struct malloc_type *ksp = type;
148 
149 #if defined(INVARIANTS)
150 	if (flags == M_WAITOK)
151 		KASSERT(curproc->p_intr_nesting_level == 0,
152 		   ("malloc(M_WAITOK) in interrupt context"));
153 #endif
154 	indx = BUCKETINDX(size);
155 	kbp = &bucket[indx];
156 	s = splmem();
157 	mtx_lock(&malloc_mtx);
158 	while (ksp->ks_memuse >= ksp->ks_limit) {
159 		if (flags & M_ASLEEP) {
160 			if (ksp->ks_limblocks < 65535)
161 				ksp->ks_limblocks++;
162 			asleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
163 		}
164 		if (flags & M_NOWAIT) {
165 			splx(s);
166 			mtx_unlock(&malloc_mtx);
167 			return ((void *) NULL);
168 		}
169 		if (ksp->ks_limblocks < 65535)
170 			ksp->ks_limblocks++;
171 		msleep((caddr_t)ksp, &malloc_mtx, PSWP+2, type->ks_shortdesc,
172 		    0);
173 	}
174 	ksp->ks_size |= 1 << indx;
175 #ifdef INVARIANTS
176 	copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
177 #endif
178 	if (kbp->kb_next == NULL) {
179 		kbp->kb_last = NULL;
180 		if (size > MAXALLOCSAVE)
181 			allocsize = roundup(size, PAGE_SIZE);
182 		else
183 			allocsize = 1 << indx;
184 		npg = btoc(allocsize);
185 
186 		mtx_unlock(&malloc_mtx);
187 		va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags);
188 
189 		if (va == NULL) {
190 			splx(s);
191 			return ((void *) NULL);
192 		}
193 		/*
194 		 * Enter malloc_mtx after the error check to avoid having to
195 		 * immediately exit it again if there is an error.
196 		 */
197 		mtx_lock(&malloc_mtx);
198 
199 		kbp->kb_total += kbp->kb_elmpercl;
200 		kup = btokup(va);
201 		kup->ku_indx = indx;
202 		if (allocsize > MAXALLOCSAVE) {
203 			if (npg > 65535)
204 				panic("malloc: allocation too large");
205 			kup->ku_pagecnt = npg;
206 			ksp->ks_memuse += allocsize;
207 			goto out;
208 		}
209 		kup->ku_freecnt = kbp->kb_elmpercl;
210 		kbp->kb_totalfree += kbp->kb_elmpercl;
211 		/*
212 		 * Just in case we blocked while allocating memory,
213 		 * and someone else also allocated memory for this
214 		 * bucket, don't assume the list is still empty.
215 		 */
216 		savedlist = kbp->kb_next;
217 		kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize;
218 		for (;;) {
219 			freep = (struct freelist *)cp;
220 #ifdef INVARIANTS
221 			/*
222 			 * Copy in known text to detect modification
223 			 * after freeing.
224 			 */
225 			end = (long *)&cp[copysize];
226 			for (lp = (long *)cp; lp < end; lp++)
227 				*lp = WEIRD_ADDR;
228 			freep->type = M_FREE;
229 #endif /* INVARIANTS */
230 			if (cp <= va)
231 				break;
232 			cp -= allocsize;
233 			freep->next = cp;
234 		}
235 		freep->next = savedlist;
236 		if (kbp->kb_last == NULL)
237 			kbp->kb_last = (caddr_t)freep;
238 	}
239 	va = kbp->kb_next;
240 	kbp->kb_next = ((struct freelist *)va)->next;
241 #ifdef INVARIANTS
242 	freep = (struct freelist *)va;
243 	savedtype = (const char *) freep->type->ks_shortdesc;
244 #if BYTE_ORDER == BIG_ENDIAN
245 	freep->type = (struct malloc_type *)WEIRD_ADDR >> 16;
246 #endif
247 #if BYTE_ORDER == LITTLE_ENDIAN
248 	freep->type = (struct malloc_type *)WEIRD_ADDR;
249 #endif
250 	if ((intptr_t)(void *)&freep->next & 0x2)
251 		freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
252 	else
253 		freep->next = (caddr_t)WEIRD_ADDR;
254 	end = (long *)&va[copysize];
255 	for (lp = (long *)va; lp < end; lp++) {
256 		if (*lp == WEIRD_ADDR)
257 			continue;
258 		printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n",
259 			"Data modified on freelist: word",
260 			(long)(lp - (long *)va), (void *)va, size,
261 			"previous type", savedtype, *lp, (u_long)WEIRD_ADDR);
262 		break;
263 	}
264 	freep->spare0 = 0;
265 #endif /* INVARIANTS */
266 	kup = btokup(va);
267 	if (kup->ku_indx != indx)
268 		panic("malloc: wrong bucket");
269 	if (kup->ku_freecnt == 0)
270 		panic("malloc: lost data");
271 	kup->ku_freecnt--;
272 	kbp->kb_totalfree--;
273 	ksp->ks_memuse += 1 << indx;
274 out:
275 	kbp->kb_calls++;
276 	ksp->ks_inuse++;
277 	ksp->ks_calls++;
278 	if (ksp->ks_memuse > ksp->ks_maxused)
279 		ksp->ks_maxused = ksp->ks_memuse;
280 	splx(s);
281 	mtx_unlock(&malloc_mtx);
282 	/* XXX: Do idle pre-zeroing.  */
283 	if (va != NULL && (flags & M_ZERO))
284 		bzero(va, size);
285 	return ((void *) va);
286 }
287 
288 /*
289  *	free:
290  *
291  *	Free a block of memory allocated by malloc.
292  *
293  *	This routine may not block.
294  */
295 void
296 free(addr, type)
297 	void *addr;
298 	struct malloc_type *type;
299 {
300 	register struct kmembuckets *kbp;
301 	register struct kmemusage *kup;
302 	register struct freelist *freep;
303 	long size;
304 	int s;
305 #ifdef INVARIANTS
306 	struct freelist *fp;
307 	long *end, *lp, alloc, copysize;
308 #endif
309 	register struct malloc_type *ksp = type;
310 
311 	KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit,
312 	    ("free: address %p out of range", (void *)addr));
313 	kup = btokup(addr);
314 	size = 1 << kup->ku_indx;
315 	kbp = &bucket[kup->ku_indx];
316 	s = splmem();
317 	mtx_lock(&malloc_mtx);
318 #ifdef INVARIANTS
319 	/*
320 	 * Check for returns of data that do not point to the
321 	 * beginning of the allocation.
322 	 */
323 	if (size > PAGE_SIZE)
324 		alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
325 	else
326 		alloc = addrmask[kup->ku_indx];
327 	if (((uintptr_t)(void *)addr & alloc) != 0)
328 		panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
329 		    (void *)addr, size, type->ks_shortdesc, alloc);
330 #endif /* INVARIANTS */
331 	if (size > MAXALLOCSAVE) {
332 		mtx_unlock(&malloc_mtx);
333 		kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
334 		mtx_lock(&malloc_mtx);
335 
336 		size = kup->ku_pagecnt << PAGE_SHIFT;
337 		ksp->ks_memuse -= size;
338 		kup->ku_indx = 0;
339 		kup->ku_pagecnt = 0;
340 		if (ksp->ks_memuse + size >= ksp->ks_limit &&
341 		    ksp->ks_memuse < ksp->ks_limit)
342 			wakeup((caddr_t)ksp);
343 		ksp->ks_inuse--;
344 		kbp->kb_total -= 1;
345 		splx(s);
346 		mtx_unlock(&malloc_mtx);
347 		return;
348 	}
349 	freep = (struct freelist *)addr;
350 #ifdef INVARIANTS
351 	/*
352 	 * Check for multiple frees. Use a quick check to see if
353 	 * it looks free before laboriously searching the freelist.
354 	 */
355 	if (freep->spare0 == WEIRD_ADDR) {
356 		fp = (struct freelist *)kbp->kb_next;
357 		while (fp) {
358 			if (fp->spare0 != WEIRD_ADDR)
359 				panic("free: free item %p modified", fp);
360 			else if (addr == (caddr_t)fp)
361 				panic("free: multiple freed item %p", addr);
362 			fp = (struct freelist *)fp->next;
363 		}
364 	}
365 	/*
366 	 * Copy in known text to detect modification after freeing
367 	 * and to make it look free. Also, save the type being freed
368 	 * so we can list likely culprit if modification is detected
369 	 * when the object is reallocated.
370 	 */
371 	copysize = size < MAX_COPY ? size : MAX_COPY;
372 	end = (long *)&((caddr_t)addr)[copysize];
373 	for (lp = (long *)addr; lp < end; lp++)
374 		*lp = WEIRD_ADDR;
375 	freep->type = type;
376 #endif /* INVARIANTS */
377 	kup->ku_freecnt++;
378 	if (kup->ku_freecnt >= kbp->kb_elmpercl) {
379 		if (kup->ku_freecnt > kbp->kb_elmpercl)
380 			panic("free: multiple frees");
381 		else if (kbp->kb_totalfree > kbp->kb_highwat)
382 			kbp->kb_couldfree++;
383 	}
384 	kbp->kb_totalfree++;
385 	ksp->ks_memuse -= size;
386 	if (ksp->ks_memuse + size >= ksp->ks_limit &&
387 	    ksp->ks_memuse < ksp->ks_limit)
388 		wakeup((caddr_t)ksp);
389 	ksp->ks_inuse--;
390 #ifdef OLD_MALLOC_MEMORY_POLICY
391 	if (kbp->kb_next == NULL)
392 		kbp->kb_next = addr;
393 	else
394 		((struct freelist *)kbp->kb_last)->next = addr;
395 	freep->next = NULL;
396 	kbp->kb_last = addr;
397 #else
398 	/*
399 	 * Return memory to the head of the queue for quick reuse.  This
400 	 * can improve performance by improving the probability of the
401 	 * item being in the cache when it is reused.
402 	 */
403 	if (kbp->kb_next == NULL) {
404 		kbp->kb_next = addr;
405 		kbp->kb_last = addr;
406 		freep->next = NULL;
407 	} else {
408 		freep->next = kbp->kb_next;
409 		kbp->kb_next = addr;
410 	}
411 #endif
412 	splx(s);
413 	mtx_unlock(&malloc_mtx);
414 }
415 
416 /*
417  * Initialize the kernel memory allocator
418  */
419 /* ARGSUSED*/
420 static void
421 kmeminit(dummy)
422 	void *dummy;
423 {
424 	register long indx;
425 	u_long npg;
426 	u_long mem_size;
427 
428 #if	((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
429 #error "kmeminit: MAXALLOCSAVE not power of 2"
430 #endif
431 #if	(MAXALLOCSAVE > MINALLOCSIZE * 32768)
432 #error "kmeminit: MAXALLOCSAVE too big"
433 #endif
434 #if	(MAXALLOCSAVE < PAGE_SIZE)
435 #error "kmeminit: MAXALLOCSAVE too small"
436 #endif
437 
438 	mtx_init(&malloc_mtx, "malloc", MTX_DEF);
439 
440 	/*
441 	 * Try to auto-tune the kernel memory size, so that it is
442 	 * more applicable for a wider range of machine sizes.
443 	 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
444 	 * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
445 	 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
446 	 * available, and on an X86 with a total KVA space of 256MB,
447 	 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
448 	 *
449 	 * Note that the kmem_map is also used by the zone allocator,
450 	 * so make sure that there is enough space.
451 	 */
452 	vm_kmem_size = VM_KMEM_SIZE;
453 	mem_size = cnt.v_page_count * PAGE_SIZE;
454 
455 #if defined(VM_KMEM_SIZE_SCALE)
456 	if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size)
457 		vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
458 #endif
459 
460 #if defined(VM_KMEM_SIZE_MAX)
461 	if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
462 		vm_kmem_size = VM_KMEM_SIZE_MAX;
463 #endif
464 
465 	/* Allow final override from the kernel environment */
466 	TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size);
467 
468 	/*
469 	 * Limit kmem virtual size to twice the physical memory.
470 	 * This allows for kmem map sparseness, but limits the size
471 	 * to something sane. Be careful to not overflow the 32bit
472 	 * ints while doing the check.
473 	 */
474 	if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE))
475 		vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
476 
477 	/*
478 	 * In mb_init(), we set up submaps for mbufs and clusters, in which
479 	 * case we rounddown() (nmbufs * MSIZE) and (nmbclusters * MCLBYTES),
480 	 * respectively. Mathematically, this means that what we do here may
481 	 * amount to slightly more address space than we need for the submaps,
482 	 * but it never hurts to have an extra page in kmem_map.
483 	 */
484 	npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + nmbcnt *
485 	    sizeof(u_int) + vm_kmem_size) / PAGE_SIZE;
486 
487 	kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
488 		(vm_size_t)(npg * sizeof(struct kmemusage)));
489 	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
490 		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
491 	kmem_map->system_map = 1;
492 	for (indx = 0; indx < MINBUCKET + 16; indx++) {
493 		if (1 << indx >= PAGE_SIZE)
494 			bucket[indx].kb_elmpercl = 1;
495 		else
496 			bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
497 		bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
498 	}
499 }
500 
501 void
502 malloc_init(data)
503 	void *data;
504 {
505 	struct malloc_type *type = (struct malloc_type *)data;
506 
507 	if (type->ks_magic != M_MAGIC)
508 		panic("malloc type lacks magic");
509 
510 	if (type->ks_limit != 0)
511 		return;
512 
513 	if (cnt.v_page_count == 0)
514 		panic("malloc_init not allowed before vm init");
515 
516 	/*
517 	 * The default limits for each malloc region is 1/2 of the
518 	 * malloc portion of the kmem map size.
519 	 */
520 	type->ks_limit = vm_kmem_size / 2;
521 	type->ks_next = kmemstatistics;
522 	kmemstatistics = type;
523 }
524 
525 void
526 malloc_uninit(data)
527 	void *data;
528 {
529 	struct malloc_type *type = (struct malloc_type *)data;
530 	struct malloc_type *t;
531 #ifdef INVARIANTS
532 	struct kmembuckets *kbp;
533 	struct freelist *freep;
534 	long indx;
535 	int s;
536 #endif
537 
538 	if (type->ks_magic != M_MAGIC)
539 		panic("malloc type lacks magic");
540 
541 	if (cnt.v_page_count == 0)
542 		panic("malloc_uninit not allowed before vm init");
543 
544 	if (type->ks_limit == 0)
545 		panic("malloc_uninit on uninitialized type");
546 
547 #ifdef INVARIANTS
548 	s = splmem();
549 	mtx_lock(&malloc_mtx);
550 	for (indx = 0; indx < MINBUCKET + 16; indx++) {
551 		kbp = bucket + indx;
552 		freep = (struct freelist*)kbp->kb_next;
553 		while (freep) {
554 			if (freep->type == type)
555 				freep->type = M_FREE;
556 			freep = (struct freelist*)freep->next;
557 		}
558 	}
559 	splx(s);
560 	mtx_unlock(&malloc_mtx);
561 
562 	if (type->ks_memuse != 0)
563 		printf("malloc_uninit: %ld bytes of '%s' still allocated\n",
564 		    type->ks_memuse, type->ks_shortdesc);
565 #endif
566 
567 	if (type == kmemstatistics)
568 		kmemstatistics = type->ks_next;
569 	else {
570 		for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
571 			if (t->ks_next == type) {
572 				t->ks_next = type->ks_next;
573 				break;
574 			}
575 		}
576 	}
577 	type->ks_next = NULL;
578 	type->ks_limit = 0;
579 }
580