1 /* 2 * Copyright (c) 1987, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 34 * $FreeBSD$ 35 */ 36 37 #include "opt_vm.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/mutex.h> 46 #include <sys/vmmeter.h> 47 #include <sys/proc.h> 48 49 #include <vm/vm.h> 50 #include <vm/vm_param.h> 51 #include <vm/vm_kern.h> 52 #include <vm/vm_extern.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_map.h> 55 56 #if defined(INVARIANTS) && defined(__i386__) 57 #include <machine/cpu.h> 58 #endif 59 60 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 61 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 62 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 63 64 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 65 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 66 67 static void kmeminit __P((void *)); 68 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 69 70 static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); 71 72 static struct malloc_type *kmemstatistics; 73 static struct kmembuckets bucket[MINBUCKET + 16]; 74 static struct kmemusage *kmemusage; 75 static char *kmembase; 76 static char *kmemlimit; 77 78 static struct mtx malloc_mtx; 79 80 u_int vm_kmem_size; 81 82 #ifdef INVARIANTS 83 /* 84 * This structure provides a set of masks to catch unaligned frees. 85 */ 86 static long addrmask[] = { 0, 87 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 88 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 89 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 90 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 91 }; 92 93 /* 94 * The WEIRD_ADDR is used as known text to copy into free objects so 95 * that modifications after frees can be detected. 96 */ 97 #define WEIRD_ADDR 0xdeadc0de 98 #define MAX_COPY 64 99 100 /* 101 * Normally the first word of the structure is used to hold the list 102 * pointer for free objects. However, when running with diagnostics, 103 * we use the third and fourth fields, so as to catch modifications 104 * in the most commonly trashed first two words. 105 */ 106 struct freelist { 107 long spare0; 108 struct malloc_type *type; 109 long spare1; 110 caddr_t next; 111 }; 112 #else /* !INVARIANTS */ 113 struct freelist { 114 caddr_t next; 115 }; 116 #endif /* INVARIANTS */ 117 118 /* 119 * malloc: 120 * 121 * Allocate a block of memory. 122 * 123 * If M_NOWAIT is set, this routine will not block and return NULL if 124 * the allocation fails. 125 * 126 * If M_ASLEEP is set (M_NOWAIT must also be set), this routine 127 * will have the side effect of calling asleep() if it returns NULL, 128 * allowing the parent to await() at some future time. 129 */ 130 void * 131 malloc(size, type, flags) 132 unsigned long size; 133 struct malloc_type *type; 134 int flags; 135 { 136 register struct kmembuckets *kbp; 137 register struct kmemusage *kup; 138 register struct freelist *freep; 139 long indx, npg, allocsize; 140 int s; 141 caddr_t va, cp, savedlist; 142 #ifdef INVARIANTS 143 long *end, *lp; 144 int copysize; 145 const char *savedtype; 146 #endif 147 register struct malloc_type *ksp = type; 148 149 #if defined(INVARIANTS) 150 if (flags == M_WAITOK) 151 KASSERT(curproc->p_intr_nesting_level == 0, 152 ("malloc(M_WAITOK) in interrupt context")); 153 #endif 154 indx = BUCKETINDX(size); 155 kbp = &bucket[indx]; 156 s = splmem(); 157 mtx_lock(&malloc_mtx); 158 while (ksp->ks_memuse >= ksp->ks_limit) { 159 if (flags & M_ASLEEP) { 160 if (ksp->ks_limblocks < 65535) 161 ksp->ks_limblocks++; 162 asleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0); 163 } 164 if (flags & M_NOWAIT) { 165 splx(s); 166 mtx_unlock(&malloc_mtx); 167 return ((void *) NULL); 168 } 169 if (ksp->ks_limblocks < 65535) 170 ksp->ks_limblocks++; 171 msleep((caddr_t)ksp, &malloc_mtx, PSWP+2, type->ks_shortdesc, 172 0); 173 } 174 ksp->ks_size |= 1 << indx; 175 #ifdef INVARIANTS 176 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY; 177 #endif 178 if (kbp->kb_next == NULL) { 179 kbp->kb_last = NULL; 180 if (size > MAXALLOCSAVE) 181 allocsize = roundup(size, PAGE_SIZE); 182 else 183 allocsize = 1 << indx; 184 npg = btoc(allocsize); 185 186 mtx_unlock(&malloc_mtx); 187 va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags); 188 189 if (va == NULL) { 190 splx(s); 191 return ((void *) NULL); 192 } 193 /* 194 * Enter malloc_mtx after the error check to avoid having to 195 * immediately exit it again if there is an error. 196 */ 197 mtx_lock(&malloc_mtx); 198 199 kbp->kb_total += kbp->kb_elmpercl; 200 kup = btokup(va); 201 kup->ku_indx = indx; 202 if (allocsize > MAXALLOCSAVE) { 203 if (npg > 65535) 204 panic("malloc: allocation too large"); 205 kup->ku_pagecnt = npg; 206 ksp->ks_memuse += allocsize; 207 goto out; 208 } 209 kup->ku_freecnt = kbp->kb_elmpercl; 210 kbp->kb_totalfree += kbp->kb_elmpercl; 211 /* 212 * Just in case we blocked while allocating memory, 213 * and someone else also allocated memory for this 214 * bucket, don't assume the list is still empty. 215 */ 216 savedlist = kbp->kb_next; 217 kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize; 218 for (;;) { 219 freep = (struct freelist *)cp; 220 #ifdef INVARIANTS 221 /* 222 * Copy in known text to detect modification 223 * after freeing. 224 */ 225 end = (long *)&cp[copysize]; 226 for (lp = (long *)cp; lp < end; lp++) 227 *lp = WEIRD_ADDR; 228 freep->type = M_FREE; 229 #endif /* INVARIANTS */ 230 if (cp <= va) 231 break; 232 cp -= allocsize; 233 freep->next = cp; 234 } 235 freep->next = savedlist; 236 if (kbp->kb_last == NULL) 237 kbp->kb_last = (caddr_t)freep; 238 } 239 va = kbp->kb_next; 240 kbp->kb_next = ((struct freelist *)va)->next; 241 #ifdef INVARIANTS 242 freep = (struct freelist *)va; 243 savedtype = (const char *) freep->type->ks_shortdesc; 244 #if BYTE_ORDER == BIG_ENDIAN 245 freep->type = (struct malloc_type *)WEIRD_ADDR >> 16; 246 #endif 247 #if BYTE_ORDER == LITTLE_ENDIAN 248 freep->type = (struct malloc_type *)WEIRD_ADDR; 249 #endif 250 if ((intptr_t)(void *)&freep->next & 0x2) 251 freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16)); 252 else 253 freep->next = (caddr_t)WEIRD_ADDR; 254 end = (long *)&va[copysize]; 255 for (lp = (long *)va; lp < end; lp++) { 256 if (*lp == WEIRD_ADDR) 257 continue; 258 printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n", 259 "Data modified on freelist: word", 260 (long)(lp - (long *)va), (void *)va, size, 261 "previous type", savedtype, *lp, (u_long)WEIRD_ADDR); 262 break; 263 } 264 freep->spare0 = 0; 265 #endif /* INVARIANTS */ 266 kup = btokup(va); 267 if (kup->ku_indx != indx) 268 panic("malloc: wrong bucket"); 269 if (kup->ku_freecnt == 0) 270 panic("malloc: lost data"); 271 kup->ku_freecnt--; 272 kbp->kb_totalfree--; 273 ksp->ks_memuse += 1 << indx; 274 out: 275 kbp->kb_calls++; 276 ksp->ks_inuse++; 277 ksp->ks_calls++; 278 if (ksp->ks_memuse > ksp->ks_maxused) 279 ksp->ks_maxused = ksp->ks_memuse; 280 splx(s); 281 mtx_unlock(&malloc_mtx); 282 /* XXX: Do idle pre-zeroing. */ 283 if (va != NULL && (flags & M_ZERO)) 284 bzero(va, size); 285 return ((void *) va); 286 } 287 288 /* 289 * free: 290 * 291 * Free a block of memory allocated by malloc. 292 * 293 * This routine may not block. 294 */ 295 void 296 free(addr, type) 297 void *addr; 298 struct malloc_type *type; 299 { 300 register struct kmembuckets *kbp; 301 register struct kmemusage *kup; 302 register struct freelist *freep; 303 long size; 304 int s; 305 #ifdef INVARIANTS 306 struct freelist *fp; 307 long *end, *lp, alloc, copysize; 308 #endif 309 register struct malloc_type *ksp = type; 310 311 KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit, 312 ("free: address %p out of range", (void *)addr)); 313 kup = btokup(addr); 314 size = 1 << kup->ku_indx; 315 kbp = &bucket[kup->ku_indx]; 316 s = splmem(); 317 mtx_lock(&malloc_mtx); 318 #ifdef INVARIANTS 319 /* 320 * Check for returns of data that do not point to the 321 * beginning of the allocation. 322 */ 323 if (size > PAGE_SIZE) 324 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 325 else 326 alloc = addrmask[kup->ku_indx]; 327 if (((uintptr_t)(void *)addr & alloc) != 0) 328 panic("free: unaligned addr %p, size %ld, type %s, mask %ld", 329 (void *)addr, size, type->ks_shortdesc, alloc); 330 #endif /* INVARIANTS */ 331 if (size > MAXALLOCSAVE) { 332 mtx_unlock(&malloc_mtx); 333 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt)); 334 mtx_lock(&malloc_mtx); 335 336 size = kup->ku_pagecnt << PAGE_SHIFT; 337 ksp->ks_memuse -= size; 338 kup->ku_indx = 0; 339 kup->ku_pagecnt = 0; 340 if (ksp->ks_memuse + size >= ksp->ks_limit && 341 ksp->ks_memuse < ksp->ks_limit) 342 wakeup((caddr_t)ksp); 343 ksp->ks_inuse--; 344 kbp->kb_total -= 1; 345 splx(s); 346 mtx_unlock(&malloc_mtx); 347 return; 348 } 349 freep = (struct freelist *)addr; 350 #ifdef INVARIANTS 351 /* 352 * Check for multiple frees. Use a quick check to see if 353 * it looks free before laboriously searching the freelist. 354 */ 355 if (freep->spare0 == WEIRD_ADDR) { 356 fp = (struct freelist *)kbp->kb_next; 357 while (fp) { 358 if (fp->spare0 != WEIRD_ADDR) 359 panic("free: free item %p modified", fp); 360 else if (addr == (caddr_t)fp) 361 panic("free: multiple freed item %p", addr); 362 fp = (struct freelist *)fp->next; 363 } 364 } 365 /* 366 * Copy in known text to detect modification after freeing 367 * and to make it look free. Also, save the type being freed 368 * so we can list likely culprit if modification is detected 369 * when the object is reallocated. 370 */ 371 copysize = size < MAX_COPY ? size : MAX_COPY; 372 end = (long *)&((caddr_t)addr)[copysize]; 373 for (lp = (long *)addr; lp < end; lp++) 374 *lp = WEIRD_ADDR; 375 freep->type = type; 376 #endif /* INVARIANTS */ 377 kup->ku_freecnt++; 378 if (kup->ku_freecnt >= kbp->kb_elmpercl) { 379 if (kup->ku_freecnt > kbp->kb_elmpercl) 380 panic("free: multiple frees"); 381 else if (kbp->kb_totalfree > kbp->kb_highwat) 382 kbp->kb_couldfree++; 383 } 384 kbp->kb_totalfree++; 385 ksp->ks_memuse -= size; 386 if (ksp->ks_memuse + size >= ksp->ks_limit && 387 ksp->ks_memuse < ksp->ks_limit) 388 wakeup((caddr_t)ksp); 389 ksp->ks_inuse--; 390 #ifdef OLD_MALLOC_MEMORY_POLICY 391 if (kbp->kb_next == NULL) 392 kbp->kb_next = addr; 393 else 394 ((struct freelist *)kbp->kb_last)->next = addr; 395 freep->next = NULL; 396 kbp->kb_last = addr; 397 #else 398 /* 399 * Return memory to the head of the queue for quick reuse. This 400 * can improve performance by improving the probability of the 401 * item being in the cache when it is reused. 402 */ 403 if (kbp->kb_next == NULL) { 404 kbp->kb_next = addr; 405 kbp->kb_last = addr; 406 freep->next = NULL; 407 } else { 408 freep->next = kbp->kb_next; 409 kbp->kb_next = addr; 410 } 411 #endif 412 splx(s); 413 mtx_unlock(&malloc_mtx); 414 } 415 416 /* 417 * Initialize the kernel memory allocator 418 */ 419 /* ARGSUSED*/ 420 static void 421 kmeminit(dummy) 422 void *dummy; 423 { 424 register long indx; 425 u_long npg; 426 u_long mem_size; 427 428 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0) 429 #error "kmeminit: MAXALLOCSAVE not power of 2" 430 #endif 431 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768) 432 #error "kmeminit: MAXALLOCSAVE too big" 433 #endif 434 #if (MAXALLOCSAVE < PAGE_SIZE) 435 #error "kmeminit: MAXALLOCSAVE too small" 436 #endif 437 438 mtx_init(&malloc_mtx, "malloc", MTX_DEF); 439 440 /* 441 * Try to auto-tune the kernel memory size, so that it is 442 * more applicable for a wider range of machine sizes. 443 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while 444 * a VM_KMEM_SIZE of 12MB is a fair compromise. The 445 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space 446 * available, and on an X86 with a total KVA space of 256MB, 447 * try to keep VM_KMEM_SIZE_MAX at 80MB or below. 448 * 449 * Note that the kmem_map is also used by the zone allocator, 450 * so make sure that there is enough space. 451 */ 452 vm_kmem_size = VM_KMEM_SIZE; 453 mem_size = cnt.v_page_count * PAGE_SIZE; 454 455 #if defined(VM_KMEM_SIZE_SCALE) 456 if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size) 457 vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE; 458 #endif 459 460 #if defined(VM_KMEM_SIZE_MAX) 461 if (vm_kmem_size >= VM_KMEM_SIZE_MAX) 462 vm_kmem_size = VM_KMEM_SIZE_MAX; 463 #endif 464 465 /* Allow final override from the kernel environment */ 466 TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size); 467 468 /* 469 * Limit kmem virtual size to twice the physical memory. 470 * This allows for kmem map sparseness, but limits the size 471 * to something sane. Be careful to not overflow the 32bit 472 * ints while doing the check. 473 */ 474 if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE)) 475 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE; 476 477 /* 478 * In mb_init(), we set up submaps for mbufs and clusters, in which 479 * case we rounddown() (nmbufs * MSIZE) and (nmbclusters * MCLBYTES), 480 * respectively. Mathematically, this means that what we do here may 481 * amount to slightly more address space than we need for the submaps, 482 * but it never hurts to have an extra page in kmem_map. 483 */ 484 npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + nmbcnt * 485 sizeof(u_int) + vm_kmem_size) / PAGE_SIZE; 486 487 kmemusage = (struct kmemusage *) kmem_alloc(kernel_map, 488 (vm_size_t)(npg * sizeof(struct kmemusage))); 489 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase, 490 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE)); 491 kmem_map->system_map = 1; 492 for (indx = 0; indx < MINBUCKET + 16; indx++) { 493 if (1 << indx >= PAGE_SIZE) 494 bucket[indx].kb_elmpercl = 1; 495 else 496 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx); 497 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; 498 } 499 } 500 501 void 502 malloc_init(data) 503 void *data; 504 { 505 struct malloc_type *type = (struct malloc_type *)data; 506 507 if (type->ks_magic != M_MAGIC) 508 panic("malloc type lacks magic"); 509 510 if (type->ks_limit != 0) 511 return; 512 513 if (cnt.v_page_count == 0) 514 panic("malloc_init not allowed before vm init"); 515 516 /* 517 * The default limits for each malloc region is 1/2 of the 518 * malloc portion of the kmem map size. 519 */ 520 type->ks_limit = vm_kmem_size / 2; 521 type->ks_next = kmemstatistics; 522 kmemstatistics = type; 523 } 524 525 void 526 malloc_uninit(data) 527 void *data; 528 { 529 struct malloc_type *type = (struct malloc_type *)data; 530 struct malloc_type *t; 531 #ifdef INVARIANTS 532 struct kmembuckets *kbp; 533 struct freelist *freep; 534 long indx; 535 int s; 536 #endif 537 538 if (type->ks_magic != M_MAGIC) 539 panic("malloc type lacks magic"); 540 541 if (cnt.v_page_count == 0) 542 panic("malloc_uninit not allowed before vm init"); 543 544 if (type->ks_limit == 0) 545 panic("malloc_uninit on uninitialized type"); 546 547 #ifdef INVARIANTS 548 s = splmem(); 549 mtx_lock(&malloc_mtx); 550 for (indx = 0; indx < MINBUCKET + 16; indx++) { 551 kbp = bucket + indx; 552 freep = (struct freelist*)kbp->kb_next; 553 while (freep) { 554 if (freep->type == type) 555 freep->type = M_FREE; 556 freep = (struct freelist*)freep->next; 557 } 558 } 559 splx(s); 560 mtx_unlock(&malloc_mtx); 561 562 if (type->ks_memuse != 0) 563 printf("malloc_uninit: %ld bytes of '%s' still allocated\n", 564 type->ks_memuse, type->ks_shortdesc); 565 #endif 566 567 if (type == kmemstatistics) 568 kmemstatistics = type->ks_next; 569 else { 570 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 571 if (t->ks_next == type) { 572 t->ks_next = type->ks_next; 573 break; 574 } 575 } 576 } 577 type->ks_next = NULL; 578 type->ks_limit = 0; 579 } 580